15 research outputs found

    Reproducibility of Free Energy Calculations Across Different Molecular Simulation Software

    Get PDF
    <div> <div> <div> <p>Alchemical free energy calculations are an increasingly important modern simulation technique. Contemporary molecular simulation software such as AMBER, CHARMM, GROMACS and SOMD include support for the method. Implementation details vary among those codes but users expect reliability and reproducibility, i.e. for a given molec- ular model and set of forcefield parameters, comparable free energy should be obtained within statistical bounds regardless of the code used. Relative alchemical free energy (RAFE) simulation is increasingly used to support molecule discovery projects, yet the reproducibility of the methodology has been less well tested than its absolute counter- part. Here we present RAFE calculations of hydration free energies for a set of small organic molecules and demonstrate that free energies can be reproduced to within about 0.2 kcal/mol with aforementioned codes. Achieving this level of reproducibility requires considerable attention to detail and package–specific simulation protocols, and no uni- versally applicable protocol emerges. The benchmarks and protocols reported here should be useful for the community to validate new and future versions of software for free energy calculations.</p></div></div></div

    Evaluation of Selected Classical Force Fields for Alchemical Binding Free Energy Calculations of Protein-Carbohydrate Complexes

    Get PDF
    Protein–carbohydrate recognition is crucial in many vital biological processes including host–pathogen recognition, cell-signaling, and catalysis. Accordingly, computational prediction of protein–carbohydrate binding free energies is of enormous interest for drug design. However, the accuracy of current force fields (FFs) for predicting binding free energies of protein–carbohydrate complexes is not well understood owing to technical challenges such as the highly polar nature of the complexes, anomerization, and conformational flexibility of carbohydrates. The present study evaluated the performance of alchemical predictions of binding free energies with the GAFF1.7/AM1-BCC and GLYCAM06j force fields for modeling protein–carbohydrate complexes. Mean unsigned errors of 1.1 ± 0.06 (GLYCAM06j) and 2.6 ± 0.08 (GAFF1.7/AM1-BCC) kcal·mol<sup>–1</sup> are achieved for a large data set of monosaccharide ligands for <i>Ralstonia solanacearum</i> lectin (RSL). The level of accuracy provided by GLYCAM06j is sufficient to discriminate potent, moderate, and weak binders, a goal that has been difficult to achieve through other scoring approaches. Accordingly, the protocols presented here could find useful applications in carbohydrate-based drug and vaccine developments

    CXCR6, a Newly Defined Biomarker of Tissue-Specific Stem Cell Asymmetric Self-Renewal, Identifies More Aggressive Human Melanoma Cancer Stem Cells

    Get PDF
    Background: A fundamental problem in cancer research is identifying the cell type that is capable of sustaining neoplastic growth and its origin from normal tissue cells. Recent investigations of a variety of tumor types have shown that phenotypically identifiable and isolable subfractions of cells possess the tumor-forming ability. In the present paper, using two lineage-related human melanoma cell lines, primary melanoma line IGR39 and its metastatic derivative line IGR37, two main observations are reported. The first one is the first phenotypic evidence to support the origin of melanoma cancer stem cells (CSCs) from mutated tissue-specific stem cells; and the second one is the identification of a more aggressive subpopulation of CSCs in melanoma that are CXCR6+. Conclusions/Significance: The association of a more aggressive tumor phenotype with asymmetric self-renewal phenotype reveals a previously unrecognized aspect of tumor cell physiology. Namely, the retention of some tissue-specific stem cell attributes, like the ability to asymmetrically self-renew, impacts the natural history of human tumor development. Knowledge of this new aspect of tumor development and progression may provide new targets for cancer prevention and treatment

    Longbow: A Lightweight Remote Job Submission Tool

    No full text
    We present Longbow, a lightweight console-based remote job submission tool and library. Longbow allows the user to quickly and simply run jobs on high performance computing facilities without leaving their familiar desktop environment. Not only does Longbow greatly simplify the management of compute- intensive jobs for experienced researchers, it also lowers the technical barriers surrounding high perfor-mance computation for the next generation of scientists and engineers. Longbow has already been used to remotely submit jobs in a number of projects and has the potential to redefine the manner in which high performance computers are used

    Reinvent 4: Modern AI–driven generative molecule design

    No full text
    Abstract REINVENT 4 is a modern open-source generative AI framework for the design of small molecules. The software utilizes recurrent neural networks and transformer architectures to drive molecule generation. These generators are seamlessly embedded within the general machine learning optimization algorithms, transfer learning, reinforcement learning and curriculum learning. REINVENT 4 enables and facilitates de novo design, R-group replacement, library design, linker design, scaffold hopping and molecule optimization. This contribution gives an overview of the software and describes its design. Algorithms and their applications are discussed in detail. REINVENT 4 is a command line tool which reads a user configuration in either TOML or JSON format. The aim of this release is to provide reference implementations for some of the most common algorithms in AI based molecule generation. An additional goal with the release is to create a framework for education and future innovation in AI based molecular design. The software is available from https://github.com/MolecularAI/REINVENT4 and released under the permissive Apache 2.0 license. Scientific contribution. The software provides an open–source reference implementation for generative molecular design where the software is also being used in production to support in–house drug discovery projects. The publication of the most common machine learning algorithms in one code and full documentation thereof will increase transparency of AI and foster innovation, collaboration and education

    Reproducibility of Free Energy Calculations Across Different Molecular Simulation Software

    No full text
    Alchemical free energy calculations are an increasingly important modern simulation technique. Contemporary molecular simulation software such as AMBER, CHARMM, GROMACS and SOMD include support for the method. Implementation details vary among those codes but users expect reliability and reproducibility, i.e. for a given molec- ular model and set of forcefield parameters, comparable free energy should be obtained within statistical bounds regardless of the code used. Relative alchemical free energy (RAFE) simulation is increasingly used to support molecule discovery projects, yet the reproducibility of the methodology has been less well tested than its absolute counter- part. Here we present RAFE calculations of hydration free energies for a set of small organic molecules and demonstrate that free energies can be reproduced to within about 0.2 kcal/mol with aforementioned codes. Achieving this level of reproducibility requires considerable attention to detail and package–specific simulation protocols, and no uni- versally applicable protocol emerges. The benchmarks and protocols reported here should be useful for the community to validate new and future versions of software for free energy calculations.</div
    corecore