27 research outputs found

    Juvenile king scallop, Pecten maximus, is potentially tolerant to low levels of ocean acidification when food is unrestricted.

    Get PDF
    The decline in ocean water pH and changes in carbonate saturation states through anthropogenically mediated increases in atmospheric CO2 levels may pose a hazard to marine organisms. This may be particularly acute for those species reliant on calcareous structures like shells and exoskeletons. This is of particular concern in the case of valuable commercially exploited species such as the king scallop, Pecten maximus. In this study we investigated the effects on oxygen consumption, clearance rates and cellular turnover in juvenile P. maximus following 3 months laboratory exposure to four pCO2 treatments (290, 380, 750 and 1140 µatm). None of the exposure levels were found to have significant effect on the clearance rates, respiration rates, condition index or cellular turnover (RNA: DNA) of individuals. While it is clear that some life stages of marine bivalves appear susceptible to future levels of ocean acidification, particularly under food limiting conditions, the results from this study suggest that where food is in abundance, bivalves like juvenile P. maximus may display a tolerance to limited changes in seawater chemistry

    Marine Biodiversity in the Caribbean: Regional Estimates and Distribution Patterns

    Get PDF
    This paper provides an analysis of the distribution patterns of marine biodiversity and summarizes the major activities of the Census of Marine Life program in the Caribbean region. The coastal Caribbean region is a large marine ecosystem (LME) characterized by coral reefs, mangroves, and seagrasses, but including other environments, such as sandy beaches and rocky shores. These tropical ecosystems incorporate a high diversity of associated flora and fauna, and the nations that border the Caribbean collectively encompass a major global marine biodiversity hot spot. We analyze the state of knowledge of marine biodiversity based on the geographic distribution of georeferenced species records and regional taxonomic lists. A total of 12,046 marine species are reported in this paper for the Caribbean region. These include representatives from 31 animal phyla, two plant phyla, one group of Chromista, and three groups of Protoctista. Sampling effort has been greatest in shallow, nearshore waters, where there is relatively good coverage of species records; offshore and deep environments have been less studied. Additionally, we found that the currently accepted classification of marine ecoregions of the Caribbean did not apply for the benthic distributions of five relatively well known taxonomic groups. Coastal species richness tends to concentrate along the Antillean arc (Cuba to the southernmost Antilles) and the northern coast of South America (Venezuela – Colombia), while no pattern can be observed in the deep sea with the available data. Several factors make it impossible to determine the extent to which these distribution patterns accurately reflect the true situation for marine biodiversity in general: (1) highly localized concentrations of collecting effort and a lack of collecting in many areas and ecosystems, (2) high variability among collecting methods, (3) limited taxonomic expertise for many groups, and (4) differing levels of activity in the study of different taxa

    Bottom culture of the tropical scallop Lyropecten (Nodipecten) nodosus (L.) in the Golfo de Cariaco, Venezuela

    No full text
    16 pages, 3 tables, 5 figuresGrowth and survival of scallop Lyropecten nodosus were studied fromJuly to November 1997 using three bottom culture methods, (1) in corrals,(2) in pockets, and (3) in anchored sleeves. All size parameters studied (dryweight of the muscle, gonad, remaining tissues and shell, and shell length)showed significant differences due to culture method. The body componentswere larger for scallops in corrals than for those in pockets and greater forthose in pockets than in sleeves. In contrast, survival did not vary withculture method. Tissue components increased rapidly during the first 2months, when temperatures were lower and phytoplankton abundant(upwelling and transition periods). Subsequently values leveled off, or insome cases (muscle) decreased, and this coincided with stratification of thewater column and associated high temperatures and scarce food resources(and possible energetic demands for gonadal development). In contrast,shell weight and length showed no apparent affect of the environmentalchanges. The increased growth in the corrals was possibly because thecorral walls permitted the scallops to raise themselves off the bottom whichcould have provided greater access to food resources (suspendedparticles), or to better quality foodWe are grateful to Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICIT) and Consejo de Investigación de la Universidad de Oriente for financial supportPeer reviewe

    Growth and survival of the scallop Lyropecten (= Nodipecten) nodosus (L. 1758) in suspended culture in the Cariaco Gulf (Venezuela) during a non-upwelling period

    No full text
    10 páginas, 4 figuras, 1 tablaGrowth and survival of the scallop Lyropecten nodosus were studied in 1997 at two sites (inner and outer Turpialito Bay) during a non-upwelling period normally occurring between August and November. Individuals had an initial shell height of 4.86 cm (SD=1.64 cm). Both experimental groups were held in suspended plastic baskets at the same depth (4 m). Measurements of shell height and dry weights of shell, gonad, digestive gland, remaining tissues and shell biofouling were taken at monthly intervals. Environmental parameters, including temperature, phytoplanktonic biomass, total particulate material (TPM) and associated organic (POM) and inorganic (PIM) fractions, were recorded simultaneously. At the end of the study, significant differences in growth and survival of scallops were observed between the two experimental sites. Scallops maintained inside the bay showed a 22% greater increase in shell height (7.41±0.27 cm) than those placed outside the bay (6.37±0.41 cm). Survival of scallops inside the bay was 31% higher compared with scallops outside. The greater availability of food of phytoplanktonic origin during the first two experimental months (July and August) together with greater POM throughout the whole experimental period except September, at the inner bay site, probably explained survival and growth differences observed between the two locations. Results suggest that, during the non-upwelling period (characterized by low primary productivity and high water temperatures), POM of sedimentary origin may play an important role as an energy source required for metabolic and reproductive activities of L. nodosus.The authors would like to thank Andrew Dale for revising the English text, and the Consejo Nacional de Investigaciones Científicas and Tecnológicas (CONICIT) and the Consejo de Investigación de la Universidad de Oriente for economic support which enabled this survey to be completed.Peer reviewe

    Growth and survival of the winged oyster Pteria colymbus in suspended culture: influence of environmental factors associated to upwelling periods

    No full text
    The present study examines the influence that environmental variables exerted on changes in condition index (CI), shell height (SH—dorsal-ventral axis) and soft tissue mass increments (STM) of the winged oyster Pteria colymbus in suspended culture during periods of upwelling (December to April) and non-upwelling (August to November) in the Cariaco Gulf, northeastern Venezuela. Environmental variables recorded between April 2012 and May 2013 included seston, water transparency, temperature, dissolved oxygen, chlorophyll a (Chl a) and the upwelling index (UI). Individuals were cultivated in lantern nets with an overall density of 56 individuals/0.123 m2. From three randomly chosen baskets, five individuals were sampled each month and changes in CI, STM and SH were related to the environmental variables using Spearman correlation and PCA. Results show that during upwelling, both Chl a and UI presented a positive and significant relationship with the oyster condition and growth parameters. During non-upwelling (low UI), this relationship was inverse, demonstrating the important influence of upwelling and non-upwelling periods on the ecophysiology of the species. Furthermore, it was shown that the non-upwelling, characterized by high temperatures and low food availability, is a critical period for P. colymbus, judging by a decrease in growth and survival rate. Nonetheless, this species reached 50 mm in 5 months, a size considered as commercially viable, suggesting that the study area is favourable to the cultivation of the winged oyster despite a dramatic decrease in upwelling intensity in the last decade
    corecore