7 research outputs found

    Characterization of the active site and calcium binding in cytochromecnitrite reductases

    Get PDF
    The decahaem homodimeric cytochrome c nitrite reductase (NrfA) is expressed within the periplasm of a wide range of Gamma-, Delta- and Epsilon-proteobacteria and is responsible for the six-electron reduction of nitrite to ammonia. This allows nitrite to be used as a terminal electron acceptor, facilitating anaerobic respiration while allowing nitrogen to remain in a biologically available form. NrfA has also been reported to reduce nitric oxide (a reaction intermediate) and sulfite to ammonia and sulfide respectively, suggesting a potential secondary role as a detoxification enzyme. The protein sequences and crystal structures of NrfA from different bacteria and the closely related octahaem nitrite reductase from Thioalkalivibrio nitratireducens (TvNir) reveal that these enzymes are homologous. The NrfA proteins contain five covalently attached haem groups, four of which are bis-histidine-co-ordinated, with the proximal histidine being provided by the highly conserved CXXCH motif. These haems are responsible for intraprotein electron transfer. The remaining haem is the site for nitrite reduction, which is ligated by a novel lysine residue provided by a CXXCK haem-binding motif. The TvNir nitrite reductase has five haems that are structurally similar to those of NrfA and three extra bis-histidine-coordinated haems that precede the NrfA conserved region. The present review compares the protein sequences and structures of NrfA and TvNir and discusses the subtle differences related to active-site architecture and Ca2+ binding that may have an impact on substrate reduction

    Carbon Dots as Versatile Photosensitizers for Solar-Driven Catalysis with Redox Enzymes

    Get PDF
    Light-driven enzymatic catalysis is enabled by the productive coupling of a protein to a photosensitizer. Photosensitizers used in such hybrid systems are typically costly, toxic, and/or fragile, with limited chemical versatility. Carbon dots (CDs) are low-cost, nanosized light-harvesters that are attractive photosensitizers for biological systems as they are water-soluble, photostable, nontoxic, and their surface chemistry can be easily modified. We demonstrate here that CDs act as excellent light-absorbers in two semibiological photosynthetic systems utilizing either a fumarate reductase (FccA) for the solar-driven hydrogenation of fumarate to succinate or a hydrogenase (H2_{2}ase) for reduction of protons to H2_{2}. The tunable surface chemistry of the CDs was exploited to synthesize positively charged ammonium-terminated CDs (CD-NHMe2_{2}+^{+}), which were capable of transferring photoexcited electrons directly to the negatively charged enzymes with high efficiency and stability. Enzyme-based turnover numbers of 6000 mol succinate (mol FccA)−1^{-1} and 43,000 mol H2_{2} (mol H2_{2}ase)−1^{-1} were reached after 24 h. Negatively charged carboxylate-terminated CDs (CD-CO2_{2}−^{-}) displayed little or no activity, and the electrostatic interactions at the CD–enzyme interface were determined to be essential to the high photocatalytic activity observed with CD-NHMe2_{2}+^{+}. The modular surface chemistry of CDs together with their photostability and aqueous solubility make CDs versatile photosensitizers for redox enzymes with great scope for their utilization in photobiocatalysis.This work was supported by a Cambridge Australia Poynton PhD scholarship (to G.A.M.H.), the BBSRC (BB/K010220/1 to E.R. and BB/K009885/1 to J.N.B.), an Oppenheimer PhD scholarship (to B.C.M.M.), and a Marie Curie postdoctoral fellowship (GAN 624997 to C.A.C.)

    Light-Driven H2 Evolution and C═C or C═O Bond Hydrogenation by Shewanella oneidensis : A Versatile Strategy for Photocatalysis by Nonphotosynthetic Microorganisms

    Get PDF
    Photocatalytic chemical synthesis by coupling abiotic photosensitizers to purified enzymes provides an effective way to overcome the low conversion efficiencies of natural photosynthesis while exploiting the high catalytic rates and selectivity of enzymes as renewable, earth-abundant electrocatalysts. However, the selective synthesis of multiple products requires more versatile approaches and should avoid the time-consuming and costly processes of enzyme purification. Here we demonstrate a cell-based strategy supporting light-driven H2 evolution or the hydrogenation of C═C and C═O bonds in a nonphotosynthetic microorganism. Methylviologen shuttles photoenergized electrons from water-soluble photosensitizers to enzymes that catalyze H2 evolution and the reduction of fumarate, pyruvate, and CO2 in Shewanella oneidensis. The predominant reaction is selected by the experimental conditions, and the results allow rational development of cell-based strategies to harness nature’s intrinsic catalytic diversity for selective light-driven synthesis of a wide range of products

    Regression I

    No full text
    corecore