43 research outputs found

    Bioinformatics-Based Identification of Expanded Repeats: A Non-reference Intronic Pentamer Expansion in RFC1 Causes CANVAS

    Get PDF
    Genomic technologies such as next-generation sequencing (NGS) are revolutionizing molecular diagnostics and clinical medicine. However, these approaches have proven inefficient at identifying pathogenic repeat expansions. Here, we apply a collection of bioinformatics tools that can be utilized to identify either known or novel expanded repeat sequences in NGS data. We performed genetic studies of a cohort of 35 individuals from 22 families with a clinical diagnosis of cerebellar ataxia with neuropathy and bilateral vestibular areflexia syndrome (CANVAS). Analysis of whole-genome sequence (WGS) data with five independent algorithms identified a recessively inherited intronic repeat expansion [(AAGGG)exp] in the gene encoding Replication Factor C1 (RFC1). This motif, not reported in the reference sequence, localized to an Alu element and replaced the reference (AAAAG)11 short tandem repeat. Genetic analyses confirmed the pathogenic expansion in 18 of 22 CANVAS-affected families and identified a core ancestral haplotype, estimated to have arisen in Europe more than twenty-five thousand years ago. WGS of the four RFC1-negative CANVAS-affected families identified plausible variants in three, with genomic re-diagnosis of SCA3, spastic ataxia of the Charlevoix-Saguenay type, and SCA45. This study identified the genetic basis of CANVAS and demonstrated that these improved bioinformatics tools increase the diagnostic utility of WGS to determine the genetic basis of a heterogeneous group of clinically overlapping neurogenetic disorders

    Anatomy of the human body

    No full text
    ix+697hlm.;26c

    Pinus pinaster Oleoresin in Plus Trees

    No full text

    An annotated checklist of bryophytes of Europe, Macaronesia and Cyprus

    No full text
    Following on from work on the European bryophyte Red List, the taxonomically and nomenclaturally updated spreadsheets used for that project have been expanded into a new checklist for the bryophytes of Europe. Methods. A steering group of ten European bryologists was convened, and over the course of a year, the spreadsheets were compared with previous European checklists, and all changes noted. Recent literature was searched extensively. A taxonomic system was agreed, and the advice and expertise of many European bryologists sought. Key results. A new European checklist of bryophytes, comprising hornworts, liverworts and mosses, is presented. Fifteen new combinations are proposed. Conclusions. This checklist provides a snapshot of the current European bryophyte flora in 2019. It will already be out-of-date on publication, and further research, particularly molecular work, can be expected to result in many more changes over the next few year
    corecore