4,238 research outputs found
Mars Encounters cause fresh surfaces on some near-Earth asteroids
All airless bodies are subject to the space environment, and spectral
differences between asteroids and meteorites suggest many asteroids become
weathered on very short (<1My) timescales. The spectra of some asteroids,
particularly Q-types, indicate surfaces that appear young and fresh, implying
they have been recently been exposed. Previous work found that Earth encounters
were the dominant freshening mechanism and could be responsible for all
near-Earth object (NEO) Q-types. In this work we increase the known NEO Q-type
sample of by a factor of three. We present the orbital distributions of 64
Q-type near-Earth asteroids, and seek to determine the dominant mechanisms for
refreshing their surfaces. Our sample reveals two important results: i) the
relatively steady fraction of Q-types with increasing semi-major axis and ii)
the existence of Q-type near-Earth asteroids with Minimum Orbit Intersection
Distances (MOID) that do not have orbit solutions that cross Earth. Both of
these are evidence that Earth-crossing is not the only scenario by which NEO
Q-types are freshened. The high Earth-MOID asteroids represent 10% of the
Q-type population and all are in Amor orbits. While surface refreshing could
also be caused by Main Belt collisions or mass shedding from YORP spinup, all
high Earth-MOID Q-types have the possibility of encounters with Mars indicating
Mars could be responsible for a significant fraction of NEOs with fresh
surfaces.Comment: Accepted for publication in Icarus -- 14 pages, 8 figures, 1 table, 2
appendice
Spectral and Spin Measurement of Two Small and Fast-Rotating Near-Earth Asteroids
In May 2012 two asteroids made near-miss "grazing" passes at distances of a
few Earth-radii: 2012 KP24 passed at nine Earth-radii and 2012 KT42 at only
three Earth-radii. The latter passed inside the orbital distance of
geosynchronous satellites. From spectral and imaging measurements using NASA's
3-m Infrared Telescope Facility (IRTF), we deduce taxonomic, rotational, and
physical properties. Their spectral characteristics are somewhat atypical among
near-Earth asteroids: C-complex for 2012 KP24 and B-type for 2012 KT42, from
which we interpret the albedos of both asteroids to be between 0.10 and 0.15
and effective diameters of 20+-2 and 6+-1 meters, respectively. Among B-type
asteroids, the spectrum of 2012 KT42 is most similar to 3200 Phaethon and 4015
Wilson-Harrington. Not only are these among the smallest asteroids spectrally
measured, we also find they are among the fastest-spinning: 2012 KP24 completes
a rotation in 2.5008+-0.0006 minutes and 2012 KT42 rotates in 3.634+-0.001
minutes.Comment: 4 pages, 3 figures, accepted for publication in Icaru
Adventures in Invariant Theory
We provide an introduction to enumerating and constructing invariants of
group representations via character methods. The problem is contextualised via
two case studies arising from our recent work: entanglement measures, for
characterising the structure of state spaces for composite quantum systems; and
Markov invariants, a robust alternative to parameter-estimation intensive
methods of statistical inference in molecular phylogenetics.Comment: 12 pp, includes supplementary discussion of example
Measurement of a Sign-Changing Two-Gap Superconducting Phase in Electron-Doped Ba(Fe_{1-x}Co_x)_2As_2 Single Crystals using Scanning Tunneling Spectroscopy
Scanning tunneling spectroscopic studies of (x =
0.06, 0.12) single crystals reveal direct evidence for predominantly two-gap
superconductivity. These gaps decrease with increasing temperature and vanish
above the superconducting transition . The two-gap nature and the slightly
doping- and energy-dependent quasiparticle scattering interferences near the
wave-vectors and are consistent with
sign-changing -wave superconductivity. The excess zero-bias conductance and
the large gap-to- ratios suggest dominant unitary impurity scattering.Comment: 4 pages, 4 figures. Paper accepted for publication in Physical Review
Letters. Contact author: Nai-Chang Yeh ([email protected]
Treatment utilization and outcomes in elderly patients with locally advanced esophageal carcinoma: A review of the National Cancer Database
For elderly patients with locally advanced esophageal cancer, therapeutic approaches and outcomes in a modern cohort are not well characterized. Patients ≥70 years old with clinical stage II and III esophageal cancer diagnosed between 1998 and 2012 were identified from the National Cancer Database and stratified based on treatment type. Variables associated with treatment utilization were evaluated using logistic regression and survival evaluated using Cox proportional hazards analysis. Propensity matching (1:1) was performed to help account for selection bias. A total of 21,593 patients were identified. Median and maximum ages were 77 and 90, respectively. Treatment included palliative therapy (24.3%), chemoradiation (37.1%), trimodality therapy (10.0%), esophagectomy alone (5.6%), or no therapy (12.9%). Age ≥80 (OR 0.73), female gender (OR 0.81), Charlson-Deyo comorbidity score ≥2 (OR 0.82), and high-volume centers (OR 0.83) were associated with a decreased likelihood of palliative therapy versus no treatment. Age ≥80 (OR 0.79) and Clinical Stage III (OR 0.33) were associated with a decreased likelihood, while adenocarcinoma histology (OR 1.33) and nonacademic cancer centers (OR 3.9), an increased likelihood of esophagectomy alone compared to definitive chemoradiation. Age ≥80 (OR 0.15), female gender (OR 0.80), and non-Caucasian race (OR 0.63) were associated with a decreased likelihood, while adenocarcinoma histology (OR 2.10) and high-volume centers (OR 2.34), an increased likelihood of trimodality therapy compared to definitive chemoradiation. Each treatment type demonstrated improved survival compared to no therapy: palliative treatment (HR 0.49) to trimodality therapy (HR 0.25) with significance between all groups. Any therapy, including palliative care, was associated with improved survival; however, subsets of elderly patients with locally advanced esophageal cancer are less likely to receive aggressive therapy. Care should be taken to not unnecessarily deprive these individuals of treatment that may improve survival
Nonlinear software sensor for monitoring genetic regulation processes with noise and modeling errors
Nonlinear control techniques by means of a software sensor that are commonly
used in chemical engineering could be also applied to genetic regulation
processes. We provide here a realistic formulation of this procedure by
introducing an additive white Gaussian noise, which is usually found in
experimental data. Besides, we include model errors, meaning that we assume we
do not know the nonlinear regulation function of the process. In order to
illustrate this procedure, we employ the Goodwin dynamics of the concentrations
[B.C. Goodwin, Temporal Oscillations in Cells, (Academic Press, New York,
1963)] in the simple form recently applied to single gene systems and some
operon cases [H. De Jong, J. Comp. Biol. 9, 67 (2002)], which involves the
dynamics of the mRNA, given protein, and metabolite concentrations. Further, we
present results for a three gene case in co-regulated sets of transcription
units as they occur in prokaryotes. However, instead of considering their full
dynamics, we use only the data of the metabolites and a designed software
sensor. We also show, more generally, that it is possible to rebuild the
complete set of nonmeasured concentrations despite the uncertainties in the
regulation function or, even more, in the case of not knowing the mRNA
dynamics. In addition, the rebuilding of concentrations is not affected by the
perturbation due to the additive white Gaussian noise and also we managed to
filter the noisy output of the biological systemComment: 21 pages, 7 figures; also selected in vjbio of August 2005; this
version corrects a misorder in the last three references of the published
versio
Dating the Cryptococcus gattii Dispersal to the North American Pacific Northwest.
The emergence of Cryptococcus gattii, previously regarded as a predominantly tropical pathogen, in the temperate climate of the North American Pacific Northwest (PNW) in 1999 prompted several questions. The most prevalent among these was the timing of the introduction of this pathogen to this novel environment. Here, we infer tip-dated timing estimates for the three clonal C. gattii populations observed in the PNW, VGIIa, VGIIb, and VGIIc, based on whole-genome sequencing of 134 C. gattii isolates and using Bayesian evolutionary analysis by sampling trees (BEAST). We estimated the nucleotide substitution rate for each lineage (1.59 × 10-8, 1.59 × 10-8, and 2.70 × 10-8, respectively) to be an order of magnitude higher than common neutral fungal mutation rates (2.0 × 10-9), indicating a microevolutionary rate (e.g., successive clonal generations in a laboratory) in comparison to a species' slower, macroevolutionary rate (e.g., when using fossil records). The clonal nature of the PNW C. gattii emergence over a narrow number of years would therefore possibly explain our higher mutation rates. Our results suggest that the mean time to most recent common ancestor for all three sublineages occurred within the last 60 to 100 years. While the cause of C. gattii dispersal to the PNW is still unclear, our research estimates that the arrival is neither ancient nor very recent (i.e., <25 years ago), making a strong case for an anthropogenic introduction. IMPORTANCE The recent emergence of the pathogenic fungus Cryptococcus gattii in the Pacific Northwest (PNW) resulted in numerous investigations into the epidemiological and enzootic impacts, as well as multiple genomic explorations of the three primary molecular subtypes of the fungus that were discovered. These studies lead to the general conclusion that the subtypes identified likely emerged out of Brazil. Here, we conducted genomic dating analyses to determine the ages of the various lineages seen in the PNW and propose hypothetical causes for the dispersal events. Bayesian evolutionary analysis strongly suggests that these independent fungal populations in the PNW are all 60 to 100 years old, providing a timing that is subsequent to the opening of the Panama Canal, which allowed for more direct shipping between Brazil and the western North American coastline, a possible driving event for these fungal translocation events
Signal Processing
Contains reports on three research projects.Joint Services Electronics Programs (U. S. Army, U. S. Navy, and U. S. Air Force) under Contract DA 28-043-AMC-02536(E
Mobile radio interferometric geodetic systems
Operation of the Astronomical Radio Interferometric Earth Surveying (ARIES) in a proof of concept mode is discussed. Accuracy demonstrations over a short baseline, a 180 km baseline, and a 380 km baseline are documented. Use of ARIES in the Sea Slope Experiment of the National Geodetic Survey to study the apparent differences between oceanographic and geodetic leveling determinations of the sea surface along the Pacific Coast is described. Intergration of the NAVSTAR Global Positioning System and a concept called SERIES (Satellite Emission Radio Interferometric Earth Surveying) is briefly reviewed
- …
