27 research outputs found

    Influence of material choice on the force delivery of bimaxillary tooth positioners on canine malpositions

    Get PDF
    Objective: Since their introduction in 1945, tooth positioners have been used to treat a range of malpositions. Although the original appliance was made of natural rubber, today's tooth positioners are fabricated from various elastic, transparent materials. It was the aim of this study to evaluate the forces and moments produced by current positioners on various upper canine malpositions. Material and methods: Seven positioners of different materials were tested on 11 upper canine malpositions: 0.25, 0.5, 1mm supraposition; 0.25, 0.5, 1mm infraposition; 5°, 10°, 20° mesiorotation; 5° mesioinclination, 5° buccal root torque. We measured forces and moments in vitro after bite closure by 0.5mm, and opening by 1mm using a three-dimensional robotic device. All measurements were taken in a temperature-controlled environment at 36°C. Results: The forces and moments measured at the canine varied greatly among the different positioners, with the thermoformed EVA positioner showing much greater forces and moments in almost all malpositions. At initial closure, we observed intrusive forces of 6-32N for suprapositions, 0-11N intrusive forces for infrapositions, 0-20Nmm for mesiorotations, 6-12Nmm for mesioinclinations, and − 23Nmm to 5Nmm for buccal root torque. All positioners were most effective on suprapositioned teeth. Very low or negligible correctional forces and moments in conjunction with all infrapositions and 5° with rotation were noted. Labial root torque led to unpredictable moments. Conclusion: Positioner material plays a major role in delivering forces to the teeth. However, tooth positioners did not induce corrective forces in all the malpositions tested. Clinically relevant correctional forces or moments in conjunction with all suprapositions, rotations of 10° and 20° as well as mesial tipping of the canine were observe

    Bayesian Inference for Identifying Interaction Rules in Moving Animal Groups

    Get PDF
    The emergence of similar collective patterns from different self-propelled particle models of animal groups points to a restricted set of “universal” classes for these patterns. While universality is interesting, it is often the fine details of animal interactions that are of biological importance. Universality thus presents a challenge to inferring such interactions from macroscopic group dynamics since these can be consistent with many underlying interaction models. We present a Bayesian framework for learning animal interaction rules from fine scale recordings of animal movements in swarms. We apply these techniques to the inverse problem of inferring interaction rules from simulation models, showing that parameters can often be inferred from a small number of observations. Our methodology allows us to quantify our confidence in parameter fitting. For example, we show that attraction and alignment terms can be reliably estimated when animals are milling in a torus shape, while interaction radius cannot be reliably measured in such a situation. We assess the importance of rate of data collection and show how to test different models, such as topological and metric neighbourhood models. Taken together our results both inform the design of experiments on animal interactions and suggest how these data should be best analysed

    Inhibiting ex-vivo Th17 responses in Ankylosing Spondylitis by targeting Janus kinases

    Get PDF
    Treatment options for Ankylosing Spondylitis (AS) are still limited. The T helper cell 17 (Th17) pathway has emerged as a major driver of disease pathogenesis and a good treatment target. Janus kinases (JAK) are key transducers of cytokine signals in Th17 cells and therefore promising targets for the treatment of AS. Here we investigate the therapeutic potential of four different JAK inhibitors on cells derived from AS patients and healthy controls, cultured in-vitro under Th17-promoting conditions. Levels of IL-17A, IL-17F, IL-22, GM-CSF and IFN gamma were assessed by ELISA and inhibitory effects were investigated with Phosphoflow. JAK1/2/3 and TYK2 were silenced in CD4+ T cells with siRNA and effects analyzed by ELISA (IL-17A, IL-17F and IL-22), Western Blot, qPCR and Phosphoflow. In-vitro inhibition of CD4+ T lymphocyte production of multiple Th17 cytokines (IL-17A, IL-17F and IL-22) was achieved with JAK inhibitors of differing specificity, as well as by silencing of JAK1-3 and Tyk2, without impacting on cell viability or proliferation. Our preclinical data suggest JAK inhibitors as promising candidates for therapeutic trials in AS, since they can inhibit multiple Th17 cytokines simultaneously. Improved targeting of TYK2 or other JAK isoforms may confer tailored effects on Th17 responses in AS

    Expression profiling in transgenic FVB/N embryonic stem cells overexpressing STAT3

    Get PDF
    BACKGROUND: The transcription factor STAT3 is a downstream target of the LIF signalling cascade. LIF signalling or activation is sufficient to maintain embryonic stem (ES) cells in an undifferentiated and pluripotent state. To further investigate the importance of STAT3 in the establishment of ES cells we have in a first step derived stable pluripotent embryonic stem cells from transgenic FVB mice expressing a conditional tamoxifen dependent STAT3-MER fusion protein. In a second step, STAT3-MER overexpressing cells were used to identify STAT3 pathway-related genes by expression profiling in order to identify new key-players involved in maintenance of pluripotency in ES cells. RESULTS: Transgenic STAT3-MER blastocysts yielded pluripotent germline-competent ES cells at a high frequency in the absence of LIF when established in tamoxifen-containing medium. Expression profiling of tamoxifen-induced transgenic FVB ES cell lines revealed a set of 26 genes that were markedly up- or down-regulated when compared with wild type cells. The expression of four of the up-regulated genes (Hexokinase II, Lefty2, Pramel7, PP1rs15B) was shown to be restricted to the inner cell mass (ICM) of the blastocysts. These differentially expressed genes represent potential candidates for the maintenance of pluripotency of ES cells. We finally overexpressed two candidate genes, Pem/Rhox5 and Pramel7, in ES cells and demonstrated that their overexpression is sufficient for the maintenance of expression of ES cell markers as well as of the typical morphology of pluripotent ES cells in absence of LIF. CONCLUSION: Overexpression of STAT3-MER in the inner cell mass of blastocyst facilitates the establishment of ES cells and induces the upregulation of potential candidate genes involved in the maintenance of pluripotency. Two of them, Pem/Rhox5 and Pramel7, when overexpressed in ES cells are able to maintain the embryonic stem cells in a pluripotent state in a LIF independent manner as STAT3 or Nanog

    T-cell recognition of chemicals, protein allergens and drugs: towards the development of in vitro assays

    Get PDF
    Chemicals can elicit T-cell-mediated diseases such as allergic contact dermatitis and adverse drug reactions. Therefore, testing of chemicals, drugs and protein allergens for hazard identification and risk assessment is essential in regulatory toxicology. The seventh amendment of the EU Cosmetics Directive now prohibits the testing of cosmetic ingredients in mice, guinea pigs and other animal species to assess their sensitizing potential. In addition, the EU Chemicals Directive REACh requires the retesting of more than 30,000 chemicals for different toxicological endpoints, including sensitization, requiring vast numbers of animals. Therefore, alternative methods are urgently needed to eventually replace animal testing. Here, we summarize the outcome of an expert meeting in Rome on 7 November 2009 on the development of T-cell-based in vitro assays as tools in immunotoxicology to identify hazardous chemicals and drugs. In addition, we provide an overview of the development of the field over the last two decades

    High-resolution mapping and modeling of anammox recovery from recurrent oxygen exposure

    No full text
    Oxygen inhibits anammox, a bioconversion executed by anoxic ammonium oxidizing bacteria (AnAOB). Nonetheless, oxygen is mostly found in the proximity of AnAOB in nitrogen removal applications, being a substrate for nitritation. The experiments performed to date were mostly limited to batch activity tests where AnAOB activity is estimated during oxygen exposure. However, little attention has been paid to the recovery and reversibility of activity following aerobic conditions, of direct relevance for bioreactor operation. In this work, anoxic and autotrophic reactor cultivation at 20 degrees C yielded an enriched microbial community in AnAOB, consisting for 75% of a member of the genus Brocadia. High-resolution kinetic data were obtained with online ammonium measurements and further processed with a newly developed Python data pipeline. The experimentally obtained AnAOB response showed complete inhibition until micro-aerobic conditions were reached again (<0.02 mg O-2 L-1). After oxygen inhibition, AnAOB recovered gradually, with recovery times of 5-37 h to reach a steady-state activity, dependent on the perceived inhibition. The recovery immediately after inhibition was lowest when exposed to higher oxygen concentrations (range: 0.5-8 mg O-2 L-1) with long contact times (range: 9-24 h). The experimental data did not fit well with a conventional 'instant recovery' Monod-type inhibition model. Yet, the fit greatly improved by incorporating a dynamic growth rate formula accurately describing gradual activity recovery. With the upgraded model, long-term kinetic simulations for partial nitritation/anammox (PN/A) with intermittent aeration showed a decrease in growth rate compared to the instant recovery mode. These results indicate that recovery of AnAOB after oxygen exposure was previously overlooked. It is recommended to account for this effect in the intensification of partial nitritation/anammox. (C) 2018 Elsevier Ltd. All rights reserved

    On-Ground Performance and Calibration of the ExoMars Trace Gas Orbiter CaSSIS Imager

    No full text
    The European Space Agency’s ExoMars Trace Gas Orbiter (TGO) seeks to investigate the biological or geological origin of trace gases found on Mars. The TGO carries a payload of four instruments in order to reach its scientific goals, including the Colour and Stereo Surface Imaging System (CaSSIS). CaSSIS is a colour and stereo telescopic camera that will be capable of taking high-resolution images of the martian surface. Before shipment of the instrument for integration onto the TGO, a detailed calibration campaign was performed, and a number of calibration products were gathered and utilised as part of the in-flight calibration campaign. This paper presents the results of on-ground calibration measurements carried out in order to assess the pre-flight performance of CaSSIS. All indications are that CaSSIS will perform very well on arrival at Mars and will be successful in reaching its scientific objectives
    corecore