2,076 research outputs found

    Egg hatching at different temperatures and relative humidities in Idaea inquinata (Scopoli) (Lepidoptera: Geometridae)

    Get PDF
    Idaea inquinata (Scopoli) feeds mainly on dried plants, nevertheless, it is also a potential pest of stored products as it is able to develop on cereal products. The few references on the biology of this species do not deal with the influence of temperature and relative humidity on egg hatching. To fill this gap, groups of 100 eggs, 24-48 hours old, were exposed to five constant temperatures (17, 21, 26, 29 and 34±1°C), two relative humidities (35 and 70±5%) and a photoperiod of 0:24 (light:dark); ten tests were carried out. Each test was replicated four times and egg hatching was observed daily. The highest mean number of hatched eggs was observed at 26 and 29±1°C, 70±5% r.h. with 91.5 and 91.0 eggs, respectively. The lowest mean number of hatched eggs was 61.5 observed at 17°C and 70±5% r.h. The mean numbers of hatched eggs, 83.5, 77.5, 78.5 and 79.8 were similar at 21, 26, 29 and 34±1°C, 35±5% r.h., respectively. Eggs hatched between the sixth and the eighth day at all the temperatures tested, except for 17±1°C and 35±5% r.h., where hatching started on the twelfth day. At this temperature, the duration of the hatching period increased with increasing humidity: 11 d at 35% r.h. and 15 d at 70% r.h. Keywords: Egg, Hatching, Temperature, Relative humidity, Rusty wave mot

    Physical properties of the jet from DG Tauri on sub-arcsecond scales with HST/STIS

    Full text link
    We derive the physical properties at the base of the jet from DG Tau both along and across the flow and as a function of velocity. We analysed seven optical spectra of the DG Tau jet, taken with the Hubble Space Telescope Imaging Spectrograph. The spectra were obtained by placing a long-slit parallel to the jet axis and stepping it across the jet width. The resulting position-velocity diagrams in optical forbidden emission lines allowed access to plasma conditions via calculation of emission line ratios. We find at the base of the jet high electron density, ne∼n_e \sim 105^5, and very low ionisation, xe∼0.02−0.05x_e \sim 0.02-0.05, which combine to give a total density up to nH∼n_H \sim 3 106^6. This analysis confirms previous reports of variations in plasma parameters along the jet, (i.e. decrease in density by several orders of magnitude, increase of xex_e from 0.05 to a plateau at 0.7 downstream at 2′′'' from the star). Furthermore, a spatial coincidence is revealed between sharp gradients in the total density and supersonic velocity jumps. This strongly suggests that the emission is caused by shock excitation. The position-velocity diagrams indicate the presence of both fast accelerating gas and slower, less collimated material. We derive the mass outflow rate, M˙j\dot{M}_j, in the blue-shifted lobe in different velocity channels, that contribute to a total of M˙j∼\dot{M}_j \sim 8 ±\pm 4 10−9^{-9} M⊙_\odot yr−1^{-1}. We estimate that a symmetric bipolar jet would transport at the low and intermediate velocities probed by rotation measurements, an angular momentum flux of L˙j∼\dot{L}_j \sim 2.9 ±\pm 1.5 10−6^{-6} M⊙_\odot yr−1^{-1} AU km s−1^{-1}. The derived properties of the DG Tau jet are demonstrated to be consistent with magneto-centrifugal theory. However, non-stationary modelling is required in order to explain all of the features revealed at high resolution.Comment: 16 pages, 18 figure

    Analysis of some global optimization algorithms for space trajectory design

    Get PDF
    In this paper, we analyze the performance of some global search algorithms on a number of space trajectory design problems. A rigorous testing procedure is introduced to measure the ability of an algorithm to identify the set of ²-optimal solutions. From the analysis of the test results, a novel algorithm is derived. The development of the novel algorithm starts from the redefinition of some evolutionary heuristics in the form of a discrete dynamical system. The convergence properties of this discrete dynamical system are used to derive a hybrid evolutionary algorithm that displays very good performance on the particular class of problems presented in this paper

    Surface stress of Ni adlayers on W(110): the critical role of the surface atomic structure

    Full text link
    Puzzling trends in surface stress were reported experimentally for Ni/W(110) as a function of Ni coverage. In order to explain this behavior, we have performed a density-functional-theory study of the surface stress and atomic structure of the pseudomorphic and of several different possible 1x7 configurations for this system. For the 1x7 phase, we predict a different, more regular atomic structure than previously proposed based on surface x-ray diffraction. At the same time, we reproduce the unexpected experimental change of surface stress between the pseudomorphic and 1x7 configuration along the crystallographic surface direction which does not undergo density changes. We show that the observed behavior in the surface stress is dominated by the effect of a change in Ni adsorption/coordination sites on the W(110) surface.Comment: 14 pages, 3 figures Published in J. Phys.: Condens. Matter 24 (2012) 13500

    Phase locking dynamics of dipolarly coupled vortex-based spin transfer oscillators

    Full text link
    Phase locking dynamics of dipolarly coupled vortices excited by spin-polarized current in two identical nanopillars is studied as a function of the interpillar distance L. Numerical study and analytical model have proved the remarkable efficiency of magneto-static interaction to achieve phase locking. Investigating the dynamics in the transient regime towards phase locking, we extract the evolution of the locking time \tau, the coupling strength {\mu} and the interaction energy W. Finally, we compare this coupling energy with the one obtained by simple model.Comment: 4 pages, 4 figure

    The microbiota of Idaea inquinata developing on dry herbs

    Get PDF
    Idaea inquinata (Scopoli) (Lepidoptera: Geometridae, Idaeini) is a potential pest of stored food, mainly dry herbs. In this study, the role of diet in the shaping of the I. inquinata-associated bacterial community was investigated and its impact on insect performance (i.e., proportion of adult emergence and duration of postembryonic development). Larvae were reared on three diets with different nutritional compositions: (1) Matricaria chamomilla L. flowers, (2) Angelica archangelica L. roots, and (3) artificial diet. A DNA metabarcoding approach targeting V1-V2 and V4 regions of the bacterial 16S rRNA was adopted to characterize the bacterial communities associated with adults and larvae reared on different diets, and estimate their composition and diversity. The core microbiota of this species was found to include some bacterial genera commonly associated with Lepidoptera. When a coverage-based integration of rarefaction and extrapolation of Hill numbers was used to compare groups of samples, the microbial diversity (estimated as phylogenetic diversity) differed among individuals reared on different diets, and also between larvae vs. adults. The lowest taxon diversity was found associated with individuals reared on M. chamomilla. Larvae fed with this fiber-rich diet had also a significantly slower development. The composition of the microbial community varied among individuals with different diets, but not between adults vs. larvae. This study highlights the important role of diet in shaping I. inquinata microbiota, but also suggests that the microbiota of non-feeding adult moths could be partially inherited from larvae

    Microwave neural processing and broadcasting with spintronic nano-oscillators

    Full text link
    Can we build small neuromorphic chips capable of training deep networks with billions of parameters? This challenge requires hardware neurons and synapses with nanometric dimensions, which can be individually tuned, and densely connected. While nanosynaptic devices have been pursued actively in recent years, much less has been done on nanoscale artificial neurons. In this paper, we show that spintronic nano-oscillators are promising to implement analog hardware neurons that can be densely interconnected through electromagnetic signals. We show how spintronic oscillators maps the requirements of artificial neurons. We then show experimentally how an ensemble of four coupled oscillators can learn to classify all twelve American vowels, realizing the most complicated tasks performed by nanoscale neurons

    Spectro-microscopy of single and multi-layer graphene supported by a weakly interacting substrate

    Full text link
    We report measurements of the electronic structure and surface morphology of exfoliated graphene on an insulating substrate using angle-resolved photoemission and low energy electron diffraction. Our results show that although exfoliated graphene is microscopically corrugated, the valence band retains a massless fermionic dispersion, with a Fermi velocity of ~10^6 m/s. We observe a close relationship between the morphology and electronic structure, which suggests that controlling the interaction between graphene and the supporting substrate is essential for graphene device applications.Comment: 10 pages of text, 4 JPEG figure

    Probing the origin of extragalactic magnetic fields with Fast Radio Bursts

    Get PDF
    The joint analysis of the Dispersion and Faraday Rotation Measure from distant, polarised Fast Radio Bursts may be used to put constraints on the origin and distribution of extragalactic magnetic fields on cosmological scales. While the combination of Dispersion and Faraday Rotation Measure can in principle give the average magnetic fields along the line-of-sight,in practice this method must be used with care because it strongly depends on the assumed magnetisation model on large cosmological scales. Our simulations show that the observation of Rotation Measures with greater than or equal to 1 − 10 rad/m2 in ∼ 10^2 − 10^3 Fast Radio Bursts will likely be able to discriminate between extreme scenarios for the origin of cosmic magnetic fields, independent of the exact distribution of sources with redshift. This represent a strong case for incoming (e.g. ALERT, CHIME) and future (e.g. with the Square Kilometer Array) radio polarisation surveys of the sky
    • …
    corecore