135 research outputs found

    Effect of photoelectron mean free path on the photoemission cross-section of Cu(111) and Ag(111) Shockley states

    Get PDF
    The photoemission cross-section of Shockley states of Cu(111) and Ag(111) surfaces is studied over a wide range of photon energies. The constant initial-state spectra are very different for the two surfaces and show rich structure that does not follow the generally accepted nearly free electron model for the final state. Angle resolved photoemission data are interpreted within a one-step ab initio theory, revealing a multiple Bloch wave structure of photoemission final states. The inelastic scattering parameter-optical potential-is determined, and the energy dependence of the mean free path of the outgoing electron is calculated, which turns out to be the key for the understanding of the photoemission cross-section curve. These are essential steps for future exploration of wave function perturbations in the presence of surface nanostructures. 2011 American Physical Society.This work was supported by the Spanish Ministerio de Ciencia e Innovación (Grants No. FIS2010-19609-C02-02, FIS2008-00399, MAT2010-21156-C03-01, and MAT2010-21156-C03-02 and through the Research Program Ramón y Cajal) and the Basque Government (IT-257-07). The SRC is funded by the National Science Foundation (Award No. DMR-0084402).Peer Reviewe

    Tunable band alignment with unperturbed carrier mobility of on-surface synthesized organic semiconducting wires

    Get PDF
    This is an open access article published under an ACS AuthorChoice License.-- et al.The tunable properties of molecular materials place them among the favorites for a variety of future generation devices. In addition, to maintain the current trend of miniaturization of those devices, a departure from the present top-down production methods may soon be required and self-assembly appears among the most promising alternatives. On-surface synthesis unites the promises of molecular materials and of self-assembly, with the sturdiness of covalently bonded structures: An ideal scenario for future applications. Following this idea, we report the synthesis of functional extended nanowires by self-assembly. In particular, the products correspond to one-dimensional organic semiconductors. The uniaxial alignment provided by our substrate templates allows us to access with exquisite detail their electronic properties, including the full valence band dispersion, by combining local probes with spatial averaging techniques. We show how, by selectively doping the molecular precursors, the product's energy level alignment can be tuned without compromising the charge carrier's mobility.This work was partially funded by MIUR (PRIN 2010/11, Project 2010BNZ3F2: “DESCARTES”), by EU project PAMS (Agreement No. 610446), by the European Research Council (ERC) under the EU Horizon 2020 research and innovation programme (Grant Agreement No. 635919), by the European Community’s Seventh Framework Programme (FP7/2007-2013) CALIPSO under Grant Agreement No. 312284, by the Spanish Ministry of Science and Competitiveness (MINECO, MAT2013-46593-C6-6-P and MAT2013-46593-C6-4-P) and FEDER, by the Basque Government (Grant Nos. IT-621-13 and IT-627-13)) and by the University of Padova (Grant CPDA154322, Project AMNES).Peer Reviewe

    Configuring electronic states in an atomically precise array of quantum boxes

    Get PDF
    Communication.-- et al.A 2D array of electronically coupled quantum boxes is fabricated by means of on-surface self-assembly assuring ultimate precision of each box. The quantum states embedded in the boxes are configured by adsorbates, whose occupancy is controlled with atomic precision. The electronic interbox coupling can be maintained or significantly reduced by proper arrangement of empty and filled boxes.The authors would like to acknowledge financial support from the Swiss Nanoscience Institute (SNI), Swiss National Science Foundation (Grants Nos. 200020-149713 and 206021-121461), the Spanish Ministry of Economy (Grant No. MAT2013-46593-C6-4-P), the Basque Government (Grant No. IT621-13), the São Paulo Research Foundation (Grant No. 2013/04855-0), Swiss Government Excellence Scholarship Program, Netherlands Organization for Scientific Research NWO (Chemical Sciences, VIDI-Grant No. 700.10.424), the European Research Council (ERC-2012-StG 307760-SURFPRO), University of Basel, University of Heidelberg, Linköping University, University of Groningen, Paul Scherrer Institute, and the Japan Science and Technology Agency (JST) “Precursory Research for Embryonic Science and Technology (PRESTO)” for a project of “Molecular technology and creation of new function.”Peer Reviewe

    Tuning the Graphene on Ir(111) adsorption regime by Fe/Ir surface-alloying

    Get PDF
    A combined scanning tunneling microscopy, x-ray photoelectron spectroscopy, angle-resolved photoemission spectroscopy, and density functional theory study of graphene on a Fe-Ir(111) alloy with variable Ir concentration is presented. Starting from an intercalated Fe layer between the graphene and Ir(111) surface we find that graphene-substrate interaction can be fine-tuned by Fe-Ir alloying at the interface. When a critical Ir-concentration close to 0.25 is reached in the Fe layer, the Dirac cone of graphene is largely restored and can thereafter be tuned across the Fermi level by further increasing the Ir content. Indeed, our study reveals an abrupt transition between a chemisorbed phase at small Ir concentrations and a physisorbed phase above the critical concentration. The latter phase is highly reminiscent of the graphene on the clean Ir(111) surface. Furthermore, the transition is accompanied by an inversion of the graphene''s induced magnetization due to the coupling with the Fe atoms from antiferromagnetic when chemisorbed to weakly ferromagnetic in the physisorption regime, with spin polarizations whose magnitude may be tuned with the amount of Fe content

    X-ray photoemission analysis of clean and carbon monoxide-chemisorbed platinum(111) stepped surfaces using a curved crystal

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License.-- et al.Surface chemistry and catalysis studies could significantly gain from the systematic variation of surface active sites, tested under the very same conditions. Curved crystals are excellent platforms to perform such systematics, which may in turn allow to better resolve fundamental properties and reveal new phenomena. This is demonstrated here for the carbon monoxide/platinum system. We curve a platinum crystal around the high-symmetry (111) direction and carry out photoemission scans on top. This renders the spatial core-level imaging of carbon monoxide adsorbed on a 'tunable' vicinal surface, allowing a straightforward visualization of the rich chemisorption phenomenology at steps and terraces. Through such photoemission images we probe a characteristic elastic strain variation at stepped surfaces, and unveil subtle stress-release effects on clean and covered vicinal surfaces. These results offer the prospect of applying the curved surface approach to rationally investigate the chemical activity of surfaces under real pressure conditions.We acknowledge financial support from the Spanish Ministry of Economy (Grants MAT2013-46593-C6-4-P and MAT2013-46593-C6-2-P ), Basque Government (Grants IT621-13 and IT756-13). A.L.W. acknowledges support from the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-SC0012704. AXBR acknowledges support from the Basque Departamento de Educación and the UPV/EHU through the Zabalduz program. AXBR, PCS and DSP acknowledge the Deutsche Forschungsgemeinschaft through the Sonderforschungsbereich 1083.Peer Reviewe

    Spectroscopic fingerprints of work-function-controlled phthalocyanine charging on metal surfaces

    Get PDF
    The electronic character of a π-conjugated molecular overlayer on a metal surface can change from semiconducting to metallic, depending on how molecular orbitals arrange with respect to the electrodes Fermi level. Molecular level alignment is thus a key property that strongly influences the performance of organic-based devices. In this work, we report how the electronic level alignment of copper phthalocyanines on metal surfaces can be tailored by controlling the substrate work function. We even show the way to finely tune it for one fixed phthalocyanine-metal combination without the need to intercalate substrate-functionalizing buffer layers. Instead, the work function is trimmed by appropriate design of the phthalocyanines supramolecular environment, such that charge transfer into empty molecular levels can be triggered across the metal-organic interface. These intriguing observations are the outcome of a powerful combination of surface-sensitive electron spectroscopies, which further reveal a number of characteristic spectroscopic fingerprints of a lifted LUMO degeneracy associated with the partial phthalocyanine charging.This work was supported by the Spanish Grant Nos. MAT2010-21156-C03-01, PIB2010US-00652, and the Basque Government Grant No. IT-621-13. We acknowledge funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under Grant No. 226716.Peer Reviewe

    Formation of the BiAg2 surface alloy on lattice-mismatched interfaces

    Get PDF
    We report on the growth of a monolayer-thick BiAg2 surface alloy on thin Ag films grown on Pt(111) and Cu(111). Using low energy electron diffraction (LEED), angle resolved photoemission spectroscopy (ARPES), and scanning tunneling microscopy (STM) we show that the surface structure of the 13 ML Bi/x-ML Ag/Pt(111) system (x=2) is strongly affected by the annealing temperature required to form the alloy. As judged from the characteristic (3×3)R30 LEED pattern, the BiAg2 alloy is partially formed at room temperature. A gentle, gradual increase in the annealing temperatures successively results in the formation of a pure BiAg2 phase, a combination of that phase with a (2×2) superstructure, and finally the pure (2×2) phase, which persists at higher annealing temperatures. These results complement recent work reporting the (2×2) as a predominant phase, and attributing the absence of BiAg2 alloy to the strained Ag/Pt interface. Likewise, we show that the growth of the BiAg2 alloy on similarly lattice-mismatched 1 and 2 ML Ag-Cu(111) interfaces also requires a low annealing temperature, whilst higher temperatures result in BiAg2 clustering and the formation of a BiCu2 alloy. The demonstration that the BiAg2 alloy can be formed on thin Ag films on different substrates presenting a strained interface has the prospect of serving as bases for technologically relevant systems, such as Rashba alloys interfaced with magnetic and semiconductor substrates

    Interplay between steps and oxygen vacancies on curved TiO2(110)

    Get PDF
    et al.A vicinal rutile TiO(110) crystal with a smooth variation of atomic steps parallel to the [1-10] direction was analyzed locally with STM and ARPES. The step edge morphology changes across the samples, from [1-11] zigzag faceting to straight [1-10] steps. A step-bunching phase is attributed to an optimal (110) terrace width, where all bridge-bonded O atom vacancies (O vacs) vanish. The [1-10] steps terminate with a pair of 2-fold coordinated O atoms, which give rise to bright, triangular protrusions (S) in STM. The intensity of the Ti 3d-derived gap state correlates with the sum of O vacs plus S protrusions at steps, suggesting that both O vacs and steps contribute a similar effective charge to sample doping. The binding energy of the gap state shifts when going from the flat (110) surface toward densely stepped planes, pointing to differences in the Ti polaron near steps and at terraces.We acknowledge financial support from the Spanish Ministry of Economy (Grants MAT2013-46593-C6-4-P and MAT2013-46593-C6-2-P) and the Basque Government (Grant IT621-13 and IT756-13). M.S. and U.D. acknowledge support from the ERC Advanced Grant “OxideSurfaces”. D.S.P. and M.M. acknowledge support from the Marie Curie ITN “THINFACE” and financial support by the Deutsche Forschungsgemeinschaft. through SFB 1083 “Structure and Dynamics of Internal Interfaces”.Peer Reviewe

    Self-assembly of bicomponent molecular monolayers: Adsorption height changes and their consequences

    Get PDF
    Under the terms of the Creative Commons Attribution License 3.0 (CC-BY).-- et al.Codeposition of two molecular species [copper phtalocyanine (CuPc, donor) and perfluoropentacene (PFP, acceptor)] on noble metal (111) surfaces leads to the self-assembly of an ordered mixed layer with a maximized donor-acceptor contact area. The main driving force behind this arrangement is assumed to be the intermolecular C-Hâ̄F hydrogen-bond interactions. Such interactions would be maximized for a coplanar molecular arrangement. However, precise measurement of molecule-substrate distances in the molecular mixture reveals significantly larger adsorption heights for PFP than for CuPc. Most surprisingly, instead of leveling to increase hydrogen-bond interactions, the height difference is enhanced in the blends as compared to the heights found in single-component CuPc and PFP layers. The increased height of PFP in mixed layers points to an overall reduced interaction with the underlying substrate, and its influence on electronic properties like the interface dipole is investigated through work function measurements. © 2014 American Physical Society.This work was supported by the Spanish Grants No. MAT2010-21156-C03-01 and-C03-03, as well as No. PIB2010US-00652, and by the Basque Government (Grant No. IT-621-13). D. G. O. acknowledges support from the European Union under Grant No. FP7-PEOPLE-2010-IOF-271909. We acknowledge funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under Grant No. 226716.Peer Reviewe
    corecore