202 research outputs found

    Mode Transitions in Magnetically Shielded Hall Effect Thrusters

    Get PDF
    A mode transition study is conducted in magnetically shielded thrusters where the magnetic field magnitude is varied to induce mode transitions. Three different oscillatory modes are identified with the 20-kW NASA-300MS-2 and the 6-kW H6MS: Mode 1) global mode similar to unshielded thrusters at low magnetic fields, Mode 2) cathode oscillations at nominal magnetic fields, and Mode 3) combined spoke, cathode and breathing mode oscillations at high magnetic fields. Mode 1 exhibits large amplitude, low frequency (1-10 kHz), breathing mode type oscillations where discharge current mean value and oscillation amplitude peak. The mean discharge current is minimized while thrust-to-power and anode efficiency are maximized in Mode 2, where higher frequency (50-90 kHz), low amplitude, cathode oscillations dominate. Thrust is maximized in Mode 3 and decreases by 5-6% with decreasing magnetic field strength. The presence or absence of spokes and strong cathode oscillations do not affect each other or discharge current. Similar to unshielded thrusters, mode transitions and plasma oscillations affect magnetically shielded thruster performance and should be characterized during system development

    A Neptune Orbiter Concept Using Drag Modulated Aerocaptue (DMA) and the Adaptable, Deployable Entry and Placement Technology (ADEPT)

    Get PDF
    Conceptual Neptune orbiter was designed for the purpose of assessing mission feasibilityBuilt off of the 2017 Pre-Decadal Study, but adapted for drag modulation aerocapture.Science payload includes: Narrow Angle camera, Doppler Imager, Magnetometer, Atmospheric Probe (w/ ASI, Nephelometer, Mass Spectrometer). Baseline concept of operations releases probe prior to orbit insertion, but investigations are ongoing to assess the feasibility of bringing the probe to orbit before release

    Extended Life Qualification of the Magnetically Shielded Miniature (MaSMi) Hall Thruster

    Get PDF
    We present an update on the life qualification of the Magnetically Shielded Miniature (MaSMi) Hall thruster (also known as the ASTRAEUS Thruster Element), which was developed at the Jet Propulsion Laboratory and was recently licensed to ExoTerra Resource for flight production (renamed Halo12). In 2020-2021, the thruster successfully completed a 7205-hour wear test at operating powers from 200-1350 W, processing over 100 kg of xenon propellant and producing 1.55 MN-s total impulse with no measurable degradation in performance. The wear test is being extended to further demonstrate the service life capability of the thruster. In separate tests, prot-flight MaSMi hollow cathodes demonstrated \u3e 25000 ignition cycles and \u3e 13000 hours of operation at 4 A discharge current, and a set of three MaSMi electromagnets underwent \u3e 3000 deep thermal cycles (-123 °C to 495 °C). Laser-induced fluorescence (LIF) measurements of ion velocities and plasma modeling with Hall2De, a widely published numerical plasma code, have been carried out to elucidate the physical mechanisms driving pole erosion trends observed in thruster wear testing. Survival probabilities for micrometeoroid impacts and other random failure modes in flight were also analyzed

    Surface science of soft scorpionates

    Get PDF
    The chemisorption of the soft scorpionate Li[PhTmMe] onto silver and gold surfaces is reported. Surface enhanced Raman spectroscopy in combination with the Raman analysis of suitable structural models, namely, [Cu(κ3-S,S,S-PhTmMe)(PCy3)], [Ag(κ3-S,S,S-PhTmMe)(PCy3)], [Ag(κ2-S,S-PhTmMe)(PEt3)], and [Au(κ1-S-PhTmMe)(PCy3)], are employed to identify the manner in which this potentially tridentate ligand binds to these surfaces. On colloidal silver surface-enhanced Raman spectroscopy (SERS) spectra are consistent with PhTmMe binding in a didentate fashion to the surface, holding the aryl group in close proximity to the surface. In contrast, on gold colloid, we observe that the species prefers a monodentate coordination in which the aryl group is not in close proximity to the surface

    A Common Probe Design for Multiple Planetary Destinations

    Get PDF
    Atmospheric probes have been successfully flown to planets and moons in the solar system to conduct in situ measurements. They include the Pioneer Venus multi-probes, the Galileo Jupiter probe, and Huygens probe. Probe mission concepts to five destinations, including Venus, Jupiter, Saturn, Uranus, and Neptune, have all utilized similar-shaped aeroshells and concept of operations, namely a 45-degree sphere cone shape with high density heatshield material and parachute system for extracting the descent vehicle from the aeroshell. Each concept designed its probe to meet specific mission requirements and to optimize mass, volume, and cost. At the 2017 International Planetary Probe Workshop (IPPW), NASA Headquarters postulated that a common aeroshell design could be used successfully for multiple destinations and missions. This "common probe" design could even be assembled with multiple copies, properly stored, and made available for future NASA missions, potentially realizing savings in cost and schedule and reducing the risk of losing technologies and skills difficult to sustain over decades. Thus the NASA Planetary Science Division funded a study to investigate whether a common probe design could meet most, if not all, mission needs to the five planetary destinations with extreme entry environments. The Common Probe study involved four NASA Centers and addressed these issues, including constraints and inefficiencies that occur in specifying a common design. Study methodology: First, a notional payload of instruments for each destination was defined based on priority measurements from the Planetary Science Decadal Survey. Steep and shallow entry flight path angles (EFPA) were defined for each planet based on qualification and operational g-load limits for current, state-of-the-art instruments. Interplanetary trajectories were then identified for a bounding range of EFPA. Next, 3-degrees-of-freedom simulations for entry trajectories were run using the entry state vectors from the interplanetary trajectories. Aeroheating correlations were used to generate stagnation point convective and radiative heat flux profiles for several aeroshell shapes and entry masses. High fidelity thermal response models for various Thermal Protection System (TPS) materials were used to size stagnation-point thicknesses, with margins based on previous studies. Backshell TPS masses were assumed based on scaled heat fluxes from the heatshield and also from previous mission concepts. Presentation: We will present an overview of the study scope, highlights of the trade studies and design driver analyses, and the final recommendations of a common probe design and assembly. We will also indicate limitations that the common probe design may have for the different destinations. Finally, recommended qualification approaches for missions will be presented

    Multidisciplinary Design Optimization of Waverider-Derived Crew Reentry Vehicles

    No full text
    corecore