2,396 research outputs found

    Vegan and sugar-substituted chocolates: assessing physicochemical characteristics by NMR relaxometry, rheology, and DSC

    Get PDF
    The main physicochemical characteristics of novel artisanal chocolates (both dark and milky) intended for vegan consumers or for those requiring assumption of fewer simple sugars, were analysed. Replacement of milk (with coconut copra, almonds, and soy protein isolates), and sucrose (with coconut sugars, stevia and erythritol, respectively) in dark chocolate, were accounted for by means of texture analysis, rheology, water activity, fatty acid composition, differential scanning calorimetry (DSC) and fast field cycling (FFC) nuclear magnetic resonance (NMR) relaxometry. The vegan sample (i.e., the milk-less one) showed lower values of hardness and adhesiveness as well as a larger peak in the melting behavior at the calorimetric evaluation (DSC). Moreover, the absence of milk resulted in the halving of the yield stress and a decrease in both the apparent and Casson's viscosity. In the sample of chocolate with less sucrose, the peak temperatures measured at the DSC indicate crystallization of cocoa butter in its best form (V beta 2), unlike in dark chocolate, due to the different sugar composition. Similarly, the Casson yield stress (tau 0), increased significantly (almost 70%), with the substitution of sugar. Finally, the results of NMR FFC relaxometry made it possible to identify aggregates of different sizes, laying the basis for its use as a rapid, non-destructive method for chocolate analysis

    Photodetector and scintillation crystals requirements for gamma-ray imaging

    Get PDF
    The diffusion of the PET and SPET techniques in different applications, like investigation on small organs and tissues or animal imaging, has induced in the past years the researchers to develop modular scintillation cameras to have compactness and versatility in order to obtain dimensions and configurations suitable to the particular application. To this purpose different photodetectors have been studied, as an alternative to the photomultiplier tubes (PMT) based on semiconductor technology. At the same time new scintillating crystals have been tested to match the requirements like high light yield or fast decay time, needed for SPET and PET application, respectively. In this paper we have investigated the photodetector and scintillation crystals requirements to optimize a gamma-ray imager based on scintillation crystals. To this aim we show results about the principal parameters characterizing a gamma-ray imaging, like energy and spatial resolution. The performances of a continuous LaBr3:Ce crystal (49×49×4mm3+3mm glass window) are compared to the ones from a pixellated and continuous NaI:Tl crystal, coupled to multi-anode photomultiplier tube (Hamamatsu H8500 MA-PMT). Furthermore the results are supported with Monte Carlo simulations. With the lanthanum detector, we obtain 1.1mm of intrinsic spatial resolution, comparable with that predicted by the MC simulations. We test also the new ultra bialkali PMT Hamamatsu R7600-200 with a QE = 42%, obtaining an improvement in terms of energy resolution of about 25%, respect to a standard PMT, with a LaBr3:Ce cylinder (1/2" ��φ × 1/2" thickness)

    On the role of secondary pions in spallation targets

    Full text link
    We use particle-transport simulations to show that secondary pions play a crucial role for the development of the hadronic cascade and therefore for the production of neutrons and photons from a thick spallation target. Considering the spallation target of the n-TOF Facility at CERN, we see that photon and neutron yields are relatively insensitive to large changes of the average pion multiplicity in the individual spallation reactions. We characterize this robustness as a peculiar property of hadronic cascades in thick targets

    Recoil Proton Telescopes and Parallel Plate Avalanche Counters for the 235^{235}U(n,f) cross section measurement relative to H(n,n)H between 10 and 450 MeV neutron energy

    Full text link
    With the aim of measuring the 235^{235}U(n,f) cross section at the n\_TOF facility at CERN over a wide neutron energy range, a detection system consisting of two fission detectors and three detectors for neutron flux determination was realized. The neutron flux detectors are Recoil Proton Telescopes (RPT), based on scintillators and solid state detectors, conceived to detect recoil protons from the neutron-proton elastic scattering reaction. This system, along with a fission chamber and an array of parallel plate avalanche counters for fission event detection, was installed for the measurement at the n\_TOF facility in 2018, at CERN. An overview of the performances of two RPTs - especially developed for this measurement - and of the parallel plate avalanche counters are described in this article. In particular, the characterization in terms of detection efficiency by Monte Carlo simulations and response to neutron beam, the study of the background, dead time correction and characterization of the samples, are reported. The results of the present investigation show that the performances of these detectors are suitable for accurate measurements of fission reaction cross sections in the range from 10 to 450~MeV
    • …
    corecore