4,343 research outputs found

    Identifying strongly lensed gravitational waves through their phase consistency

    Full text link
    Strongly lensed gravitational waves (GWs) from binary coalescence manifest as repeated chirps from the original merger. At the detectors, the phase of the lensed GWs and its arrival time differences will be consistent modulo a fixed constant phase shift. We develop a fast and reliable method to efficiently reject event pairs that are not-lensed copies and appropriately rank the most interesting candidates. Our method exploits that detector phases are the best measured GW parameter, with errors only of a fraction of a radian and differences across the frequency band that are better measured than the chirp mass. The arrival time phase differences also avoid the shortcomings of looking for overlaps in highly non-Gaussian sky maps. Our basic statistic determining the consistency with lensing is the distance between the phase posteriors of two events and it directly provides information about the lens-source geometry which helps inform electromagnetic followups. We demonstrate that for simulated signals of not-lensed binaries with many shared parameters none of the pairs have phases closer than 3Οƒ3\sigma, and most cases reject the lensing hypothesis by 5Οƒ5\sigma. Looking at the latest catalog, GWTC3, we find that only 6%6\% of the pairs are consistent with lensing at 99%99\% confidence level. Moreover, we reject about half of the pairs that would otherwise favor lensing by their parameter overlaps and demonstrate good correlation with detailed joint parameter estimation results. This reduction of the false alarm rate will be of paramount importance in the upcoming observing runs and the eventual discovery of lensed GWs. Our code is publicly available and could be applied beyond lensing to test possible deviations in the phase evolution from modified theories of gravity and constrain GW birefringence.Comment: 14+7 pages, 12+7 figures, 2 tables, code at https://github.com/ezquiaga/phaza

    Unique Biological Properties of Catalytic Domain Directed Human Anti-CAIX Antibodies Discovered through Phage-Display Technology

    Get PDF
    Carbonic anhydrase IX (CAIX, gene G250/MN-encoded transmembrane protein) is highly expressed in various human epithelial tumors such as renal clear cell carcinoma (RCC), but absent from the corresponding normal tissues. Besides the CA signal transduction activity, CAIX may serve as a biomarker in early stages of oncogenesis and also as a reliable marker of hypoxia, which is associated with tumor resistance to chemotherapy and radiotherapy. Although results from preclinical and clinical studies have shown CAIX as a promising target for detection and therapy for RCC, only a limited number of murine monoclonal antibodies (mAbs) and one humanized mAb are available for clinical testing and development. In this study, paramagnetic proteoliposomes of CAIX (CAIX-PMPLs) were constructed and used for anti-CAIX antibody selection from our 27 billion human single-chain antibody (scFv) phage display libraries. A panel of thirteen human scFvs that specifically recognize CAIX expressed on cell surface was identified, epitope mapped primarily to the CA domain, and affinity-binding constants (KD) determined. These human anti-CAIX mAbs are diverse in their functions including induction of surface CAIX internalization into endosomes and inhibition of the carbonic anhydrase activity, the latter being a unique feature that has not been previously reported for anti-CAIX antibodies. These human anti-CAIX antibodies are important reagents for development of new immunotherapies and diagnostic tools for RCC treatment as well as extending our knowledge on the basic structure-function relationships of the CAIX molecule

    Classifying Chronic Lower Respiratory Disease Events in Epidemiologic Cohort Studies

    Get PDF
    Rationale: One in 12 adults has chronic obstructive pulmonary disease or asthma. Acute exacerbations of these chronic lower respiratory diseases (CLRDs) are a major cause of morbidity and mortality. Valid approaches to classifying cases and exacerbations in the general population are needed to facilitate prevention research

    Syntheses, Characterization, Density Functional Theory Calculations, and Activity of Tridentate SNS Zinc Pincer Complexes Based on Bis-Imidazole or Bis-Triazole Precursors

    Get PDF
    A series of tridentate pincer ligands, each possessing two sulfur- and one nitrogen-donor functionalities (SNS), based on bis-imidazole or bis-triazole salts were metallated with ZnCl2 to give new tridentate SNS pincer zinc(II) complexes [(SNS)ZnCl]+. The zinc complexes serve as models for the zinc active site in liver alcohol dehydrogenase (LADH) and were characterized with single crystal X-ray diffraction, 1H, 13C, and HSQC NMR spectroscopies, electrospray mass spectrometry, and elemental analysis. The zinc complexes feature SNS donor atoms and pseudotetrahedral geometry about the zinc center, as is seen for liver alcohol dehydrogenase. The bond lengths and bond angles of the zinc complexes correlate well to those in horse LADH. The SNS ligand precursors were characterized with 1H, 13C, and HSQC NMR spectroscopies, elemental analysis, and cyclic voltammetry, and were found to be redox active. Gaussian calculations were performed and agree with the experimentally observed oxidation potentials for the pincer ligand precursors. The zinc complexes were screened for the reduction of electron-poor aldehydes in the presence of a hydrogen donor, 1-benzyl-1,4-dihydronicotinamide (BNAH), and it was determined that they enhance the reduction of electron-poor aldehydes. The SNS zinc pincer complexes with bis-triazole ligand precursors exhibit higher activity for the reduction of 4-nitrobenzaldehyde than do SNS zinc pincer complexes with bis-imidazole ligand precursors. Quantitative stoichiometric conversion was seen for the reduction of pyridine-2-carboxaldehyde via SNS zinc pincer complexes with either bis-imidazole or bis-triazole ligand precursors

    Syntheses, characterization, density functional theory calculations, and activity of tridentate SNS zinc pincer complexes

    Get PDF
    A series of tridentate SNS ligand precursors were metallated with ZnCl2 to give new tridentate SNS pincer zinc complexes. The zinc complexes serve as models for the zinc active site in liver alcohol dehydrogenase (LADH) and were characterized with single crystal X-ray diffraction, 1H, 13C, and HSQC NMR spectroscopies and electrospray mass spectrometry. The bond lengths and bond angles of the zinc complexes correlate well to those in horse LADH. The zinc complexes feature SNS donor atoms and pseudotetrahedral geometry about the zinc center, as is seen for liver alcohol dehydrogenase. The SNS ligand precursors were characterized with 1H, 13C, and HSQC NMR spectroscopies and cyclic voltammetry, and were found to be redox active. Gaussian calculations were performed and agree quite well with the experimentally observed oxidation potential for the pincer ligand. The zinc complexes were screened for the reduction of electron poor aldehydes in the presence of a hydrogen donor, 1-benzyl-1,4-dihydronicotinamide (BNAH). The zinc complexes enhance the reduction of electron poor aldehydes. Density functional theory calculations were performed to better understand why the geometry about the zinc center is pseudo-tetrahedral rather than pseudo-square planar, which is seen for most pincer complexes. For the SNS tridentate pincer complexes, the data indicate that the pseudo-tetrahedral geometry was 43.8 kcal/mol more stable than the pseudo-square planar geometry. Density functional theory calculations were also performed on zinc complexes with monodentate ligands and the data indicate that the pseudo-tetrahedral geometry was 30.6 kcal/mol more stable than pseudo-square planar geometry. Overall, the relative stabilities of the pseudo-tetrahedral and pseudo-square planar systems are the same for this coordination environment whether the ligand set is a single tridentate SNS system or is broken into three separate units. The preference of a d10 Zn center to attain a tetrahedral local environment trumps any stabilization gained by removal of constraints within the ligand set

    The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) family

    Get PDF
    The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) enzymes are secreted, multi-domain matrix-associated zinc metalloendopeptidases that have diverse roles in tissue morphogenesis and patho-physiological remodeling, in inflammation and in vascular biology. The human family includes 19 members that can be sub-grouped on the basis of their known substrates, namely the aggrecanases or proteoglycanases (ADAMTS1, 4, 5, 8, 9, 15 and 20), the procollagen N-propeptidases (ADAMTS2, 3 and 14), the cartilage oligomeric matrix protein-cleaving enzymes (ADAMTS7 and 12), the von-Willebrand Factor proteinase (ADAMTS13) and a group of orphan enzymes (ADAMTS6, 10, 16, 17, 18 and 19). Control of the structure and function of the extracellular matrix (ECM) is a central theme of the biology of the ADAMTS, as exemplified by the actions of the procollagen-N-propeptidases in collagen fibril assembly and of the aggrecanases in the cleavage or modification of ECM proteoglycans. Defects in certain family members give rise to inherited genetic disorders, while the aberrant expression or function of others is associated with arthritis, cancer and cardiovascular disease. In particular, ADAMTS4 and 5 have emerged as therapeutic targets in arthritis. Multiple ADAMTSs from different sub-groupings exert either positive or negative effects on tumorigenesis and metastasis, with both metalloproteinase-dependent and -independent actions known to occur. The basic ADAMTS structure comprises a metalloproteinase catalytic domain and a carboxy-terminal ancillary domain, the latter determining substrate specificity and the localization of the protease and its interaction partners; ancillary domains probably also have independent biological functions. Focusing primarily on the aggrecanases and proteoglycanases, this review provides a perspective on the evolution of the ADAMTS family, their links with developmental and disease mechanisms, and key questions for the future

    Common ADRB2 Haplotypes Derived from 26 Polymorphic Sites Direct Ξ²2-Adrenergic Receptor Expression and Regulation Phenotypes

    Get PDF
    The beta2-adrenergic receptor (beta2AR) is expressed on numerous cell-types including airway smooth muscle cells and cardiomyocytes. Drugs (agonists or antagonists) acting at these receptors for treatment of asthma, chronic obstructive pulmonary disease, and heart failure show substantial interindividual variability in response. The ADRB2 gene is polymorphic in noncoding and coding regions, but virtually all ADRB2 association studies have utilized the two common nonsynonymous coding SNPs, often reaching discrepant conclusions.We constructed the 8 common ADRB2 haplotypes derived from 26 polymorphisms in the promoter, 5'UTR, coding, and 3'UTR of the intronless ADRB2 gene. These were cloned into an expression construct lacking a vector-based promoter, so that beta2AR expression was driven by its promoter, and steady state expression could be modified by polymorphisms throughout ADRB2 within a haplotype. "Whole-gene" transfections were performed with COS-7 cells and revealed 4 haplotypes with increased cell surface beta2AR protein expression compared to the others. Agonist-promoted downregulation of beta2AR protein expression was also haplotype-dependent, and was found to be increased for 2 haplotypes. A phylogenetic tree of the haplotypes was derived and annotated by cellular phenotypes, revealing a pattern potentially driven by expression.Thus for obstructive lung disease, the initial bronchodilator response from intermittent administration of beta-agonist may be influenced by certain beta2AR haplotypes (expression phenotypes), while other haplotypes may influence tachyphylaxis during the response to chronic therapy (downregulation phenotypes). An ideal clinical outcome of high expression and less downregulation was found for two haplotypes. Haplotypes may also affect heart failure antagonist therapy, where beta2AR increase inotropy and are anti-apoptotic. The haplotype-specific expression and regulation phenotypes found in this transfection-based system suggest that the density of genetic information in the form of these haplotypes, or haplotype-clusters with similar phenotypes can potentially provide greater discrimination of phenotype in human disease and pharmacogenomic association studies
    • …
    corecore