28,867 research outputs found

    Transverse jet-cavity interactions with the influence of an impinging shock

    Get PDF
    For high-speed air breathing engines, fuel injection and subsequent mixing with air is paramount for combustion. The high freestream velocity poses a great challenge to efficient mixing both in macroscale and microscale. Utilising cavities downstream of fuel injection locations, as a means to hold the flow and stabilise the combustion, is one mechanism which has attracted much attention, requiring further research to study the unsteady flow features and interactions occurring within the cavity. In this study we combine the transverse jet injection upstream of a cavity with an impinging shock to see how this interaction influences the cavity flow, since impinging shocks have been shown to enhance mixing of transverse jets. Utilising qualitative and quantitative methods: schlieren, oilflow, PIV, and PSP the induced flowfield is analysed. The impinging shock lifts the shear layer over the cavity and combined with the instabilities generated by the transverse jet creates a highly complicated flowfield with numerous vertical structures. The interaction between the oblique shock and the jet leads to a relatively uniform velocity distribution within the cavity

    Numerical studies of identification in nonlinear distributed parameter systems

    Get PDF
    An abstract approximation framework and convergence theory for the identification of first and second order nonlinear distributed parameter systems developed previously by the authors and reported on in detail elsewhere are summarized and discussed. The theory is based upon results for systems whose dynamics can be described by monotone operators in Hilbert space and an abstract approximation theorem for the resulting nonlinear evolution system. The application of the theory together with numerical evidence demonstrating the feasibility of the general approach are discussed in the context of the identification of a first order quasi-linear parabolic model for one dimensional heat conduction/mass transport and the identification of a nonlinear dissipation mechanism (i.e., damping) in a second order one dimensional wave equation. Computational and implementational considerations, in particular, with regard to supercomputing, are addressed

    Two-qubit entanglement dynamics for two different non-Markovian environments

    Get PDF
    We study the time behavior of entanglement between two noninteracting qubits each immersed in its own environment for two different non-Markovian conditions: a high-QQ cavity slightly off-resonant with the qubit transition frequency and a nonperfect photonic band-gap, respectively. We find that revivals and retardation of entanglement loss may occur by adjusting the cavity-qubit detuning, in the first case, while partial entanglement trapping occurs in non-ideal photonic-band gap.Comment: 8 pages, 2 figure

    Practical Decoy State for Quantum Key Distribution

    Full text link
    Decoy states have recently been proposed as a useful method for substantially improving the performance of quantum key distribution. Here, we present a general theory of the decoy state protocol based on only two decoy states and one signal state. We perform optimization on the choice of intensities of the two decoy states and the signal state. Our result shows that a decoy state protocol with only two types of decoy states--the vacuum and a weak decoy state--asymptotically approaches the theoretical limit of the most general type of decoy state protocols (with an infinite number of decoy states). We also present a one-decoy-state protocol. Moreover, we provide estimations on the effects of statistical fluctuations and suggest that, even for long distance (larger than 100km) QKD, our two-decoy-state protocol can be implemented with only a few hours of experimental data. In conclusion, decoy state quantum key distribution is highly practical.Comment: 31 pages. 6 figures. Preprint forma

    A size of ~1 AU for the radio source Sgr A* at the centre of the Milky Way

    Get PDF
    Although it is widely accepted that most galaxies have supermassive black holes (SMBHs) at their centers^{1-3}, concrete proof has proved elusive. Sagittarius A* (Sgr A*)^4, an extremely compact radio source at the center of our Galaxy, is the best candidate for proof^{5-7}, because it is the closest. Previous Very Long Baseline Interferometry (VLBI) observations (at 7mm) have detected that Sgr A* is ~2 astronomical unit (AU) in size^8, but this is still larger than the "shadow" (a remarkably dim inner region encircled by a bright ring) arising from general relativistic effects near the event horizon^9. Moreover, the measured size is wavelength dependent^{10}. Here we report a radio image of Sgr A* at a wavelength of 3.5mm, demonstrating that its size is \~1 AU. When combined with the lower limit on its mass^{11}, the lower limit on the mass density is 6.5x10^{21} Msun pc^{-3}, which provides the most stringent evidence to date that Sgr A* is an SMBH. The power-law relationship between wavelength and intrinsic size (The size is proportional to wavelength^{1.09}), explicitly rules out explanations other than those emission models with stratified structure, which predict a smaller emitting region observed at a shorter radio wavelength.Comment: 18 pages, 4 figure

    Self-Segregation vs. Clustering in the Evolutionary Minority Game

    Full text link
    Complex adaptive systems have been the subject of much recent attention. It is by now well-established that members (`agents') tend to self-segregate into opposing groups characterized by extreme behavior. However, while different social and biological systems manifest different payoffs, the study of such adaptive systems has mostly been restricted to simple situations in which the prize-to-fine ratio, RR, equals unity. In this Letter we explore the dynamics of evolving populations with various different values of the ratio RR, and demonstrate that extreme behavior is in fact {\it not} a generic feature of adaptive systems. In particular, we show that ``confusion'' and ``indecisiveness'' take over in times of depression, in which case cautious agents perform better than extreme ones.Comment: 4 pages, 4 figure
    corecore