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Abstract
We study the time behaviour of entanglement between two noninteracting qubits, each
immersed in its own environment for two different non-Markovian conditions: a high-Q cavity
slightly off-resonant with the qubit transition frequency and a nonperfect photonic band gap
(PBG). We find that revivals and retardation of entanglement loss may occur by adjusting the
cavity–qubit detuning, in the first case, while partial entanglement trapping occurs in a
nonideal PBG.

PACS numbers: 03.67.−a, 03.67.Mn, 03.65.Yz, 03.65.Ud

(Some figures in this article are in colour only in the electronic version.)

1. Introduction

Real quantum systems unavoidably interact with their
surroundings, undergoing a consequent decoherence and
entanglement loss [1]. It is known that two entangled qubits
embedded in Markovian (memoryless) environments may
become completely disentangled at a finite time, in spite of
an exponential decay of the single-qubit coherence [2, 3].
This entanglement sudden death (ESD or early-stage
disentanglement), which has been experimentally revealed
[4, 5], places a serious limit on the storage times of
entanglement for practical purposes, e.g., for the realization
of quantum memory banks [6]. A realistic quantum computer
will probably have to take into account this quantum
dynamical drawback. It is therefore important to study the
possible physical conditions where entanglement can be
maintained.

Entanglement losses during the evolution crucially
depend on the particular noise acting on the system. Under
Markovian-noise conditions the quantum process is typically
irreversible. Differently structured environments or strong
coupling can give rise to non-Markovian noise (environment
with memory) whose effects on the entanglement dynamics
are currently being subjected to investigation [6]. In this
context, the cases of two noninteracting qubits embedded
either in separated high-Q cavities [7, 8] or in a common

cavity [9] supporting a mode resonant with the qubit transition
frequency have been analysed, showing that revivals of the
initial two-qubit entanglement can occur. When the qubits
share a common environment, it has also been shown that
entanglement can be preserved by means of the quantum Zeno
effect [10]. Moreover, entanglement trapping is achievable
when two independent qubits are embedded in an ideal
photonic band gap (PBG) material (photonic crystal) [11, 12].

The aim of this paper is therefore to deepen the analysis
of entanglement evolution in non-Markovian environments,
considering in particular two different effective spectral
conditions of the environment–qubit system simulating,
respectively, a cavity with a mode slightly off-resonant with
the qubit transition frequency and a nonperfect PBG at the
qubit transition frequency. In this paper, we highlight the
differences with previous studies and we discuss the optimal
physical parameters for observing entanglement revivals and
for preservation of entanglement.

2. Model

We consider a system composed of two parts S̃ = Ã, B̃,
each one consisting of a two-level system (qubit) S = A, B
interacting with a reservoir RS = RA, RB.
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The single part S̃ ‘qubit S + reservoirRS’ is described by
the Hamiltonian

Ĥ S̃ = h̄ω0σ̂+σ̂− +
∑

k

h̄
[
ωk b̂†

k b̂k +
(

gk σ̂+b̂k + g∗

k σ̂−b̂†
k

)]
,

(1)
where ω0 is the transition frequency, σ± are the qubit
raising and lowering operators, b†

k , bk are the creation and
annihilation operators and gk is the coupling constant of
mode k with frequency ωk . When the environment is at zero
temperature, the single-qubit reduced density matrix ρ̂S(t) can
be written, in the basis {|1〉, |0〉}, as [1]

ρ̂S(t) =

(
ρS

11(0)|q(t)|2 ρS
10(0)q(t)

ρS
01(0)q∗(t) ρS

00(0) + ρS
11(0)(1 − |q(t)|2)

)
. (2)

From the equation above, it is readily seen that the
single-qubit dynamics depends only on the function q(t) that
in turn is determined by the reservoir spectral density. Indeed,
q(t) obeys the differential equation q̇(t) = −

∫ t
0 dt1 f (t −

t1)q(t1), and the correlation function f (t − t1) is related
to the spectral density J (ω) of the reservoir by f (t −

t1) =
∫

dωJ (ω) exp[i(ω0 − ω)(t − t1)]. The solution of the
associated algebraic equation for q̇(t), obtained through
Laplace transforms, is q̄(s) = q(0)/[s + f̄ (s)] , where q̄(s)
and f̄ (s) are the Laplace transforms of q(t) and f (t − t1).

A crucial quantity for our study is the explicit
analytic expression of the two-qubit reduced density
matrix at time t . For the system of noninteracting
qubits in separated environments considered here, this can
be obtained by a procedure based on the knowledge
of the single-qubit dynamics [7]. In fact, given the
time-dependent single-qubit density matrix elements as
ρ A

ii ′(t) =
∑

ll ′ All ′
i i ′(t)ρ A

ll ′′(0), ρB
j j ′(t) =

∑
mm ′ Bmm ′

j j ′ (t)ρB
mm ′(0),

the time-dependent two-qubit density matrix elements are [7]

ρi i ′, j j ′(t) =

∑
ll ′,mm ′

All ′
i i ′(t)Bmm ′

j j ′ (t)ρll ′,mm ′(0), (3)

where i, j, l, m = 0, 1. The two-qubit density matrix ρ̂(t)
is thus obtained by means of equation (3) for an arbitrary
two-qubit initial condition, its elements depending only on
their initial values and on the function q(t) [7, 8]. In
the following, these density matrix elements will be meant
in the standard computational basis B = {|1〉 ≡ |11〉, |2〉 ≡

|10〉, |3〉 ≡ |01〉, |4〉 ≡ |00〉}.

2.1. Initial states

With regard to the initial state, we will limit our analysis to
the case of initial pure Bell-like states

|8〉 = α|01〉 + βeiδ
|10〉, |9〉 = α|00〉 + βeiδ

|11〉, (4)

with α, β real and α2 + β2
= 1. For α = ±β = 1/

√
2, these

states coincide with the Bell states. Bell-like states have the
property that their resulting density matrix has an X structure
(only diagonal and antidiagonal density matrix elements
different from zero). Under our dynamical conditions, the X
structure is maintained during the two-qubit evolution, so that
the two-qubit density matrix at time t will also have an X
structure.

2.2. Concurrence

In order to quantify the entanglement during the evolution
of the bipartite system, we use the concurrence C [13]. The
concurrence at time t for an initial general X state can be
easily computed by exploiting the fact that the X structure
is preserved here and by using equations (2) and (3). The
expression of the concurrence is given by [14]

CX
ρ (t) = 2max{0, K1(t), K2(t)},

K1(t) = |q(t)|2
{
ρ23(0) −

√
ρ11(0)[ρ44(0) + ρ11(0)

× (1 − |q(t)|2)2 + (ρ22(0) + ρ33(0))(1 − |q(t)|2)]
1
2

}
,

K2(t) = |q(t)|2
[
ρ14(0) −

√
ρ22(0) + ρ11(0)(1 − |q(t)|2)

×

√
ρ33(0) + ρ11(0)(1 − |q(t)|2)

]
. (5)

These formulas are quite general since their form does not
explicitly depend on the particular choice of the environment,
but only on the Hamiltonian model of equation (1) and on
the chosen initial state. The explicit time dependence of
concurrence depends on the explicit form of the function
q(t) and thus it contains information about the environment
structure. In the following, we shall consider two different
environment structures with given spectral densities, which in
turn determine the explicit form of q(t).

3. Spectral density effect on entanglement dynamics

We shall now analyse the evolution of concurrence for two
different spectral densities: a single Lorentzian simulating
a cavity with a mode nonresonant with the qubit transition
frequency and a nonperfect PBG at the qubit transition
frequency.

3.1. Off-resonant high-Q cavity

As a first example we take the spectral distribution J (ω) of
the electromagnetic field inside a high-Q cavity supporting
a mode detuned by 1 from the qubit (two-level atom)
transition frequency ω0, resulting from the combination of the
environment spectrum and the system–environment coupling.
It has the Lorentzian form [1]

J (ω) =
1

2π

0λ2

(ω0 − 1 − ω)2 + λ2
, (6)

where 0 is the qubit free-space linewidth and λ the spectral
width of the coupling. The parameter λ is then connected
to the reservoir correlation time τB by the relationship
τB ≈ λ−1. The relaxation timescale τR over which the state
of the system changes is related to 0 by τR ≈ 0−1. The
correlation function corresponding to this J (ω) is f (t − t1) =
0λ
2 exp[−(λ − i1)(t − t1)] . Using this correlation function,

the Laplace transform of q(t) is

q̄(s) = 1

/[
s +

1

2

0λ

s − (λ − i1)

]
2
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Figure 1. Nonresonant cavity: λ = 0.10. Concurrence as a function
of dimensionless quantities 0t starting from the initial state
ρ̂9(0) = |9〉〈9| with α = 1/

√
3 for different values of detuning 1:

1 = 0 (solid curve), 1 = 2λ (dotted curve), 1 = 5λ
(long-short-dashed curve), 1 = 8λ (long-short-short-dashed curve).

and the inverse Laplace transform finally gives

q(t) = e−((λ−i1)/2)t

[
cosh

(
dt

2

)
+

λ − i1

d
sinh

(
dt

2

)]
,

(7)
where d =

√
(λ − i1)2 − 20λ.

In the resonant limit, 1 = 0, the correlation function
has an exponential form with λ the decay rate. In the
analysis of the function q(t) of equation (7) with 1 = 0,
a weak (0 < λ/2) and a strong (0 > λ/2) coupling regime
can be distinguished [1, 15]. In the weak coupling regime,
the relaxation time is greater than the reservoir correlation
time (τR > 2τB) and the behaviour of q(t) is essentially
a Markovian exponential decay controlled by 0. In the
strong coupling regime, the reservoir correlation time is
greater than, or of the same order as, the relaxation time
(τR < 2τB) and non-Markovian effects become relevant.
Within this regime, q(t) presents oscillations describing a
quasi-coherent exchange of energy between the qubit and the
reservoir.

3.1.1. Entanglement dynamics. We now investigate the
entanglement dynamics of the two-qubit system considering
in detail the effect of the detuning 1, by using the concurrence
obtained by equation (5) with q(t) given by equation (7). The
evolution of concurrence for various values of the detuning
is shown in figure 1 when the cavity bandwidth λ is smaller
than the free-space atomic linewidth 0 (λ = 0.10) and the
initial state is not maximally entangled, in particular ρ̂9(0) =

|9〉〈9| with α = 1/
√

3 . In the resonant case, it is found,
as is known, that the state suffers ESD [7]. However, from
the plot one observes that on increasing the detuning, the
entanglement decay slows down. In particular, for 1 = 2λ we
also have revivals of entanglement after a finite period of time
when the two qubits are not entangled. The phenomena of the
slowing down of entanglement decay and of the entanglement
revivals are a clear manifestation of the environment memory
effects.

0 2 4 6 8 10
1t

0.2

0.4

0.6

0.8

1

C� t

Figure 2. Nonperfect PBG case: λ1 = 10λ2 = 5001. Concurrence
as a function of the dimensionless quantity 01t starting from the
initial state ρ̂8(0) = |8〉〈8| with α = β = 1/

√
2 for different values

of 02: 02 = 01 (solid curve), 02 = 02/3 (dotted curve), 02 = 201/3
(long-short-dashed curve), 02 = 0 (long-short-short-dashed curve).

3.2. Nonperfect PBG

As a second example of the non-Markovian environment, we
consider a spectral density of the form [16]

J (ω) =
1

2π

(
01λ

2
1

(ω − ω0)2 + λ2
1

−
02λ

2
2

(ω − ω0)2 + λ2
2

)
, (8)

which represents a Lorentzian with a dip used as a model
to simulate the spontaneous decay of a qubit in a nonperfect
PBG. In equation (8), λ1 represents the bandwidth of the flat
background continuum, λ2 the width of the gap, and 01 and 02

the strength of the background and the gap, respectively. The
spectral density must be positive; this implies 01λ

2
1 > 02λ

2
2

(condition for J (ω) to be positive at large ω) and 01 > 02

(condition for J (ω) to be positive at the centre of resonance).
Combining these two relationships the condition 01λ1 >

02λ2 must be satisfied, this being also the condition for a
localized dip [16]. In the case 01 = 02 the spectral density
reduces exactly to zero at the centre of the gap (ω = ω0),
leading to population trapping [16]. For this form of
J (ω), one obtains for the correlation function f (t − t1) =

(01λ1e−λ1(t−t1) − 02λ2e−λ2(t−t1))/2 and the Laplace transform
of q(t) becomes

q̄(s) =
(λ1 + s)(λ2 + s)

s3 + s2(λ1 + λ2) + s(λ1λ2 + 3) + λ1λ20d
, (9)

where 3 = (01λ1 − 02λ2)/2 and 0d = (01 − 02)/2. By
inverting the Laplace transform, one finally obtains

q(t) =

∑
i

u2
i + ui (λ1 + λ2) + λ1λ2

(ui − u j )(ui − uk)
eui t , (10)

where i, j, k = 1, 2, 3 are all different indexes and ui are the
three solutions of the third-degree equation appearing in the
denominator of equation (9). The explicit expressions of ui

are rather complex and we shall not report them here.

3.2.1. Entanglement dynamics. We are now ready to analyse
the entanglement dynamics of the two-qubit system in a

3
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nonperfect PBG as described by the spectral density of
equation (8), by using the concurrence of equation (5) with
q(t) given by equation (10). In figure 2, we investigate the
evolution of concurrence for λ1 = 10λ2 = 5001 and varying
02. In order to obtain higher values of concurrence for long
times, we consider an initial state different from that of
the previous analysis (section 3.1.1), namely the Bell state
ρ̂8(0) = |8〉〈8| (α = β = 1/

√
2). For 02 = 01, the spectral

density goes to zero at the centre of the gap and, as a
consequence, we obtain entanglement trapping (similarly to
what happens in [11]). The other curves are obtained for
decreasing values of 02: 02 = 202/3, 02 = 01/3 and 02 = 0.
Smaller values of 02 correspond to a smaller dip of the
spectral density at ω = ω0. In particular, for 02 = 0, the shape
of the spectral density is again a simple Lorentzian. In figure 2
the value of λ1 is chosen so that we are in the weak coupling
regime (see section 3.1) and a Markovian decay occurs.
Finally, the plot shows how on decreasing 02 the trapping of
entanglement is lost and the entanglement decay speeds up
even more.

4. Conclusions

In this paper, we have extended previous analysis on
the entanglement dynamics of two noninteracting qubits
embedded in bosonic environments at zero temperature. We
have examined two different spectral densities corresponding
to two different environments: the first case considered is
a Lorentzian spectrum representing a high-Q cavity out of
resonance with the qubit transition frequency; the second case
is a nonperfect PBG. The first case has allowed us to analyse
the role of the cavity–qubit detuning comparing it to the
known resonant case. In particular, as expected, an increase
in the entanglement lifetime is observed when the detuning
is increased. On the other hand, the second spectral density
has permitted the study of entanglement dynamics when ideal
conditions of the PBG (spectral density exactly equal to zero
for a frequency equal to the qubit transition frequency) are
not satisfied. In this case, it has been found that increasing

the value of the spectral density in the central frequency
(qubit transition frequency) entanglement trapping, which is
expected for the ideal case, vanishes while entanglement
decay speeds up. This study has thus enlarged the knowledge
of entanglement evolution under different non-Markovian
conditions, providing more hints for future investigations on
this topic.
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