1,568 research outputs found

    Phenotype-based and Self-learning Inter-individual Sleep Apnea Screening with a Level IV Monitoring System

    Get PDF
    Purpose: We propose a phenotype-based artificial intelligence system that can self-learn and is accurate for screening purposes, and test it on a Level IV monitoring system. Methods: Based on the physiological knowledge, we hypothesize that the phenotype information will allow us to find subjects from a well-annotated database that share similar sleep apnea patterns. Therefore, for a new-arriving subject, we can establish a prediction model from the existing database that is adaptive to the subject. We test the proposed algorithm on a database consisting of 62 subjects with the signals recorded from a Level IV wearable device measuring the thoracic and abdominal movements and the SpO2. Results: With the leave-one cross validation, the accuracy of the proposed algorithm to screen subjects with an apnea-hypopnea index greater or equal to 15 is 93.6%, the positive likelihood ratio is 6.8, and the negative likelihood ratio is 0.03. Conclusion: The results confirm the hypothesis and show that the proposed algorithm has great potential to screen patients with SAS

    IncP ‐type plasmids carrying genes for antibiotic resistance or for aromatic compound degradation are prevalent in sequenced Aromatoleum and Thauera strains

    Get PDF
    Self-transferable plasmids of the incompatibility group P-1 (IncP-1) are considered important carriers of genes for antibiotic resistance and other adaptive functions. In the laboratory, these plasmids have a broad host range; however, little is known about their in situ host profile. In this study, we discovered that Thauera aromatica K172T, a facultative denitrifying microorganism capable of degrading various aromatic compounds, contains a plasmid highly similar to the IncP-1 ε archetype pKJK5. The plasmid harbours multiple antibiotic resistance genes and is maintained in strain K172T for at least 1000 generations without selection pressure from antibiotics. In a subsequent search, we found additional nine IncP-type plasmids in a total of 40 sequenced genomes of the closely related genera Aromatoleum and Thauera. Six of these plasmids form a novel IncP-1 subgroup designated θ, four of which carry genes for anaerobic or aerobic degradation of aromatic compounds. Pentanucleotide sequence analyses (k-mer profiling) indicated that Aromatoleum spp. and Thauera spp. are among the most suitable hosts for the θ plasmids. Our results highlight the importance of IncP-1 plasmids for the genetic adaptation of these common facultative denitrifying bacteria, and provide novel insights into the in situ host profile of these plasmids

    Feasibility of Bispectral Index-Guided Propofol Infusion for Flexible Bronchoscopy Sedation: A Randomized Controlled Trial

    Get PDF
    There are safety issues associated with propofol use for flexible bronchoscopy (FB). The bispectral index (BIS) correlates well with the level of consciousness. The aim of this study was to show that BIS-guided propofol infusion is safe and may provide better sedation, benefiting the patients and bronchoscopists.After administering alfentanil bolus, 500 patients were randomized to either propofol infusion titrated to a BIS level of 65-75 (study group) or incremental midazolam bolus based on clinical judgment to achieve moderate sedation. The primary endpoint was safety, while the secondary endpoints were recovery time, patient tolerance, and cooperation.The proportion of patients with hypoxemia or hypotensive events were not different in the 2 groups (study vs. control groups: 39.9% vs. 35.7%, p = 0.340; 7.4% vs. 4.4%, p = 0.159, respectively). The mean lowest blood pressure was lower in the study group. Logistic regression revealed male gender, higher American Society of Anesthesiologists physical status, and electrocautery were associated with hypoxemia, whereas lower propofol dose for induction was associated with hypotension in the study group. The study group had better global tolerance (p<0.001), less procedural interference by movement or cough (13.6% vs. 36.1%, p<0.001; 30.0% vs. 44.2%, p = 0.001, respectively), and shorter time to orientation and ambulation (11.7±10.2 min vs. 29.7±26.8 min, p<0.001; 30.0±18.2 min vs. 55.7±40.6 min, p<0.001, respectively) compared to the control group.BIS-guided propofol infusion combined with alfentanil for FB sedation provides excellent patient tolerance, with fast recovery and less procedure interference.ClinicalTrials. gov NCT00789815

    scMAR-Seq: a novel workflow for targeted single-cell genomics of microorganisms using radioactive labeling

    Get PDF
    Current methods for the identification of specific microorganisms based on an in situ metabolism are often hampered by insufficient sensitivity and habitat complexity. Here, we present a novel approach for identifying and sequencing single microbial cells metabolizing a specific organic compound with high sensitivity and without prior knowledge of the microbial community. The workflow consists of labeling individual cells with a [14^{14}C] substrate based on their metabolic activity, followed by encapsulating cells in alginate with nuclear emulsion by using microfluidics. We here adapted the concept of microautoradiography to visually distinguish between encapsulated labeled and non-labeled cells, which are then sorted via flow cytometry for single cell genomics. As a proof-of-concept, we labeled, separated, lysed, and sequenced single cells of the benzene degrader Pseudomonas veronii from mock microbial communities. The cells of P. veronii were isolated with 100% specificity. Single-cell microautoradiography and genome sequencing is an innovative method for elucidating microbial identity, activity, and function in diverse habitats, contributing to elucidate novel taxa and genes with potential for biotechnological applications such as bioremediation

    Ludwigia octovalvis extract improves glycemic control and memory performance in diabetic mice

    Get PDF
    Ethnopharmacological relevance Ludwigia octovalvis (Jacq.) P.H. Raven (Onagraceae) extracts have historically been consumed as a healthful drink for treating various conditions, including edema, nephritis, hypotension and diabetes. Aim of the study We have previously shown that Ludwigia octovalvis extract (LOE) can significantly extend lifespan and improve age-related memory deficits in Drosophila melanogaster through activating AMP-activated protein kinase (AMPK). Since AMPK has become a critical target for treating diabetes, we herein investigate the anti-hyperglycemic potential of LOE. Materials and methods Differentiated C2C12 muscle cells, HepG2 hepatocellular cells, streptozotocin (STZ)-induced diabetic mice and high fat diet (HFD)-induced diabetic mice were used to investigate the anti-hyperglycemic potential of LOE. The open field test and novel object recognition test were used to evaluate spontaneous motor activity and memory performance of HFD-induced diabetic mice. Results In differentiated C2C12 muscle cells and HepG2 hepatocellular cells, treatments with LOE and its active component (β-sitosterol) induced significant AMPK phosphorylation. LOE also enhanced uptake of a fluorescent glucose derivative (2-NBDG) and inhibited glucose production in these cells. The beneficial effects of LOE were completely abolished when an AMPK inhibitor, dorsomorphin, was added to the culture system, suggesting that LOE requires AMPK activation for its action in vitro. In streptozotocin (STZ)-induced diabetic mice, we found that both LOE and β-sitosterol induced an anti-hyperglycemic effect comparable to that of metformin, a drug that is commonly prescribed to treat diabetes. Moreover, LOE also improved glycemic control and memory performance of mice fed a HFD. Conclusions These results indicate that LOE is a potent anti-diabetic intervention that may have potential for future clinical applications
    corecore