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Purpose: We propose a phenotype-based artificial intelligence system that can self-
learn and is accurate for screening purposes and test it on a Level IV-like monitoring
system.

Methods: Based on the physiological knowledge, we hypothesize that the phenotype
information will allow us to find subjects from a well-annotated database that share
similar sleep apnea patterns. Therefore, for a new-arriving subject, we can establish a
prediction model from the existing database that is adaptive to the subject. We test the
proposed algorithm on a database consisting of 62 subjects with the signals recorded
from a Level IV-like wearable device measuring the thoracic and abdominal movements
and the SpO2.

Results: With the leave-one-subject-out cross validation, the accuracy of the proposed
algorithm to screen subjects with an apnea-hypopnea index greater or equal to 15 is
93.6%, the positive likelihood ratio is 6.8, and the negative likelihood ratio is 0.03.

Conclusion: The results confirm the hypothesis and show that the proposed algorithm
has potential to screen patients with SAS.

Keywords: sleep apnea screening, Level IV-like monitoring, self-learning AI system, phenotype metric, inter-
individual prediction

INTRODUCTION

Sleep apnea syndrome (SAS) is a common sleep disorder that affects approximately 14% of adult
men and 5% of adult women (Peppard et al., 2013). An even higher prevalence is reported
in Swiss population (Heinzer et al., 2015) that the prevalence of moderate-to-severe SAS was
23.4% in women and 49.7% in men. SAS has been known to be related to different diseases, or
even public tragedies (Yaggi et al., 2005; Canessa et al., 2011; Golbidi et al., 2012; Leger et al.,
2012). Although SAS has received considerable attention, most patients with SAS are not aware
of it and are untreated (Gibson, 2004; Young et al., 2009). Therefore, a screening tool, better
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designed for home screening, is urgently needed. This tool
should be easy to install at home, cheap, comfortable, and not
interfere sleep. Many sensors have been explored for this purpose,
including those equipped in different items (Al-Mardini et al.,
2014; Koyama et al., 2015), for example, the electrocardiogram
(ECG) signal, oximeter signal, sound, nasal airflow measurement,
respiration effort measurement, oximeter, and accelerometer.
In addition to developing an easy-to-install, inexpensive, and
accurate screening monitor, researchers have proposed several
artificial intelligence (AI) systems for automatic annotation of the
collected signal with high accuracy and, therefore, achieve the
screening purpose (Alvarez-Estevez and Moret-Bonillo, 2015).
However, the inevitable inter-individual variability issue is less
considered in these computer-assisted screening techniques.

In addition to accurately annotating collected signals, an
AI system should contain a self-learning ability like a sleep
expert; that is, we are looking for a system that can perform
better when there are more cases with good annotations.
In practice, to make a diagnosis on a new-arriving patient,
physicians automatically handle the inter-individual variability
by taking various phenotypes into account, mainly based
on his accumulated practicing experience; specifically, by
reading available information, the underlying pathophysiological
information is implicitly utilized. In this work, we take this
wisdom into account, and propose a phenotype-based self-
learning AI system for SAS screening. We test the proposed
algorithm on a Level IV-like screening system (Ferber et al.,
1994; Collop et al., 2007), which contains a pulse oximeter
for SpO2 detection and two tri-axial accelerator (TAA) sensors
for thoracic and abdominal movement, which are surrogates
of the respiratory signal. For a new-arriving patient, based on
the designed phenotype metric based on the clinical phenotypes
[body mass index (BMI), age, gender, and comorbidity history]
and SpO2 and respiratory signals, a prediction model is
established from those subjects in the available annotated
database that are most similar to the new-arriving subject. To
evaluate the performance of the proposed phenotype-based self-
learning AI, we compare the automatic annotations with expert
labeled sleep records.

MATERIALS AND METHODS

The study was performed with at least 6 h of sleep recording
time to confirm the presence or absence of OSA from the clinical
subjects suspected of sleep apnea at the sleep center in Chang
Gung Memorial Hospital (CGMH), Linkou, Taoyuan, Taiwan.
The Level-1 monitoring system, polysomnography (PSG), Alice
5 data acquisition system (Philips Respironics, Murrysville, PA,
United States), is carried out during the whole sleep as the ground
truth. The Institutional Review Board of CGMH approved the
study protocol (No. 101-4968A3). The written informed consent
was obtained from the participants. The SpO2 is recorded by
the Alice 5 data acquisition system sampled at 1 Hz. The
thoracic and abdominal movements are simultaneously recorded
at 226 Hz with the 8 bits resolution [The TAA sensors are
ADXL335 (Analog device), and the micro-controller AT328P

(Atmel) executes the data acquisition flow and then transfers
the data to a server wirelessly by a Bluetooth channel], and the
signals are synchronized with the SpO2 signal. We also collected
the questionnaire from the subject, including age, gender, height,
weight, medical history, and drug history. By reading the PSG
data, an apnea event (obstructive, central or mixed) is identified
when the airflow breathing amplitude decreases more than 90%
for a duration ranging from 10 to 120 s, whereas a hypopnea event
is identified when the airflow breathing amplitude decreases over
30% of the pre-event baseline with ≥3% oxygen desaturation or
with an arousal (Berry et al., 2012).

Method
We designed a phenotype-base metric to determine the similarity
between subjects. The flowchart of the algorithm is illustrated
in Figure 1. We consider the commonly available phenotype
information for each subject, including gender, age, and body-
mass index (BMI) that are closely related to the sleep apnea
pattern and severity (Liu et al., 2017). The similarity is designed
based on the physician’s clinical experience; that is, the closer
the age and BMI are, the more similar two subjects are, and
the similarity between two subjects with the same gender are
weighted more. We call the designed similarity the phenotype
metric. In clinics, the gender, BMI, and age are not the
only considered parameters for the SAS. We further take the
comorbidity of hypertension, diabetes, and hypothyroidism into
account to better determine the similarity between subjects,
which is called the correction distance. Two subjects with the same
comorbidity are more similar. Following the clinical practice, if
we want to find the K most similar subjects of the new-arriving
subject, we first determine K + K’ most similar subjects that are
related to the phenotype metric and remove the K’ subjects with
the largest correction distance. If there are less than K’ subjects
that have the correction distance greater than 0, we remove
subjects with the largest phenotype distance to determine the K
most similar subjects. We call this a modified K nearest neighbor
(KNN) scheme. The detailed description of the metric design can
be found in the Supplementary Material.

For each subject, we extract two sets of features – the apnea-
related features and the desaturation features. These features are
extracted from 10-s-long segmented signals, with a 9.5 s overlap.
For each segment of the recorded thoracic and abdominal
movement signal, we extract the amplitude, frequency, and
paradoxical movement as the apnea-related features that are
introduced in Lin et al. (2016). For each segment of the SpO2
signal, the minimum, maximum, median, mean, variance of the
first derivative, and difference between the median and minimum
over a sliding 20-s window are selected as the desaturation
features.

With the modified KNN scheme and selected features, the
proposed phenotype-based self-learning AI system is carried out
upon the available database with annotations provided by the
sleep experts in the following way. For the new-arriving subject
called Z, we find K most similar subjects by the modified KNN
scheme. The kernel support vector machine (SVM) (Khandoker
et al., 2009) based on the standard radial based function is applied
to establish a prediction model from the features extracted from
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FIGURE 1 | The flowchart of the proposed phenotype-based self-learning artificial intelligence system, with the prototype of the sleep apnea screening instrument. In
the clinical testing environment, a full-featured PSG system is also attached to record the ground truth. Two tri-axial accelerometers are attached on the backside of
piezo belts. The oximeter probe is applied to the forefinger of right hand, which is not shown in this photo. DB indicates the existing database with experts’
annotations and phenotype information.

those K most similar subjects. The established SVM classifier,
combined with the paradoxical movement feature, is applied to
design a state machine (Lin et al., 2016). The established state
machine is applied to predict the sleep apnea stage of the new-
arriving subject Z from the recorded SpO2 and thoracic and
abdominal movement signals. Finally, for all epochs classified as
normal, if there is a desaturation determined by the desaturation
features, that epoch is corrected to an apnea event. With the
final whole night sleep apnea annotation, we could estimate the
AHI and, therefore, the severity of SAS. Since the sleep and
awake information is not available, the AHI is estimated by the
respiratory event index (REI), which is the average apnea events
per hour over the recording period (the period from light off to
light on). For reproducibility purposes, the detailed description
of the feature extraction and state machine is shown in the
Supplementary Material.

Assessment
To evaluate the proposed phenotype-based inter-individual
classification performance, we apply the leave-one-subject-out
cross validation (LOSOCV). Each subject was selected for the
testing group and the remaining subjects were used for training.
We up-sample the training dataset by uniformly duplicating
the cases in the smaller subgroup to alleviate the imbalanced
case numbers. For the selected subject, we find K most similar
subjects from the up-sampled training dataset, and establish the
prediction model. We then apply the prediction model on the
selected subject. The results of all subjects were averaged to obtain
inter-individual testing results. Note that this LOSOCV mimics
the new-arriving subject in the real-world scenario.

We report two aspects of the performance – the event
identification and the severity prediction. An accurate apnea
events detection algorithm should identify those apnea events
in the right location. It means that an identified apnea event

should overlap an annotated apnea event provided by the sleep
expert. Without this information, although the estimated events
might still provide a reasonable AHI, the predicted events could
not provide more information. A detected event is classified
as true positive if it overlaps with an annotated event; if there
is an annotated event but no event is detected, the detection
result is classified as a false negative. We report the positive
predictive value (PPV), or the precision, and the F1 score, which
is the harmonic mean of recall (sensitivity) and PPV. We report
the summary statistics by median ± median absolute deviation
(MAD).

To report the performance of the severity prediction,
including normal, mild, moderate, and severe, we report a 4-
by-4 confusion matrix M. A summarized overall accuracy (AC),
and sensitivities and PPV for each group are reported. For the
purpose of screening subjects with severe sleep apnea, we divide
subjects into two groups, one with subjects having an AHI greater
than or equal to 15 and one less than 15, and report not only
the sensitivity, specificity and AC, but also the positive likelihood
ratio (LR+) and the negative likelihood ratio (LR−). The whole
analysis is carried out in Matlab R2014b with the provided SVM
module.

RESULTS

We enrolled 63 adult snoring subjects over 20-year-old from the
outpatient clinic continuously from September 2015 to August
2016. The questionnaire of one subject was missing, so we
excluded this case from the study. Two sleep experts identified,
marked, and classified the overnight sleep records into normal
(NOR), obstructive sleep apnea, central sleep apnea, mixed-type
sleep apnea, and hypopnea. We do not distinguish between
different types of apnea events, and view obstructive sleep apnea,
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TABLE 1 | Demographic details of the enrolled 62 subjects.

Gender
(# of sub.)

AHI (#/h) BMI (kg/m2) Age (y/o) Recording
time (h)

Sleep
time (h)

# of CSA # of MSA # of OSA # of HYP

Normal All (10) 2.2 ± 1.4 22.4 ± 2.8 34.8 ± 16.3 6.3 ± 0.2 5.6 ± 0.6 2.1 ± 2.1 0.5 ± 0.7 1.0 ± 2.5 8.5 ± 6.4

Male (4) 2.4 ± 1.0 22.1 ± 1.4 36.8 ± 17.0 6.3 ± 0.2 5.2 ± 0.8 1.3 ± 0.5 0.3 ± 0.5 0.5 ± 0.6 10.8 ± 5.3

Female (6) 2.1 ± 1.8 22.6 ± 3.5 33.5 ± 17.2 6.3 ± 0.2 5.8 ± 0.3 2.7 ± 2.7 0.7 ± 0.8 1.3 ± 3.3 7.0 ± 7.1

Mild All (11) 9.9 ± 2.7 25.0 ± 4.5 38.6 ± 15.5 6.3 ± 0.1 5.4 ± 0.5 3.1 ± 3.4 1.8 ± 1.8 14.9 ± 13.0 34.4 ± 11.8

Male (7) 9.6 ± 3.3 23.5 ± 3.9 29.9 ± 8.1 6.3 ± 0.1 5.4 ± 0.5 3.9 ± 4.1 2.4 ± 2.0 18.0 ± 15.3 29.0 ± 7.3

Female (4) 10.4 ± 1.4 27.5 ± 4.8 53.8 ± 13.8 6.1 ± 0.1 5.3 ± 0.4 1.8 ± 1.5 0.8 ± 0.5 9.5 ± 5.5 43.8 ± 13.1

Moderate All (4) 24.9 ± 5.3 27.0 ± 1.6 49.8 ± 13.1 6.4 ± 0.3 5.1 ± 1.0 5.0 ± 10.0 3.3 ± 5.9 18.3 ± 16.6 96.0 ± 41.1

Male (4) 24.9 ± 5.3 27.0 ± 1.6 49.8 ± 13.1 6.4 ± 0.3 5.1 ± 1.0 5.0 ± 10.0 3.3 ± 5.9 18.3 ± 16.6 96.0 ± 41.1

Female (0) – – – – – – – – –

Severe All (37) 63.8 ± 23.4 27.8 ± 3.7 52.3 ± 13.8 6.3 ± 0.1 5.0 ± 0.8 9.1 ± 14.9 22.3 ± 32.7 179.6 ± 121.9 103.5 ± 71.7

Male (34) 63.9 ± 23.6 27.6 ± 3.5 51.0 ± 13.6 6.3 ± 0.1 5.0 ± 0.8 9.6 ± 15.5 21.6 ± 32.7 181.4 ± 124.5 103.5 ± 74.7

Female (3) 62.6 ± 24.9 29.6 ± 5.9 67.7 ± 1.2 6.2 ± 0.1 4.7 ± 0.2 4.3 ± 1.2 30.7 ± 39.4 159.3 ± 104.3 103.3 ± 23.9

central sleep apnea, mixed-type sleep apnea, and hypopnea as
apnea (APN) in the whole analysis. Among 62 subjects, there are
49 males and 13 females, 10 normal subjects, and 11, 4, and 37
subjects with mild, moderate, and severe SAS, respectively. The
age is 34.8 ± 16.3, 38.6 ± 15.5, 49.8 ± 13.1, and 52.3 ± 13.8
for the normal, mild, moderate, and severe group, respectively.
More demographic detail information, including gender, AHI,
BMI, age, recording time (the length of recording period), and
sleep time (the length of intervals when the subject is in the sleep
status during the period from light off to light on) is summarized
in Table 1.

The event-by-event detection results are shown in Table 2.
Overall, the PPV is 0.67 ± 0.23 and the F1 is 0.7 ± 0.22, and the
algorithm is more accurate for subjects with moderate and severe
SAS. For subjects with AHI less than 15, the PPV is 0.24 ± 0.24
and the F1 is 0.27±0.18; for subjects with AHI greater than 15,
the PPV is 0.77± 0.12 and the F1 is 0.77± 0.11.

Table 3 shows the confusion matrix of the severity prediction
results, based on the event-by-event prediction result, where the
overall accuracy is 71% for four groups. The sensitivities are
60, 63.6, 75, and 75.7% for the normal, mild, moderate, and
severe groups, respectively; the PPVs are 85.7, 58.3, 20, and
100%, respectively. If we take AHI 15 as the cutoff to determine
if a subject has an urgent treatment need for his/her SAS, the
sensitivity is 97.6%, the specificity is 85.7%, and the accuracy is
93.6%, with LR+ 6.8 and LR− 0.03.

DISCUSSION

We propose a phenotype-based inter-individual SAS screening
algorithm based on the proposed phenotype metric. For each
new-arriving subject, we establish a predictor from the K most
similar subjects in an existing database with annotations. The
predictor is clearly adaptive to the new-arriving subject. We
evaluate the algorithm on a database with a Level IV-like
monitoring system equipped with TAA sensors capturing the
thoracic and abdominal movements and an oximeter capturing
the SpO2 and report the results. If we are concerned with
classifying subjects into normal, mild, moderate, or severe

TABLE 2 | Results of the event-by-event prediction of proposed phenotype-based
inter-individual predictor.

PPV Normal 0.10 ± 0.26

Mild 0.38 ± 0.19

Moderate 0.49 ± 0.07

Severe 0.80 ± 0.11

All 0.67 ± 0.23

F1 Normal 0.17 ± 0.16

Mild 0.36 ± 0.16

Moderate 0.56 ± 0.07

Severe 0.81 ± 0.10

All 0.70 ± 0.22

In the proposed algorithm, K = 15 and K’ = 5. PPV, positive predictive value.

subgroups, the proposed algorithm achieves 71% accuracy.
If we are concerned with screening subjects with an urgent
need for SAS treatment, which are those subjects with AHI
greater than or equal to 15, the overall accuracy achieves 93.6%
and LR− is as low as 0.03. The low LR− means that the
proposed algorithm could efficiently rule out the possibility of
moderate or severe SAS, and, therefore, accurately screen those
patients with moderate or severe SAS based on the Level IV-
like portable device. On the other hand, since LR+ is 6.8,
which only moderately increases the post-test probability of
disease, the proposed algorithm is less suitable for diagnostic
purposes.

For the event-by-event detection result, overall the proposed
algorithm could achieve PPV = 0.67±0.23 and F1 = 0.7±0.22,
and the prediction accuracy is better when AHI is higher. When
a subject is normal or has a mild SAS, the event-by-event
prediction is not good. This is because, based on the metric,
we find neighbors that have similar sleep apnea behavior, and
there are limited sleep apnea events to train an efficient SVM
classifier. On the other hand, we have a higher accuracy for
the group with more severe patients, since more apnea events
are available. The event-by-event detection is important for
several clinical applications. For example, we need a real-time
and accurate event-by-event predictor to establish an adaptive
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TABLE 3 | Confusion matrix of the proposed phenotype-based inter-individual
prediction algorithm.

Expert label

Normal Mild Moderate Severe

Prediction Normal
(AHI ≤ 5)

6 1 0 0

Mild
(5 < AHI ≤ 15)

4 7 1 0

Moderate
(15 < AHI ≤ 30)

0 3 3 9

Severe
(30 < AHI)

0 0 0 28

Accuracy 70.97%

In the proposed algorithm, K = 15 and K’ = 5.

continuous positive airway pressure (CPAP) machine. Since
the proposed algorithm performs better for subjects with AHI
greater than 15, we could expect its clinical potential to improve
the CPAP compliance of those patients who urgently need a
treatment.

Note that we determine the SAS severity by evaluating REI
from the Level IV-like equipment, since the wake-sleep status
information is not available from the signals. Compared with
the standard AHI determined from PSG, REI determined from
PSG tends to underestimate the SAS severity since it reflects
the average apnea events per hour during the whole recording
period, instead of the sleep time. In Table 1, it is shown that
the recording time is in general longer than the sleep time.
In our case, REI is evaluated based on the event-by-event
detection over the whole recording period, so the false positive
detected events during the awake stage are included in the
analysis. Despite this fact, based on the results, we have shown
the potential of taking REI evaluated from the Level IV-like
equipment based on the proposed algorithm as a screening
tool.

The main obstacle toward a self-evolving capability of a system
is the inevitable variation among individuals, and our solution
is encoding the physicians’ decision-making process and clinical
experience into the AI system. To the best of our knowledge, this
phenotype-based approach to handle inter-individual variability
was never considered in the existing computer-assisted SAS
screening techniques. See, for example, (Álvarez et al., 2017;
Shokoueinejad et al., 2017), and the literature cited therein, for
the recent systematic review of computer-assisted SAS screening
techniques. The SAS is a reflection of the complicated interaction
between different underlying physiological systems and the
environment. The interaction varies from subject to subject,
so the signals we collect also vary from subject to subject.
Due to this inter-individual variation, the model established
from the whole database might be blurred. For example, two
subjects of different genders might express their SAS patterns
differently in the collected signals, and the model established
from males might not accurately predict the SAS severity of a
female. This “blurring effect” deteriorates the performance of
the AI system, and the larger the database is, the more severe

the “blurring effect” caused by the inter-individual variability
will be. As a result, no matter how large the database is, the
accumulated knowledge might be limited. Therefore, finding a
way to “compare” individuals and to select a suitable subset
from the database to establish the prediction model for the
new-arriving subject becomes a critical problem. This problem
could be understood as the “metric design” problem in the
machine learning field, which is the main component of our
work. With the designed phenotype metric, the “blurring effect”
could be alleviated and hence the self-evolving system is possible.
The metric is designed based on the physician’s experience and
interpretation in order to alleviate the influence of the inter-
individual variability. This fact has been shown in the reported
result – the modified KNN scheme helps us to select subjects
sharing similar features, which improves the prediction accuracy.
In general, if we have more complete electrical health records,
more phenotype information can be taken into account to design
the desired metric.

According to 2007 JCSM guideline (Collop et al., 2007), the
equipment we consider to prove the concept of the proposed
self-learning system technically does not fall in the category of
Level 4 devices while it does not fall in the category of Level
3 neither, since we have less than 4 channels. However, since
the sensors we consider collect two types of information –
respiratory effort and oxygen saturation, it is closer to a Level
4 device in 2007 JCSM guideline. Therefore, we call it “Level
4-like” device. Regarding the term “phenotype-based approach,”
in clinics, when we discuss phenotype-based diagnosis, it is the
pathophysiological origin of sleep apnea, like the chemoreceptor
driver, the collapsibility of upper airway, or so on, that is
considered, instead of the quantities we discuss here. Ideally,
finding these pathophysiological would give us the best diagnosis
accuracy. However, in general we do not have these information;
instead, we only have other information about the subjects
that are related to the underlying pathophysiological status.
The existence of relationship allows us to take underlying
pathophysiological status into account, and hence improve the
diagnosis accuracy of sleep apnea. We thus call our approach
“phenotype-based.”

There are several technical details regarding the algorithm that
must be discussed. We emphasize that although we could run
a greedy optimization to determine the optimal weight for each
phenotype parameter for the phenotype distance, we do not do it
to avoid over-fitting, due to the case number limitation. Second,
while the selected features and SVM overall performs well, it
is widely accepted that when the database is large, the multi-
layer neural network might perform better. In the future large
scale study, we could consider designing a multi-layer neural
network to replace SVM. Third, to purely study the potential of
the algorithm, we do not consider the signal quality effect. All
recorded signals are taken into account for the analysis. For a
practical application, we could consider distinguishing between
signals with high and low qualities. Designing a signal quality
index for the TAA signal is a research topic of its own interest
but is out of the scope of this paper. It will be carried out
in the future research, and in general this could improve the
result.
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Despite the strength of the proposed algorithm, we
acknowledge several limitations. First, the case number is small
and there is a subgroup (female with moderate SAS) that is
empty. Based on this preliminary study, a large scale prospective
study is needed. With a larger database, we could further
take more physicians’ wisdom into account. For example, it is
known that menopause females have an increased prevalence of
SAS. The metric design should take this into account. Second,
while the proposed event-by-event detection algorithm has the
potential for the clinical application, like improving the CPAP
machine, its accuracy could be further improved. Third, the
subjects all slept in the lab (not at home) for only one night.
Therefore, the first night effect (Tamaki et al., 2016) is inevitable.
A prospective study designed for a home care scenario is also
needed.

CONCLUSION

We confirm that the proposed novel phenotype-based inter-
individual SAS prediction algorithm based on a Level IV-like
monitoring system has potential as a self-learning AI system for
homecare screening.
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