23,642 research outputs found

    Entanglement in a Valence-Bond-Solid State

    Full text link
    We study entanglement in Valence-Bond-Solid state. It describes the ground state of Affleck, Kennedy, Lieb and Tasaki quantum spin chain. The AKLT model has a gap and open boundary conditions. We calculate an entropy of a subsystem (continuous block of spins). It quantifies the entanglement of this block with the rest of the ground state. We prove that the entanglement approaches a constant value exponentially fast as the size of the subsystem increases. Actually we proved that the density matrix of the continuous block of spins depends only on the length of the block, but not on the total size of the chain [distance to the ends also not essential]. We also study reduced density matrices of two spins both in the bulk and on the boundary. We evaluated concurrencies.Comment: 4pages, no figure

    Foreign Private Investment And Economic Growth In Nigeria

    Get PDF
    Despite the increased flow of investment to developing countries in particular, Sub-Sahara African (SSA) countries, Nigeria inclusive, are still characterized by low per-capita income, high unemployment rates and low and falling growth rates of GDP, problems which foreign private investment are theoretically supposed to solve. The Nigerian government has been focusing on policies that will help attract foreign investors and yet the economy is still dwindling. It is against this background, that this study analyzed the direction and significance of the effect of foreign private investment on economic growth in Nigeria. Secondary data for the period 1970 to 2005 was used for the study. Among the findings was that Foreign Private Investment, Domestic Investment growth and Net Export growth were positively related to economic growth in Nigeria. More so, the Foreign Private Investment, Domestic Investment growth, Net export growth and the lagged error term were statistically significant in explaining variations in Nigeria's economic growth.Foreign Private Investment, Domestic Investment Growth, and Economic Growth

    The role of entanglement in dynamical evolution

    Full text link
    Entanglement or entanglement generating interactions permit to achieve the maximum allowed speed in the dynamical evolution of a composite system, when the energy resources are distributed among subsystems. The cases of pre-existing entanglement and of entanglement-building interactions are separately addressed. The role of classical correlations is also discussed.Comment: 5 pages, 1 figure. Revised versio

    Generalized minimal output entropy conjecture for one-mode Gaussian channels: definitions and some exact results

    Get PDF
    A formulation of the generalized minimal output entropy conjecture for Gaussian channels is presented. It asserts that, for states with fixed input entropy, the minimal value of the output entropy of the channel (i.e. the minimal output entropy increment for fixed input entropy) is achieved by Gaussian states. In the case of centered channels (i.e. channels which do not add squeezing to the input state) this implies that the minimum is obtained by thermal (Gibbs) inputs. The conjecture is proved to be valid in some special cases.Comment: 7 pages, updated version minor typos correcte

    Quantum metrology

    Full text link
    We point out a general framework that encompasses most cases in which quantum effects enable an increase in precision when estimating a parameter (quantum metrology). The typical quantum precision-enhancement is of the order of the square root of the number of times the system is sampled. We prove that this is optimal and we point out the different strategies (classical and quantum) that permit to attain this bound.Comment: 4 pages, 2 figure

    Implementation of quantum maps by programmable quantum processors

    Full text link
    A quantum processor is a device with a data register and a program register. The input to the program register determines the operation, which is a completely positive linear map, that will be performed on the state in the data register. We develop a mathematical description for these devices, and apply it to several different examples of processors. The problem of finding a processor that will be able to implement a given set of mappings is also examined, and it is shown that while it is possible to design a finite processor to realize the phase-damping channel, it is not possible to do so for the amplitude-damping channel.Comment: 10 revtex pages, no figure

    Superdense coding of quantum states

    Get PDF
    We describe a method to non-obliviously communicate a 2l-qubit quantum state by physically transmitting l+o(l) qubits of communication, and by consuming l ebits of entanglement and some shared random bits. In the non-oblivious scenario, the sender has a classical description of the state to be communicated. Our method can be used to communicate states that are pure or entangled with the sender's system; l+o(l) and 3l+o(l) shared random bits are sufficient respectively.Comment: 5 pages, revtex

    Turning on the heat: ecological response to simulated warming in the sea

    Get PDF
    Significant warming has been observed in every ocean, yet our ability to predict the consequences of oceanic warming on marine biodiversity remains poor. Experiments have been severely limited because, until now, it has not been possible to manipulate seawater temperature in a consistent manner across a range of marine habitats. We constructed a "hot-plate'' system to directly examine ecological responses to elevated seawater temperature in a subtidal marine system. The substratum available for colonisation and overlying seawater boundary layer were warmed for 36 days, which resulted in greater biomass of marine organisms and a doubling of space coverage by a dominant colonial ascidian. The "hot-plate'' system will facilitate complex manipulations of temperature and multiple stressors in the field to provide valuable information on the response of individuals, populations and communities to environmental change in any aquatic habitat

    Implementation of the Quantum Fourier Transform

    Get PDF
    The quantum Fourier transform (QFT) has been implemented on a three bit nuclear magnetic resonance (NMR) quantum computer, providing a first step towards the realization of Shor's factoring and other quantum algorithms. Implementation of the QFT is presented with fidelity measures, and state tomography. Experimentally realizing the QFT is a clear demonstration of NMR's ability to control quantum systems.Comment: 6 pages, 2 figure
    • …
    corecore