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Abstract

Significant warming has been observed in every ocean, yet our ability to predict the consequences of oceanic warming on
marine biodiversity remains poor. Experiments have been severely limited because, until now, it has not been possible to
manipulate seawater temperature in a consistent manner across a range of marine habitats. We constructed a ‘‘hot-plate’’
system to directly examine ecological responses to elevated seawater temperature in a subtidal marine system. The
substratum available for colonisation and overlying seawater boundary layer were warmed for 36 days, which resulted in
greater biomass of marine organisms and a doubling of space coverage by a dominant colonial ascidian. The ‘‘hot-plate’’
system will facilitate complex manipulations of temperature and multiple stressors in the field to provide valuable
information on the response of individuals, populations and communities to environmental change in any aquatic habitat.
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Introduction

A multitude of biologically significant environmental changes

are projected to occur as a consequence of anthropogenic climate

change [1]. Increasing temperature is arguably the most important

change, as temperature influences physiological and ecological

processes across biological scales, from genes to ecosystems.

Current knowledge of observed and expected biological changes –

and the ecophysiological mechanisms that drive them – on land far

exceeds that from ocean systems, largely because of the costly,

logistically-challenging nature of marine research and the

inaccessibility of aquatic habitats [2]. For example, unlike in

terrestrial habitats, where cloches have been used to experimen-

tally elevate temperature over short to medium timescales to

investigate community-level responses to simulated global warm-

ing [3,4], there have been few controlled manipulations of

temperature in the sea.

Although it is logistically difficult to manipulate seawater

temperature for ecological field experiments, previous studies

have utilized natural or man-made thermal gradients to examine

biological responses to seawater warming over varying timescales

[5,6]. For example, thermal discharge plumes from coastal power

plants have provided the opportunity to collect valuable field data

to show comprehensive and unexpected changes in marine

community structure in response to seawater warming [6,7].

Longer term warming driven by thermal discharge plumes has

also facilitated empirical tests of ecological theories [6] However,

while such approaches are clearly valuable, they are inherently

either unreplicated or spatio-temporally confounded and also it is

not possible for the researcher to exert control of the warming

regimes or treatments.

Another common approach that ecologists have adopted

examine the influence of environmental drivers on marine

biodiversity involves the use of settlement panels, which provide

artificial habitat for the settlement and growth of sessile marine

organisms. Settlement panels act as uniform, comparable

replicates that can be used to conduct manipulative experiments

on the influence of key physical and biological processes on

community structure. Assemblages colonising settlement panels

have been subjected to controlled manipulations of, amongst other

factors, physical disturbance, light levels, sedimentation, nutrient

enrichment, competition and grazing pressure (e.g., [8,9,10,11]).

Here, we developed this approach by manipulating temperature

on and around settlement panels to conduct highly novel in situ

experiments on the response of natural communities to simulated

oceanic warming.

Results

A ‘hot-plate’ system, in which electrically heated settlement

plates were warmed in an experimental array (comprising 8 hot

plates and 8 control plates), was deployed at 6m depth in the fully-

saline (35 psu) mouth of the micro-tidal Swan Estuary in Perth,

Australia (Fig 1A). The plate surface available for colonisation and

the boundary layer of water surrounding the plate were warmed to

0.67uC (60.11 s.d., based on 860 hourly observations) above

ambient temperature, in situ, for 36 days (Fig. 1B). The

temperature of the Swan River decreased considerably during

the deployment, which was conducted in autumn, but the

temperature differential between hot plates and control plates

remained relatively constant throughout the experiment (Fig. 1B).

A typical fouling assemblage, dominated by colonial ascidians,
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hydroids, bryozoans and barnacles, settled on the plates (Fig. 1D).

Didemnum perlucidum was the major space occupier; it covered more

than twice the space on the hot plates than on the unheated

controls (Fig. 1C; t-test on arc-sine transformed data, df = 14,

t = 1.56, P = 0.15). This observation suggested that initial growth

and/or development and/or recruitment of Didemnum perlucidum

may be enhanced by warmer substratum and seawater conditions.

Total dry biomass of the fouling assemblage was greater on hot

plates than control panels (t-test on Ln transformed data, df = 14,

t = 1.91, P = 0.07), again a likely consequence of accelerated

recruitment and/or growth rates of early life stages under warmer

conditions.

Further information on the behaviour of the thermal gradient

over the hot-plate surface was obtained from an experimental

flume system. The relationship between distance from the plate

surface and the magnitude of warming was examined under three

different flow regimes characteristic of the Swan River. Under low

flow conditions, the heated boundary layer of water surrounding

the hot plate was in excess of 8 mm in depth, while a maximum

temperature differential of 3uC was achieved on the plate’s surface

(Fig. 2A). However, the thickness of the warmed boundary layer

and the magnitude of the warming treatment were strongly

influenced by increased flow rates (Fig. 2A). Even so, mean

warming of at least 0.2uC was recorded up to 4 mm from the

plate’s surface at both medium and high current speeds. Crucially,

the magnitude of warming across the hot plate surface was

consistent under all flow conditions (Fig. 2B).

Discussion

We have presented a useful technique to modify seawater

temperature in situ, which is analogous to previous manipulations

of environmental factors influencing sessile assemblages on

settlement panels. As with other manipulations conducted at

small scales, the hot plate system only modifies the immediate

environment (i.e. a thin layer of water surrounding the plate

surface) and does not elevate the temperature of the water column

or the substratum at large spatial scales. As such, the approach has

some limitations in that it does not affect larval survivorship,

fecundity of the local population, adult physiology, or the pool of

species available for colonisation; all of which will be strongly

influenced by oceanic warming. The technique is therefore most

suited to experimentation on species that have short-lived (or no)

life cycle stages in the water column and are primarily influenced

by conditions near the substratum, such as microbial biofilms and

many species of ascidians and macroalgae. Another limitation

relates to the physical extent of the warming treatment, which is (at

most) 10 mm in depth and is strongly influenced by water

movement across the plate. Consequently, the technique is most

appropriate for examining small organisms or life stages that exist

within the warmed boundary layer of water, and for experimen-

tation in habitats that experience low to moderate water flow, such

as many embayments, lagoons and lakes. Modifications to the

panel structure and design to maximise the thickness of the

warmed boundary layer are ongoing.

Despite these limitations, the hot plate approach described

above has clear benefits. The major advantage of the hot plate

system is that it facilitates investigation on the effects of

temperature on larval choice, recruitment dynamics, growth and

calcification rates, community development and species interac-

tions in real aquatic habitats. This is crucial, as much of the

artificiality associated with laboratory, and even mesocosm,

approaches is removed by conducting manipulations in real

habitats, which are characterised by natural environmental

Figure 1. The ‘hot plate’ system was deployed in field (A) and seawater temperature 3 mm over the experimental settling surfaces
on both a hot plate and a control plate was recorded for the duration of the deployment (B). Panel C shows mean (6 S.E.) percent cover
of Didemnum perlucidum and total biomass of the sessile assemblage on hot plates and controls (n = 8). Note change of scale on biomass plot, for
clarity. A representative sessile assemblage covering a control (left) and hot (right) plate after 36 days is shown in panel D.
doi:10.1371/journal.pone.0016050.g001
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variability and complex interactions that often cannot be

simulated under controlled conditions [12]. Manipulations can

also be conducted over various timescales, to simulate both

gradual warming and short-term extreme events (i.e. heat waves),

which are projected to increase in frequency with climate change

[1]. Moreover, the system, which can be deployed in any aquatic

habitat, can be manipulated like ‘standard’ settlement plates and

will thus facilitate complex field experiments that combine

multiple stressors (i.e. temperature with disturbance frequency or

nutrient enrichment) and examine species interactions (i.e.

competition vs. facilitation) within functional communities. Finally,

unlike thermal pollution studies, hot plate experiments conducted

at different times and places would be comparable, which would

permit testing of important climate-related ecological theories,

such as the relative effects of warming on organisms inhabiting

polar versus tropical systems and thermally stable versus thermally

variable environments.

With regards to the biological data from the field deployment,

the two key ecological responses to warming we recorded were an

increased coverage of the ascidian Didemnum perlucidum and a

greater total biomass of the sessile assemblage. The genus

Didemnum includes community-altering invasive species, such as

D. vexillum and D. perlucidum, which have been translocated from

their native waters to new habitats on vessel hulls and in ballast

waters, sometimes with community-wide consequences [13].

There is some evidence to suggest that the growth and invasive

success of these species is correlated with increasing temperatures

and reduced water quality [14,15]. However, very little is known

about Didemnum spp. in Western Australia and further research is

urgently needed. The greater total biomass values we recorded on

hot plates compared with controls was most likely due to either

increased recruitment or increased growth rates, or a combination

of both. Again, more work is needed to investigate the relative

importance of these key biological processes in driving this pattern.

The potential for oceanic warming to cause an increase in

biofouling rates on artificial surfaces has been suggested previous-

ly, as microbial biofilm development may accelerate and

aggressive fouling seasons may lengthen, particularly in temperate

regions [16,17]. Here, we observed greater fouling on warmer

surfaces; an observation that could have major implications for the

multi-billion dollar anti-fouling industry.

Most predictions on the consequences of global warming on

marine biodiversity have been based either on climate envelope

modeling or on inferences from highly artificial laboratory

experiments, rather than from observations or manipulations

conducted in real habitats. Although these approaches have

provided valuable information, they are limited in that they

generally do not consider direct or indirect species interactions

under the influence of multiple stressors acting simultaneously

[18], which even the most sophisticated mesocosms or computer

models cannot simulate. Furthermore, most research has targeted

individuals or populations, while communities and ecosystems

have received far less attention [19]. These pressing knowledge

gaps currently restrict our ability to predict, and plan for, the

effects of oceanic warming on marine biodiversity and resources

[19,20]. ‘Scaling-up’ results from small-scale experiments to make

predictions about large-scale processes such as oceanic warming is

challenging [21], and such approaches have been criticised [22].

However, it has been empirically demonstrated that small-scale

interactions can generate large-scale patterns [23], while small-

scale field experiments have considerably improved understanding

of the fundamental principles of ecology [24]. As such, information

on the influence of temperature on community structure, species

interactions and invasibility gained from field manipulations will

enhance our ability to predict the consequences of global

environmental change on marine biodiversity and resources. As

assigning cause and effect is best achieved through experimental

manipulation under realistic conditions [25], the hot-plate system

will be a useful addition to the research ‘toolbox’ available to

climate scientists in that it will complement modeling, experimen-

tal and observational approaches conducted at larger spatial scales.

Materials and Methods

Hot plates were similar in design to traditional and widely used

settlement panels (20620 cm) except that the surface of the panel

and the surrounding boundary layer of water were electrically

heated to levels above ambient temperature. The mean magnitude

of warming achieved in the Swan River (,0.7uC) reflected

present-day increases above mean temperatures observed during

heat waves [26], and the projected increase in mean sea

temperature by 2030 [1,27]. Warming was achieved by mounting

an electrical heat trace, sealed in silicon, beneath an anodised

aluminium plate. Power was supplied to the heat trace via a 50 m

cable that connected to a shore-based control unit and mains

power supply. The magnitude of heat transfer through the

aluminium plate was a simple function of the applied voltage,

which was calibrated prior to deployment. Each panel drew ,2A

Figure 2. The relationship between distance from the hot plate
surface and magnitude of warming under different flow
conditions (A). Mean temperature differentials (6SEM) between a
control and a hot plate were calculated from 15 readings taken during
one minute, following sufficient time for thermal gradients to stabilise.
See methods for details of flow conditions. Mean (6SEM) temperature
difference between control and hot plate at different positions across
the plate surface, under different flow conditions, is shown in panel B.
doi:10.1371/journal.pone.0016050.g002
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current and 25V were applied to the hot plate system throughout

the deployment. Therefore, the hot plate system required a

maximum power input of 500 watts.

Data on the behaviour of the thermal gradient over the hot

plate under different flow conditions were collected from a large

experimental flume facility. Unidirectional flow rates were selected

to represent typical current speeds observed in the Swan River

during tidal cycles: low flow (,0.01 ms21), medium flow

(,0.05 ms21) and high flow (,0.12 ms21). Flow was measured

with an Acoustic Doppler Velocimeter (ADV); water velocity

4 mm above the hot plate surface was recorded every second for

ten minutes (prior to taking temperature readings). Under each

flow condition, the temperature of the boundary layer across the

hot plate was recorded using high precision T-type temperature

probes mounted above the centre of the plate, perpendicular to

flow direction. Thermal gradients were allowed to stabilise for

10 minutes, after which temperature was recorded at 0–8 mm

distance from the surface of the plate every 4 seconds for a minute.

The mean difference (n = 15) between control and hot plate

temperatures were then calculated for each minute. Similarly,

temperature differentials across the surface of the hot plate (2 mm

above the plate’s surface and parallel to flow direction), were

calculated under the different flow conditions.

For the field deployment, an experimental settling surface

(woven shade cloth, 2 mm thick) was fixed to the aluminium plate

to serve as substrata for colonisation by marine organisms. Pilot

studies showed that the shade cloth facilitated steady, constant

diffusion of warm water from the heated metal plate to the

surrounding water layer, while providing a suitable surface for

rapid colonisation by marine fauna. The array was deployed - with

plates facing downwards (to select for fauna rather than flora) and

suspended 1 m from the seabed – by scuba divers using an anchor

weight at each corner, ropes and buoys. A temperature logger with

a needle-pin stainless steel probe was mounted onto a hot plate

and a control plate (without altering water motion across the plate

surface) to record hourly observations. Following deployment, the

shade cloth surfaces were removed from the hot plate system, and

returned to the laboratory. Encrusting fauna was identified to the

lowest taxonomic level possible and percent cover of each taxon

and total dry biomass were recorded for each plate.
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