11,097 research outputs found
Summer snow extent heralding of the winter North Atlantic Oscillation
[1] Winter climate over the North Atlantic and European sector is modulated by the North Atlantic Oscillation (NAO). We find that the summer extent of snow cover over northern North America and northern Eurasia is linked significantly (p < 0.01) to the upcoming winter NAO state. Summers with high/low snow extent precede winters of low/high NAO index phase. We suggest the linkage arises from the summer snow-associated formation of anomalous longitudinal differences in surface air temperature with the subpolar North Atlantic. Our findings indicate the seasonal predictability of North Atlantic winter climate may be higher and extend to longer leads than thought previously
solveME: fast and reliable solution of nonlinear ME models.
BackgroundGenome-scale models of metabolism and macromolecular expression (ME) significantly expand the scope and predictive capabilities of constraint-based modeling. ME models present considerable computational challenges: they are much (>30 times) larger than corresponding metabolic reconstructions (M models), are multiscale, and growth maximization is a nonlinear programming (NLP) problem, mainly due to macromolecule dilution constraints.ResultsHere, we address these computational challenges. We develop a fast and numerically reliable solution method for growth maximization in ME models using a quad-precision NLP solver (Quad MINOS). Our method was up to 45 % faster than binary search for six significant digits in growth rate. We also develop a fast, quad-precision flux variability analysis that is accelerated (up to 60× speedup) via solver warm-starts. Finally, we employ the tools developed to investigate growth-coupled succinate overproduction, accounting for proteome constraints.ConclusionsJust as genome-scale metabolic reconstructions have become an invaluable tool for computational and systems biologists, we anticipate that these fast and numerically reliable ME solution methods will accelerate the wide-spread adoption of ME models for researchers in these fields
Infant cortex responds to other humans from shortly after birth
A significant feature of the adult human brain is its ability to selectively process information about conspecifics. Much debate has centred on whether this specialization is primarily a result of phylogenetic adaptation, or whether the brain acquires expertise in processing social stimuli as a result of its being born into an intensely social environment. Here we study the haemodynamic response in cortical areas of newborns (1–5 days old) while they passively viewed dynamic human or mechanical action videos. We observed activation selective to a dynamic face stimulus over bilateral posterior temporal cortex, but no activation in response to a moving human arm. This selective activation to the social stimulus correlated with age in hours over the first few days post partum. Thus, even very limited experience of face-to-face interaction with other humans may be sufficient to elicit social stimulus activation of relevant cortical regions
Small-scale CMB Temperature and Polarization Anisotropies due to Patchy Reionization
We study contributions from inhomogeneous (patchy) reionization to arcminute
scale () cosmic microwave background (CMB) anisotropies.
We show that inhomogeneities in the ionization fraction, rather than in the
mean density, dominate both the temperature and the polarization power spectra.
Depending on the ionization history and the clustering bias of the ionizing
sources, we find that rms temperature fluctuations range from 2 K to 8
K and the corresponding values for polarization are over two orders of
magnitude smaller. Reionization can significantly bias cosmological parameter
estimates and degrade gravitational lensing potential reconstruction from
temperature maps but not from polarization maps. We demonstrate that a simple
modeling of the reionization temperature power spectrum may be sufficient to
remove the parameter bias. The high- temperature power spectrum will
contain some limited information about the sources of reionization.Comment: 11 pages, 8 figures. Minor changes to match version accepted by Ap
The foundations of statistical mechanics from entanglement: Individual states vs. averages
We consider an alternative approach to the foundations of statistical
mechanics, in which subjective randomness, ensemble-averaging or time-averaging
are not required. Instead, the universe (i.e. the system together with a
sufficiently large environment) is in a quantum pure state subject to a global
constraint, and thermalisation results from entanglement between system and
environment. We formulate and prove a "General Canonical Principle", which
states that the system will be thermalised for almost all pure states of the
universe, and provide rigorous quantitative bounds using Levy's Lemma.Comment: 12 pages, v3 title changed, v2 minor change
Distance, Growth Factor, and Dark Energy Constraints from Photometric Baryon Acoustic Oscillation and Weak Lensing Measurements
Baryon acoustic oscillations (BAOs) and weak lensing (WL) are complementary
probes of cosmology. We explore the distance and growth factor measurements
from photometric BAO and WL techniques and investigate the roles of the
distance and growth factor in constraining dark energy. We find for WL that the
growth factor has a great impact on dark energy constraints but is much less
powerful than the distance. Dark energy constraints from WL are concentrated in
considerably fewer distance eigenmodes than those from BAO, with the largest
contributions from modes that are sensitive to the absolute distance. Both
techniques have some well determined distance eigenmodes that are not very
sensitive to the dark energy equation of state parameters w_0 and w_a,
suggesting that they can accommodate additional parameters for dark energy and
for the control of systematic uncertainties. A joint analysis of BAO and WL is
far more powerful than either technique alone, and the resulting constraints on
the distance and growth factor will be useful for distinguishing dark energy
and modified gravity models. The Large Synoptic Survey Telescope (LSST) will
yield both WL and angular BAO over a sample of several billion galaxies. Joint
LSST BAO and WL can yield 0.5% level precision on ten comoving distances evenly
spaced in log(1+z) between redshift 0.3 and 3 with cosmic microwave background
priors from Planck. In addition, since the angular diameter distance, which
directly affects the observables, is linked to the comoving distance solely by
the curvature radius in the Friedmann-Robertson-Walker metric solution, LSST
can achieve a pure metric constraint of 0.017 on the mean curvature parameter
Omega_k of the universe simultaneously with the constraints on the comoving
distances.Comment: 15 pages, 9 figures, details and references added, ApJ accepte
Characterizing and Propagating Modeling Uncertainties in Photometrically-Derived Redshift Distributions
The uncertainty in the redshift distributions of galaxies has a significant
potential impact on the cosmological parameter values inferred from multi-band
imaging surveys. The accuracy of the photometric redshifts measured in these
surveys depends not only on the quality of the flux data, but also on a number
of modeling assumptions that enter into both the training set and SED fitting
methods of photometric redshift estimation. In this work we focus on the
latter, considering two types of modeling uncertainties: uncertainties in the
SED template set and uncertainties in the magnitude and type priors used in a
Bayesian photometric redshift estimation method. We find that SED template
selection effects dominate over magnitude prior errors. We introduce a method
for parameterizing the resulting ignorance of the redshift distributions, and
for propagating these uncertainties to uncertainties in cosmological
parameters.Comment: 13 pages, 12 figures, version published in Ap
Optimal number of pigments in photosynthetic complexes
We study excitation energy transfer in a simple model of photosynthetic
complex. The model, described by Lindblad equation, consists of pigments
interacting via dipole-dipole interaction. Overlapping of pigments induces an
on-site energy disorder, providing a mechanism for blocking the excitation
transfer. Based on the average efficiency as well as robustness of random
configurations of pigments, we calculate the optimal number of pigments that
should be enclosed in a pigment-protein complex of a given size. The results
suggest that a large fraction of pigment configurations are efficient as well
as robust if the number of pigments is properly chosen. We compare optimal
results of the model to the structure of pigment-protein complexes as found in
nature, finding good agreement.Comment: 20 pages, 7 figures; v2.: new appendix, published versio
Functional near infrared spectroscopy (fNIRS) to assess cognitive function in infants in rural Africa
Cortical mapping of cognitive function during infancy is poorly understood in low-income countries due to the lack of transportable neuroimaging methods. We have successfully piloted functional near infrared spectroscopy (fNIRS) as a neuroimaging tool in rural Gambia. Four-to-eight month old infants watched videos of Gambian adults perform social movements, while haemodynamic responses were recorded using fNIRS. We found distinct regions of the posterior superior temporal and inferior frontal cortex that evidenced either visual-social activation or vocally selective activation (vocal > non-vocal). The patterns of selective cortical activation in Gambian infants replicated those observed within similar aged infants in the UK. These are the first reported data on the measurement of localized functional brain activity in young infants in Africa and demonstrate the potential that fNIRS offers for field-based neuroimaging research of cognitive function in resource-poor rural communities
- …
