21 research outputs found

    The Mutant Mouse Regional Resource Center Program

    Get PDF

    Prevalence of sexual dimorphism in mammalian phenotypic traits

    Get PDF
    The role of sex in biomedical studies has often been overlooked, despite evidence of sexually dimorphic effects in some biological studies. Here, we used high-throughput phenotype data from 14,250 wildtype and 40,192 mutant mice (representing 2,186 knockout lines), analysed for up to 234 traits, and found a large proportion of mammalian traits both in wildtype and mutants are influenced by sex. This result has implications for interpreting disease phenotypes in animal models and humans

    Human and mouse essentiality screens as a resource for disease gene discovery.

    Get PDF
    The identification of causal variants in sequencing studies remains a considerable challenge that can be partially addressed by new gene-specific knowledge. Here, we integrate measures of how essential a gene is to supporting life, as inferred from viability and phenotyping screens performed on knockout mice by the International Mouse Phenotyping Consortium and essentiality screens carried out on human cell lines. We propose a cross-species gene classification across the Full Spectrum of Intolerance to Loss-of-function (FUSIL) and demonstrate that genes in five mutually exclusive FUSIL categories have differing biological properties. Most notably, Mendelian disease genes, particularly those associated with developmental disorders, are highly overrepresented among genes non-essential for cell survival but required for organism development. After screening developmental disorder cases from three independent disease sequencing consortia, we identify potentially pathogenic variants in genes not previously associated with rare diseases. We therefore propose FUSIL as an efficient approach for disease gene discovery

    Somatostatin receptor type 2 mediates bombesin-induced inhibition of gastric acid secretion in mice

    No full text
    Studies in isolated mouse stomach showed that bombesin releases somatostatin. We characterized the effects of exogenous bombesin on gastric acid secretion in mice and determined the involvement of somatostatin and somatostatin receptor type 2 (SSTR2) by using somatostatin immunoneutralization, the SSTR2 antagonist, PRL-2903, and SSTR2 knockout mice. Gastric acid secretion was monitored under basal and pentagastrin-, histamine- or bethanechol-stimulated conditions in urethane-anaesthetized mice. Bombesin (10–40 μg kg−1 h−1) and somatostatin-14 (20 μg kg−1 h−1) were infused i.v. 10 and 30 min after PRL-2903 or somatostatin antibody pretreatment, respectively. Urethane-anaesthetized wild-type mice had low basal acid secretion (0.12 ± 0.01 μmol (10 min)−1) compared with SSTR2 knockout mice (1.43 ± 0.10 μmol (10 min)−1). Somatostatin antibody and PRL-2903 increased basal secretion in wild-type mice but not in SSTR2 knockout animals. In wild-type mice, bombesin inhibited secretagogue-stimulated acid secretion in a dose-dependent manner, and somatostatin-14 inhibited pentagastrin-stimulated secretion. In wild-type mice pretreated with somatostatin antibody or PRL-2903 and in SSTR2 knockout mice, bombesin and somatostatin-14 i.v. infusion did not alter the increased gastric acid secretion. These results indicate that, in mice, bombesin inhibits gastric acid secretion through the release of somatostatin and the activation of SSTR2. These observations strengthen the important role of SSTR2 in mediating somatostatin inhibitory actions on gastric acid secretion
    corecore