50 research outputs found

    Experiences on the specification of algorithms for fire and smoke control in road tunnels

    Full text link
    The main objective of ventilation systems in case of fire is the reduction of the possible consequences by achieving the best possible conditions for the evacuation of the users and the intervention of the emergency services. The required immediate transition, from normal to emergency functioning of the ventilation equipments, is being strengthened by the use of automatic and semi-automatic control systems, what reduces the response times through the help to the operators, and the use of pre-defined strategies. A further step consists on the use of closed-loop algorithms, which takes into account not only the initial conditions but their development (air velocity, traffic situation, etc.), optimizing smoke control capacity

    El sistema de ventilación. Un proyecto singular

    Full text link
    Durante los próximos años se van a realizar una serie de actuaciones en la vía de circunvalación M-30 de Madrid en las que se incluirán grandes obras subterráneas. Las condiciones de explotación con unos niveles de tráfico muy importantes hacen necesario extremar los criterios de seguridad en la ventilación de estas infraestructuras, tanto en situación de explotación en servicio como en caso de incendio

    Experiences on using closed-loop control systems for smoke control

    Get PDF
    The main objective of ventilation systems in case of fire is the reduction of the possible consequences by achieving the best possible conditions for the evacuation of the users and the intervention of the emergency services. In the last years, the required quick response of the ventilation system, from normal to emergency mode, has been improved by the use of automatic and semi-automatic control systems, what reduces the response times through the support to the operators decision taking, and the use of pre-defined strategies. A further step consists on the use of closedloop algorithms, which takes into account not only the initial conditions but their development (air velocity, traffic situation, etc), optimizing the quality of the smoke control proces

    Dysprosium removal from water using active carbons obtained from spent coffee ground

    Get PDF
    This paper describes the physicochemical study of the adsorption of dysprosium (Dy^(3+)) in aqueous solution onto two types of activated carbons synthesized from spent coffee ground. Potassium hydroxide (KOH)-activated carbon is a microporous material with a specific Brunauer-Emmett-Teller (BET) surface area of 2330 m^2.g^-1 and pores with a diameter of 3.2 nm. Carbon activated with water vapor and N_2 is a solid mesoporous, with pores of 5.7 nm in diameter and a specific surface of 982 m^2.g^-1. A significant dependence of the adsorption capacity on the solution pH was found, but it does not significantly depend on the dysprosium concentration nor on the temperature. A maximum adsorption capacity of 31.26 mg.g^-1 and 33.52 mg.g^-1 for the chemically and physically activated carbons, respectively, were found. In both cases, the results obtained from adsorption isotherms and kinetic study were better a fit to the Langmuir model and pseudo-second-order kinetics. In addition, thermodynamic results indicate that dysprosium adsorption onto both activated carbons is an exothermic, spontaneous, and favorable process

    La ventilación como elemento fundamental en la seguridad frente a incendios en túneles

    Get PDF
    La movilidad geográfica es, sin lugar a dudas, uno de los aspectos sociales que más se ha potenciado en los últimos años tanto en el ámbito nacional como mundial. Debido a las grandes dificultades orográficas que se dan en la Unión Europea es preciso desarrollar complejos proyectos donde los túneles son un elemento clave. Paradójicamente, los recientes incendios acaecidos en túneles en todo el mundo han generado dudas acerca de la necesidad de incrementar el número y, sobre todo, la longitud de túneles pero han supuesto un aliciente para profundizar en el estudio de los criterios de seguridad adoptados hasta ese momento. En concreto, dentro del conjunto de instalaciones disponibles en los túneles de carretera el sistema de ventilación juega un papel fundamental por su relación con los criterios de seguridad. En este sentido, el mayor conocimiento de los fenómenos que intervienen en los procesos de producción y evolución de los humos permiten definir criterios de dimensionamiento y funcionamiento de la ventilación más sofisticados. Sin embargo para poder asegurar la calidad del conjunto es preciso, por una parte, partir de una correcta definición a nivel de Proyecto de la solución constructiva la defmición de criterios de actuación precisos a adoptar en caso de incendio y por último el establecimiento de procedimientos de supervisión globales. En el artículo propuesto se abordan desde una perspectiva global las distintas etapas de definición y control que deben realizarse para garantizar el correcto funcionamiento de la instalación, se profundiza en los modelos numéricos empleados para el dimensionamiento y se recogen aspectos de la experiencia resultante de ensayos in-situ realizados. Como ejemplo se presentan resultados para distintos túneles de carreteras en España

    Ventilation system design and large scale fire tests

    Full text link
    The design, construction and operation of the tunnels of M-30, the major ring road in the city of Madrid (Spain), represent a very interesting project in wich a wide variety of situations -geometrical, topographical, etc.- had to be covered, in variable conditions of traffic. For that reasons, the M-30 project is a remarkable technical challenge, which, after its completion, turned into an international reference. From the "design for safety" perspective, a holistic approach has been used to deal with new technologies, integration of systems and development of the procedures to reach the maximum level. However, one of the primary goals has been to achieve reasonable homogeneity characteristics which can permit operate a netword of tunels as one only infraestructure. In the case of the ventilation system the mentioned goals have implied innovative solutions and coordination efforts of great interest. Consequently, this paper describes the principal ideas underlying the conceptual solution developed focusing on the principal peculiarities of the project

    Unveiling the hidden entropy in ZnFe_2O_4

    Get PDF
    The antiferromagnetic (AFM) transition of the normal ZnFe_2O_4 has been intensively investigated with results showing a lack of long-range order, spin frustrations, and a "hidden" entropy in the calorimetric properties for inversion degrees delta approximate to 0 or delta = 0. As delta drastically impacts the magnetic properties, it is logical to question how a delta value slightly different from zero can affect the magnetic properties. In this work, (Zn_(1-delta)Fe_delta)[Zn_delta Fe_(2-delta)]O_4 with delta = 0.05 and delta = 0.27 have been investigated with calorimetry at different applied fields. It is shown that a delta value as small as 0.05 may affect 40% of the unit cells, which become locally ferrimagnetic (FiM) and coexists with AFM and spin disordered regions. The spin disorder disappears under an applied field of 1 T. Mossbauer spectroscopy confirms the presence of a volume fraction with a low hyperfine field that can be ascribed to these spin disordered regions. The volume fractions of the three magnetic phases estimated from entropy and hyperfine measurements are roughly coincident and correspond to approximately 1/3 for each of them. The "hidden" entropy is the zero point entropy different from 0. Consequently, the so-called "hidden" entropy can be ascribed to the frustrations of the spins at the interphase between the AFM-FiM phases due to having delta approximate to 0 instead of ideal delta = 0

    Ferrimagnetic clusters as the origin of anomalous Curie-Weiss behavior in ZnFe_2O_4 antiferromagnetic susceptibility

    Get PDF
    Different studies carried out in the last three decades on the magnetic susceptibility of the spinel ZnFe_2O_4 ferrite have revealed the positive character of its Curie-Weiss temperature, contradicting its observed antiferromagnetic behavior which is characterized by a well-defined susceptibility peak centered around the Neel temperature (10 K). Some approaches based on ab initio calculations and mixture of interactions have been attempted to explain this anomaly. This work shows how for very low values of the inversion parameter, the small percentage of Fe atoms located in tetrahedral sites gives rise to the appearance of ferrimagnetic clusters around them. Superparamagnetism of these clusters is the main cause of the anomalous Curie-Weiss behavior. This finding is supported experimentally from the thermal dependence of the inverse susceptibility and its evolution with the degree of inversion

    Remote near-field spectroscopy of vibrational strong coupling between organic molecules and phononic nanoresonators

    Get PDF
    Vibrational strong coupling (VSC) promises ultrasensitive IR spectroscopy and modification of material properties. Here, nanoscale mapping of VSC between organic molecules and individual IR nanoresonators is achieved by remote near-field spectroscopy. Phonon polariton (PhP) nanoresonators can dramatically enhance the coupling of molecular vibrations and infrared light, enabling ultrasensitive spectroscopies and strong coupling with minute amounts of matter. So far, this coupling and the resulting localized hybrid polariton modes have been studied only by far-field spectroscopy, preventing access to modal near-field patterns and dark modes, which could further our fundamental understanding of nanoscale vibrational strong coupling (VSC). Here we use infrared near-field spectroscopy to study the coupling between the localized modes of PhP nanoresonators made of h-BN and molecular vibrations. For a most direct probing of the resonator-molecule coupling, we avoid the direct near-field interaction between tip and molecules by probing the molecule-free part of partially molecule-covered nanoresonators, which we refer to as remote near-field probing. We obtain spatially and spectrally resolved maps of the hybrid polariton modes, as well as the corresponding coupling strengths, demonstrating VSC on a single PhP nanoresonator level. Our work paves the way for near-field spectroscopy of VSC phenomena not accessible by conventional techniques.This work was supported by the MCIN/AEI/10.13039/501100011033 under the María de Maeztu Units of Excellence Program (CEX2020-001038-M) and the Projects RTI2018-094830-B-100, PID2021-123949OB-I00, PID2019-107432GB-I00 and PID2021-122511OB-I00, as well as by the Graphene Flagship (GrapheneCore3, No. 881603). J.L. and J.H.E. are grateful for support from the Office of Naval Research (Award No. N00014-20-1-2474), for the BN crystal growth. S.V. acknowledges financial support by the Comunidad de Madrid through the Atracción de Talento program (grant no. 2020-T1/IND-20041). C.M.-E., R.E., and J.A. received funding from grant no. IT 1526-22 from the Basque Government for consolidated groups of the Basque University
    corecore