1,427 research outputs found

    Effect of solute content and temperature on the deformation mechanisms and critical resolved shear stress in Mg-Al and Mg-Zn alloys

    Full text link
    The influence of solute atoms (Al and Zn) on the deformation mechanisms and the critical resolved shear stress for basal slip in Mg alloys at 298 K and 373 K was ascertained by micropillar compression tests in combination with high-throughput processing techniques based on the diffusion couples. It was found that the presence of solute atoms enhances the size effect at 298 K as well as the localization of deformation in slip bands, which is associated with large strain bursts in the resolved shear stress (τRSS\tau_{RSS})-strain (ϵ\epsilon) curves. Deformation in pure Mg and Mg alloys was more homogeneous at 373 K and the influence of the micropillar size on the critical resolved shear stress was much smaller. In this latter case, it was possible to determine the effect of solute content on the critical resolved shear stress for basal slip in Mg-Al and Mg-Zn alloys

    The PREVENTION Challenge: How Good Are Humans Predicting Lane Changes?

    Full text link
    While driving on highways, every driver tries to be aware of the behavior of surrounding vehicles, including possible emergency braking, evasive maneuvers trying to avoid obstacles, unexpected lane changes, or other emergencies that could lead to an accident. In this paper, human's ability to predict lane changes in highway scenarios is analyzed through the use of video sequences extracted from the PREVENTION dataset, a database focused on the development of research on vehicle intention and trajectory prediction. Thus, users had to indicate the moment at which they considered that a lane change maneuver was taking place in a target vehicle, subsequently indicating its direction: left or right. The results retrieved have been carefully analyzed and compared to ground truth labels, evaluating statistical models to understand whether humans can actually predict. The study has revealed that most participants are unable to anticipate lane-change maneuvers, detecting them after they have started. These results might serve as a baseline for AI's prediction ability evaluation, grading if those systems can outperform human skills by analyzing hidden cues that seem unnoticed, improving the detection time, and even anticipating maneuvers in some cases.Comment: This work was accepted and presented at IEEE Intelligent Vehicles Symposium 202

    Error Analysis in a Stereo Vision-Based Pedestrian Detection Sensor for Collision Avoidance Applications

    Get PDF
    This paper presents an analytical study of the depth estimation error of a stereo vision-based pedestrian detection sensor for automotive applications such as pedestrian collision avoidance and/or mitigation. The sensor comprises two synchronized and calibrated low-cost cameras. Pedestrians are detected by combining a 3D clustering method with Support Vector Machine-based (SVM) classification. The influence of the sensor parameters in the stereo quantization errors is analyzed in detail providing a point of reference for choosing the sensor setup according to the application requirements. The sensor is then validated in real experiments. Collision avoidance maneuvers by steering are carried out by manual driving. A real time kinematic differential global positioning system (RTK-DGPS) is used to provide ground truth data corresponding to both the pedestrian and the host vehicle locations. The performed field test provided encouraging results and proved the validity of the proposed sensor for being used in the automotive sector towards applications such as autonomous pedestrian collision avoidance
    corecore