1,250 research outputs found

    Sorting Networks: the End Game

    Full text link
    This paper studies properties of the back end of a sorting network and illustrates the utility of these in the search for networks of optimal size or depth. All previous works focus on properties of the front end of networks and on how to apply these to break symmetries in the search. The new properties help shed understanding on how sorting networks sort and speed-up solvers for both optimal size and depth by an order of magnitude

    Algebraic chromatic homotopy theory for BP∗BPBP_*BP-comodules

    Full text link
    In this paper, we study the global structure of an algebraic avatar of the derived category of ind-coherent sheaves on the moduli stack of formal groups. In analogy with the stable homotopy category, we prove a version of the nilpotence theorem as well as the chromatic convergence theorem, and construct a generalized chromatic spectral sequence. Furthermore, we discuss analogs of the telescope conjecture and chromatic splitting conjecture in this setting, using the local duality techniques established earlier in joint work with Valenzuela.Comment: All comments welcom

    The Quill -- October 16, 1973

    Get PDF

    Vertex maps on graphs-trace theorems

    Get PDF
    The paper proves two theorems concerning the traces of Oriented Markov Matrices of vertex maps on graphs. These are then used to give a Sharkoksky-type result for maps that are homotopic to the identity and that flip at least one edge

    Cooperative coevolution of Elman recurrent neural networks for chaotic time series prediction

    Get PDF
    Cooperative coevolution decomposes a problem into subcomponents and employs evolutionary algorithms for solving them. Cooperative coevolution has been effective for evolving neural networks. Different problem decomposition methods in cooperative coevolution determine how a neural network is decomposed and encoded which affects its performance. A good problem decomposition method should provide enough diversity and also group interacting variables which are the synapses in the neural network. Neural networks have shown promising results in chaotic time series prediction. This work employs two problem decomposition methods for training Elman recurrent neural networks on chaotic time series problems. The Mackey-Glass, Lorenz and Sunspot time series are used to demonstrate the performance of the cooperative neuro-evolutionary methods. The results show improvement in performance in terms of accuracy when compared to some of the methods from literature
    • …
    corecore