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Prediction of the Number of Airport Passengers Using Fuzzy C-Means 
and Adaptive Neuro Fuzzy Inference System 
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Abstract – Airport requires a system to predict the number of passengers as a reference for  
airport development planning. In this study, the data used are time series of the number of 
passengers for eleven years. These data will form patterns which indicate the number of 
passengers each month in a year as the input data and the number of passengers next year as a 
target prediction. After the input data are clustered into three types using fuzzy C-means (FCM), 
the data are processed using adaptive neuro fuzzy inference system (ANFIS) to get the prediction 
data. The result shows that the “Mean Absolute Percentage Errors (MAPE ) which represent the 
errors for 4 years are  4.20%, 5.70%, 5.36% and 4.47%  with an average of 4.93% . Based on this 
result, FCM and ANFIS can be combined to predict the data time series. Copyright © 2017 Praise 
Worthy Prize S.r.l. - All rights reserved. 
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Nomenclature 
CNC Computer numeric control 
SMO An algorithm for solving the quadratic 

programming problems arising during the 
training of support vector machines; it is 
widely used for support vector machines 

ANN Adaptive neural network 
OSSA Optimized singular spectrum analysis 
LLNF Local linear neuro fuzzy 
MAPE Mean absolute percentage error 
KNN K-nearest neighbors 
Fuzzy C-Means 
n Number of sample data 
m Number of attribute data 
Xij Sample data 
c Number of cluster 
w Rank 
MaxIter Maximum iteration 
ξ  Error smallest expected 
U0 Matrix Fuzzy 
ANFIS 
y Weighted average 
w1  1st rule 
w2  2nd rule 
y1 Weighted of 1st rule 
y2 Weighted of 2nd rule 
 ഥଵ Weighted average of 1st ruleݓ
 ഥଶ Weighted average of 2nd ruleݓ
x1 1st  input of system 
x2 2nd input of system 
A1  1st parameter of activation function of 1st 

input system 
B1 1st parameter of activation function of 2nd 

input system 

A2  2nd parameter of activation function of 1st 
input  system 

B2  2nd parameter of activation function 1st input 
of system 

c10, c11, 
c20 c12, 
c21, c22,  

Element of matrix 

αA1, αB1, 
αA2, αB2 

Degree of membership 

I. Introduction 
Transportation problems generally occur in nearly all 

major cities in the world. The problems include limited 
transport facilities, inadequate infrastructures, rapid 
urbanization, low level of discipline, and poor planning. 
These problems result in traffic congestion, delays, 
accidents, health problems and environmental problems 
that cannot be avoided anymore [1]. As key factors of the 
safety and sustainability of transportation system,  
individuals’ insecure behaviors and statuses become hot 
issues and difficult problems in traffic safety engineering 
[2]. In relation to the transportation problems, prediction 
is needed as a reference for planning, such as research of 
Wijaya and Girsang [3]. The prediction of the number of 
passengers becomes important for preparing facilities in 
anticipation of rising passenger numbers, such as setting 
up additional flight schedules, lounge facilities, wider 
parking space and so forth. Wang et al. [4] simulated the 
passenger flow in a station hall during the spring festival 
by modifying the social force model; one of the methods 
used for prediction is Adaptive Neuro Fuzzy Inference 
System (ANFIS)[5][6]. Y.Zhang, J. Lei used ANFIS to 
predict the roughness of laser cutting effectively and 
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improve quality level of laser cutting [7]. 
Ji et al. [8] proposed a cell-based model which 

includes two steps. The first step is to update speed, 
which is the cells the passenger can move in one time 
interval, and the other is to analyze the overtaking.  
ANFIS is a set of rules and an inference method 
combined in a structure connected then do the training 
and adaptation [5][6]. The goal of ANFIS is to find a 
model or mapping that will correctly associate the inputs 
(initial values) with the target (predicted values) [9]. 
PSO-ANFIS equalizer uses the training data and employs 
fuzzy C-means (FCM) clustering to model a wireless 
communication channel without knowledge of channel 
dynamics [10]. ANFIS to simulate solar radiation [11] 
Prediction using ANFIS which was implemented in 
various problems such as ANFIS and SMO models show 
an excellent performance for forecasting the hourly and 
daily power patterns using the temperature, wind 
direction, and time interval features for the wind speed 
[12], and forecasting to affect seat sales [13]. A study by 
Suharjito [14] used an optimized Neuro-fuzzy model 
with PSO to get the right model to improve the 
estimation effort at NASA dataset software project. 
Prediction models for thermal error compensation on 
CNC machine tools [15] predict the performance of a 
hybrid microgeneration system [16] and so forth. ANFIS 
is used for diagnosing dengue hemorrhagic fever [17]. 
Further, ANN is used for predicting stock price [18]. 

The provided data will be analysed using the forward 
chaining inference method to determine the kind of 
required nutrients [9]. M. Mirassid’s research showed 
that ANFIS-FCM with a high accuracy was able to 
predict earthquake magnitude [19]. Based on that 
research, in this study, the FCM and ANFIS method are 
combined to predict the number of passengers. This 
study uses data from Hang Nadim Airport, Batam, 
Indonesia.  

This prediction can be used as one of key variables for 
determining the addition of facilities and human 
resources in the airport. It can also be used as a 
consideration for increasing the number of flights. 

II. Literature Review 
Statistical modeling is a powerful tool for developing 

and testing theories by way of causal explanation, 
prediction, and description. Predictive model is any 
method that produces predictions, regardless of its 
underlying approach: Bayesian or frequentist, parametric 
or nonparametric, data mining algorithm or statistical 
model, etc.[20]. OSSA–LLNF the processed time series 
is modelled and forecasted via the LLNF model [21]. 

Prediction is like a puzzle, which is held by many 
people because they are curious about the future. Model 
prediction is very varied, such as income level of a city, 
the winner of a match, the election, weather, the power of 
an engine, a disease, and a lot of things that humans want 
to predict. The prediction methods can be classified into 
four broad categories: sequence based, clustering, 

template based and meta-predictor approaches [22]. A 
“training set” (seen data) is used to build the model i.e. 
determine its parameters during the so-called training 
session [23]. A “Validation set” (unseen data) is used to 
measure the performance of the network by maintaining 
its parameters constant. Term “unseen” refers to data that 
have never been used to update the weights of the 
network.[24]. 

II.1. Fuzzy C-Means (FCM) 

Clustering is a process of grouping a set of physical 
objects or abstract objects into the same class [25]. The 
FCM program is applicable to various analysis problems. 
This program generates fuzzy partitions and prototypes 
for any set of numerical data [26]. There are two models 
of clustering: hierarchical clustering and non-hierarchical 
clustering.  

FCM is a hierarchical method for creating the 
hierarchical composition of the object data which 
produces the clusters of nesting. Non-hierarchical 
clustering provides n number of objects and k which is 
the number of clusters formed and processing of such 
objects into groups based on specific optimization 
criteria, where each group is a representation of a cluster. 
The FCM algorithm has some steps as follows [27] [28] 
[6]: 

 
1. Input data to be clustered X, in the form of a  matrix n 

× m (n = number of samples data, m = attribute of 
each data), Xij = Sampled data to – i (i = 1,2,3...,m). 

2. Specify: 
a. The number of cluster    = c; 
b. Rank      = w; 
c. Maximum iterations    = maxIter; 
d. Error smallest expected    = ξ ; 
e. The objective function early = P0 = 0; 
f. Early iterations     = t =1; 

3. Generate a random number μik, i – 1, 2, ..., n; k = 1, 2, 
..., c; as elements of the partition matrix U: 

 

଴ܷ = ൦

(ଵݔ)ଵଵߤ …  (ଶݔ)ଵଶߤ (௖ݔ)ଵ௖ߤ
(ଵݔ)ଶଵߤ …  (ଶݔ)ଶଶߤ (௡ݔ)ଶ௡ߤ

⋮
(ଵݔ)௖ଵߤ

⋮
(ଶݔ)௖ଶߤ

⋮
(௡ݔ)௖௡ߤ

൪ (1)

 
The matrix of fuzzy clustering partition must meet the 

following conditions: 
 

௜௝ߤ = [0,1], 1 ≤ ݅ ≤ ݊; 1 ≤ ݇ ≤ ܿ (2)
 

෍ߤ௜௞

௡

௜ୀଵ

= 1; 1 ≤ ݇ ≤ ܿ (3)

 

0 < ෍ߤ௜௞

௖

௞ୀଵ

< ܿ, 1 ≤ ݅ ≤ ݊ (4)
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4. Calculate the center of cluster to - k ; vkj, with k=1, 2, 
...., c; and j=1, 2, ..., m: 
 

௜௝ݒ =
∑ (௜௞ߤ) · ௞௝௡ݔ
௞ୀଵ

∑ ௪௡(௜௞ߤ)
௞ୀଵ

 ଶ (5)ݎߨ

 
5. Fix the degree of membership of each data on each 

cluster (fixed matrix partitioning): 
 

௜௝ݒ = ቎෍ቆ
݀௜௞
௝݀௞
ቇ
ଶ/(௪ିଵ)௖

௝ୀଵ

቏

ିଵ

 (6) 

 
with: 

 

௜௝ݒ = ௞ݔ)݀ − (௜ݒ ቎෍൫ݔ௞௝ − ௜௝൯ݒ
௖

௝ୀଵ

቏

ଵ/ଶ

 (7) 

 
6. Calculate the objective function at iteration - t, Pt: 
 

(ܺ;ܸ,ܷ)ܬ = ෍෍(ߤ௜௞)௪(݀௜௞)ଶ
௖

௝ୀଵ

௡

௞ୀଵ

 (8) 

 
7. Check the condition stops 
 
If : ( | Pt-Pt-1 | < ξ ) or ( t > maxIter) 

then stop; 
If not : t=t +1, repeat step 4 

(9) 

 

ܺ =
ଶݔ +ଵݔ + ଵݔ … … + ௡ݔ

݊
=
∑ ௜௡ݔ
௜ୀଵ

݊
 (10) 

 
where X = mean, n  = a lot of data, ݔ௜ = data value to i: 

 

൭
1

݊ − 1
෍(ݔ௜ − ଶ(ݔ̅
௡

௜ୀଵ

൱

ଵ
ଶ

 (11) 

 
where n = The number  data, ݔ௜  = the data value to - i, ݔ௜ 
= the avarage value of the data. 

II.2. Adaptive Neural Fuzzy Inference System (ANFIS) 

Fuzzy model can be used instead of perceptron with 
many layers.  

In this case, the system can be divided into two 
groups: one group of similar neural network with weights 
of fuzzy and activation function fuzzy, and other groups 
such as neural network with input in fuzzy right on the 
first or the second layer, but the weights on the neural 
network are not in fuzzy right. Neuro fuzzy is the second 
group. 

Suppose there are two inputs x1, x2, and one output. 
There are two rules based on Sugeno models [29]: 

 

If x1 is A1 and x2 is B1 then y1 = c11x1 + c12x2 + c10 
If x1 is A2 and x2 is B2 then y2 = c21x1 + c22x2 + c20 
If α predicates for the second rules are w1 and w2, then 

a weighted average can be calculated: 
 

ݕ =
ଵݕଵݓ + ଶݕଶݓ
ଵݓ + ଶݓ 

= ଵݕഥଵݓ  + ଶ (12)ݕഥଶݓ

 
ANFIS network consists of some layers as shown in 

Fig. 1 [30].  
The output of each neuron in the form is provided by 

the membership degree of input membership functions, 
namely αA1(x1),αB1(x2), αA2(x1) or αB2(x2): 

 

(ݔ)ߤ =
1

1 + ቚݔ − ܿ
ܽ ቚ

ଶ௕ (13)

 
{a,b,c} are the parameters, b = 1. 

 

 
 

Fig. 1. ANFIS Network Architecture [30] 
 

a. Each neuron in the second layer of neurons remains, 
so that the output is the result of input. Typically used 
the AND operator. Each node represents a predicate 
of the rule to the α - i. 

b. Each neuron in the third layer is in the form of fixed 
node that is the result of the calculation of the ratio of 
α predicate (w), of the rules to -  i to the total number 
of α predicate. 

 
ഥ௜ݓ =

௜ݓ

ଵݓ + ଶݓ 
, with i =  1,2 (14)

 
c. Each neuron in the fourth layer is adaptive to an 

output node: 
 

௜ݕഥ௜ݓ = ଵݔഥ௜(ܿ௜ଵݓ + ܿ௜ଶݔଶܿ௜଴) (15)
 
d. Each neuron in the fifth layer is a fixed node which is 

the sum of all inputs. 

III. Proposed Method 
The framework of this study is presented in several 

steps, as shown in Figure 2. 
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Fig. 2. Framework research methodology 

Step I (Preparing Data) 

The data include monthly data from 2004 to 2014. 
Based on the data, pattern will be established based on 

the following principles: 
Time series data on the number of passengers Hang 

Nadim Airport Batam are  ݔଵ, ,ଶݔ   ,ଷݔ  … … ,  ௡. Theݔ
problem is how to predict the number of passengers ݔ௡ାଵ 
based on ݔଵ, ,ଶݔ   ,ଷݔ … … ,  ௡. The structure of the dataݔ  
pattern can be formed as follows: 

[X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12 (2004) 
target X1 (2005)] 

[X2, X3, X4, X5, X6,X7, X8, X9, X10, X11,X12 (2004), 
X1(2005) target X2(2005)] 

[X12 (2013), X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11 
(2014) target X12 (2014)] 

Step II (Proposed Process) 

There are two important processes in the steps: 
 

1. Fuzzy C-Means (FCM) 
At this step, the number of passengers will be 

classified according to the FCM algorithm.  
Furthermore, the data will be categorized into three 

clusters based on high, medium and low number of 
passengers. 

At first, the center of the cluster's initial condition is 
still not accurate. Each data point has a degree of 
membership for each cluster.  

However, after many iterations, the center of the 
cluster will be able to move towards the right location. 
This loop is based on minimization of the objective 
function that describes the distance from data supplied to 
center cluster membership degree weighted by the data 
points. 
2. Adaptive Neuro Fuzzy Inference System (ANFIS) 

Once the data are clustered by FCM, the mean and 
standard deviation for each cluster are calculated using 
the Eqs. (10) and (11), respectively. The function 
membership is calculated based on the mean (variable a) 
and standard deviation (variable c) as shown by Eq. (13).  

The degree of membership is normalized on the third 
layer as shown by Eq. (14). Eq.(15) shows the adaptive 
node to output which occurs on the fourth layer. 

Adaptive node is contained in the first and fourth 
layers. The knot on the first layer contains a parameter 
premise that is non-linear, while the fourth layer contains 
linear consequent parameters. To update those 
parameters as a learning in neural network, ANFIS uses 
two combination methods, namely the ‘forward pass’ and 
‘backward pass’. 

The next step ANFIS is fuzzification, calculating the 
degree of activation, hybrid learning, and aggregating all 
input. Last, the result of MAPE is calculated. 

IV. Analysis and Discussion 
The data are taken from the the number of passengers 

at Hang Nadim Airport in 11 years from 2004 through 
2014 as shown in Table I. 

 
 

TABLE I 
TIME SERIES DATA 2004 TO 2014 

Month Years 
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 

January 85133 94457 104323 108549 113798 112594 117038 128025 146719 166100 179816 
February 70370 81633 82278 84286 100815 98912 116430 120208 126662 142605 166112 

March 70261 80137 85666 104824 119197 119481 118200 129077 141621 162974 163616 
Appril 70730 74168 94189 96713 102516 109041 131221 124445 135957 151576 156891 
May 81468 74862 94924 107127 104028 115868 141258 129927 145603 171595 179258 
June 79590 77602 98819 113817 101060 116094 130170 133792 151331 179851 194037 
July 88388 91995 111541 129410 103589 124985 139910 145414 157635 170306 199632 

August 82934 80147 105651 121654 106084 115313 123651 130132 175574 188548 192180 
September 80180 83900 106459 108145 98206 121269 135045 133259 147820 155232 169505 

October 74468 82924 116690 127759 97566 115176 137733 145835 168182 177047 188957 
November 84891 81362 102137 106361 104030 122099 138279 143574 165351 171332 177164 
December 88736 97406 125085 124288 116894 128962 138415 143773 171754 187124 200888 
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TABLE II 
THE PATTERN DATA 

Data Data Input Target Patterns X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 
1 85133 70370 70261 70730 81468 79590 88388 82934 80180 74468 84891 88736 94457 
2 70370 70261 70730 81468 79590 88388 82934 80180 74468 84891 88736 94457 81633 
3 70261 70730 81468 79590 88388 82934 80180 74468 84891 88736 94457 81633 80137 
⁞ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

118 177047 171332 187124 179816 166112 163616 156891 179258 194037 199632 192180 169505 188957 
119 171332 187124 179816 166112 163616 156891 179258 194037 199632 192180 169505 188957 177164 
120 187124 179816 166112 163616 156891 179258 194037 199632 192180 169505 188957 177164 200888 

 
Suppose the number of passengers in each year is 

,ଵݔ ,ଶݔ ,ଷݔ … … ,  ௡ . The problem is predicting how manyݔ
passengers at ݔ௡ାଵ based on ݔଵ, ,ଶݔ ,ଷݔ  … … ,  ௡. Theݔ  
structure of the data pattern is formed as follows . 

[X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12 (2004) 
target X1 (2005)] 

[X2, X3, X4, X5, X6,X7, X8, X9, X10, X11,X12 (2004), 
X1(2005) target X2(2005)] 

[X12 (2013), X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11 
(2014) target X12 (2014)]. 

Thus, the data pattern 120 will be formed as shown in 
Table II or Figure 3. It shows that the input data are in 
blue line and the target data are in red line. This pattern 
data consists of two parts: training and test data. 

 

 
 

Fig. 3. Data Patterns for 2004-2014 
 

Therefore, the pattern data can be split into two parts 
as presented in Figures 4 and 5.  

Figure 4 represents the training data which are the 1st 
to 72th of data pattern of Figure 3, while Figure 5 
represents the test data which are 73th to 120th data 
pattern of Figure 3. 

 

 
 

Fig. 4. Pattern Training Data 

 
 

Fig. 5. Pattern  Data Test 
 

The pattern training data are clustered using FCM 
with number of clusters (C=3), rank (W=2), 
MaxIter=100), the smallest error to be expected (ξ = 
0,0001).  

The result FCM is shown in Figure 6 below. 
 

 
 

Fig. 6. Clustering training using FCM 
 

The training data (72 data) are clustered into 3 groups 
which have the center clusters by using FCM as shown in 
Figure 5. The mean and standard deviation for each 
cluster obtained are shown in Tables III and IV. After the 
process of training data patterns, the learning process is 
conducted by forming a ANFIS architecture and FIS 
rules as shown in Figure 6 and  Figure 7. Figure 8 shows 
the actual data (red line) and the prediction data (blue 
line), while the rate error is shown in Figure 9. 
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This research can be extended by combining the other 
algorithms to enhance weight of variable in ANFIS, such 
as particle swarm optimization, genetic algorithm, and so 
forth. 
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