5 research outputs found

    Warm protons at comet 67P/Churyumov–Gerasimenko – implications for the infant bow shock

    Get PDF
    The plasma around comet 67P/Churyumov–Gerasimenko showed remarkable variability throughout the entire Rosetta mission. Plasma boundaries such as the diamagnetic cavity, solar wind ion cavity and infant bow shock separate regions with distinct plasma parameters from each other. Here, we focus on a particular feature in the plasma: warm, slow solar wind protons. We investigate this particular proton population further by focusing on the proton behaviour and surveying all of the Rosetta comet phase data. We find over 300 events where Rosetta transited from a region with fast, cold protons into a region with warm, slow protons. We investigate the properties of the plasma and magnetic field at this boundary and the location where it can be found. We find that the protons are preferentially detected at intermediate gas production rates with a slight trend towards larger cometocentric distances for higher gas production rates. The events can mostly be found in the positive convective electric field hemisphere. These results agree well with simulations of the infant bow shock (IBS), an asymmetric structure in the plasma environment previously detected on only 2 d during the comet phase. The properties of the plasma on both sides of this structure are harder to constrain, but there is a trend towards higher electron flux, lower magnetic field, higher magnetic field power spectral density and higher density in the region that contains the warm protons. This is in partial agreement with the previous IBS definitions; however, it also indicates that the plasma and this structure are highly non-stationary. For future research, Comet Interceptor, with its multi-point measurements, can help to disentangle the spatial and temporal effects and give more clarity on the influence of changing upstream conditions on the movement of boundaries in this unusual environment

    Bridge to the stars: A mission concept to an interstellar object

    Get PDF
    Exoplanet discoveries since the mid-1990’s have revealed an astounding diversity of planetary systems. Studying these systems is essential to understanding planetary formation processes, as well as the development of life in the universe. Unfortunately, humanity can only observe limited aspects of exoplanetary systems by telescope, and the significant distances between stars presents a barrier to in situ exploration. In this study, we propose an alternative path to gain insight into exoplanetary systems: Bridge, a mission concept design to fly by an interstellar object as it passes through our solar system. Designed as a New Frontiers-class mission during the National Aeronautics and Space Administration (NASA) Planetary Science Summer School, Bridge would provide a unique opportunity to gain insight into potential physical, chemical, and biological differences between solar systems as well as the possible exchange of planetary materials between them. Bridge employs ultraviolet/visible, near-infrared, and mid-infrared point spectrometers, a visible camera, and a guided impactor. We also provide a quantitative Monte Carlo analysis that estimates wait times for a suitable target, and examines key trades between ground storage and a parking orbit, power sources, inner versus outer solar system encounters, and launch criteria. Due to the fleeting nature of interstellar objects, reaching an interstellar object may require an extended ground storage phase for the spacecraft until a suitable ISO is discovered, followed by a rapid response launch strategy. To enable rapid response missions designed to intercept such unique targets, language would need to be added to future NASA announcements of opportunity such that ground storage and rapid response would be allowable components of a proposed mission

    The infant bow shock: A new frontier at a weak activity comet

    No full text
    The bow shock is the first boundary the solar wind encounters as it approaches planets or comets. The Rosetta spacecraft was able to observe the formation of a bow shock by following comet 67P/Churyumov–Gerasimenko toward the Sun, through perihelion, and back outward again. The spacecraft crossed the newly formed bow shock several times during two periods a few months before and after perihelion; it observed an increase in magnetic field magnitude and oscillation amplitude, electron and proton heating at the shock, and the diminution of the solar wind further downstream. Rosetta observed a cometary bow shock in its infancy, a stage in its development not previously accessible to in situ measurements at comets and planets

    Dynamic field line draping at comet 67P/Churyumov-Gerasimenko during the Rosetta dayside excursion

    No full text
    Context. The Rosetta dayside excursion took place in September–October 2015 when comet 67P/Churyumov-Gerasimenko (67P/CG) was located at ~1.36 AU from the Sun after it had passed perihelion on 13 August 2015 at ~1.25 AU. At this time, the comet was near its most active period, and its interaction with the solar wind was expected to be at its most intense, with ion pickup and magnetic field line draping. The dayside excursion was planned to move through different regions that were expected upstream of the cometary nucleus, and to possibly detect the location of the bow shock. Aims. The goal of this study is to describe the dynamic field line draping that takes place around the comet and the plasma processes that are connected to this. Methods. The data from the full Rosetta Plasma Consortium (RPC) were used to investigate the interaction of solar wind and comet, starting from boxcar-averaged magnetic field data in order to suppress high-frequency noise in the data. Through calculating the cone and clock angle of the magnetic field, we determined the draping pattern of the magnetic field around the nucleus of the comet. Then we studied the particle data in relation to the variations that are observed in the magnetic field. Results. During the dayside excursion, the magnetic field cone angle changed several times, which means that the magnetic field direction changes from pointing sunward to anti-sunward. This is caused by the changing directions of the interplanetary magnetic field that is transported toward the comet. The cone-angle direction shows that mass-loading of the interplanetary magnetic field of the solar wind leads to dynamic draping. The ion velocity and the magnetic field strength are correlated because the unmagnetized ions are accelerated more (less) strongly by the increasing (decreasing) magnetic field strength. There is an indication of an anticorrelation between the electron density and the magnetic field strength, which might be caused by the magnetized electrons being mirrored out of the strong field regions. The Rosetta RPC has shown that (dynamic) draping also occurs as mildly active comets, as was found at highly active comets such as 1P/Halley and 21P/Giacobini-Zinner, but also that determining both dynamic and nested draping will require a combination of fast flybys and slow excursions for future missions
    corecore