46 research outputs found

    Dissection of events in the resistance to β-lactam antibiotics mediated by the protein BlaR1 from Staphylococcus aureus

    Get PDF
    A heterologous expression system was used to evaluate activation of BlaR1, a sensor/signal transducer protein of Staphylococcus aureus with a central role in resistance to β-lactam antibiotics. In the absence of other S. aureus proteins that might respond to antibiotics and participate in signal transduction events, we documented that BlaR1 fragmentation is autolytic, that it occurs in the absence of antibiotics, and that BlaR1 directly degrades BlaI, the gene repressor of the system. Furthermore, we disclosed that this proteolytic activity is metal ion-dependent and that it is not modulated directly by acylation of the sensor domain by β-lactam antibiotics.Fil: Llarrull, Leticia Irene. Universidad Nacional de Rosario; Argentina. University of Notre Dame; Estados Unidos. Universidad Nacional de Rosario; ArgentinaFil: Mobashery, Shahriar. University of Notre Dame-Indiana; Estados Unido

    Evidence for a Dinuclear Active Site in the Metallo-β-lactamase BcII with Substoichiometric Co(II): A New Model for Uptake

    Get PDF
    Metallo-β-lactamases are zinc-dependent enzymes that constitute one of the main resistance mechanisms to β-lactam antibiotics. Metallo-β-lactamases have been characterized both in mono- and dimetallic forms. Despite many studies, the role of each metal binding site in substrate binding and catalysis is still unclear. This is mostly due to the difficulties in assessing the metal content and site occupancy in solution. For this reason, Co(II) has been utilized as a useful probe of the active site structure. We have employed UV-visible, EPR, and NMR spectroscopy to study Co(II) binding to the metallo-β-lactamase BcII from Bacillus cereus. The spectroscopic features were attributed to the two canonical metal binding sites, the 3H (His116, His118, and His196) and DCH (Asp120, Cys221, and His263) sites. These data clearly reveal the coexistence of mononuclear and dinuclear Co(II)-loaded forms at Co(II)/enzyme ratios as low as 0.6. This picture is consistent with the macroscopic dissociation constants here determined from competition binding experiments. A spectral feature previously assigned to the DCH site in the dinuclear species corresponds to a third, weakly bound Co(II) site. The present work emphasizes the importance of using different spectroscopic techniques to follow the metal content and localization during metallo-β-lactamase turnover

    Estudio de la sobre-expresión y topología de BlaR1 y MecR1 de staphylococcus aureus

    Get PDF
    Las proteínas de membrana sensoras/transductoras BlaR1 y MecR1, están involucradas en la inducción de la resistencia a antibióticos β-lactámicos en cepas de staphylococcus aureus resistentes a meticilina (MRSA). La función de estas proteínas está relacionada con la detección del antibiótico presente en el medio y la transmisión de una señal hacia el interior celular desencadenando la manifestación de resistencia. El diseño de inhibidores que permitan bloquear la activación de MecR1 y BlaR1, permitiendo revertir el fenotipo resistente, se ha visto dificultado principalmente por la imposibilidad de sobre-expresar y purificar a estas proteínas para un posterior estudio estructural que permita elucidar el mecanismo de la transducción de señal. Por lo tanto, en el presente trabajo, se evaluó la sobre-expresión de diferentes versiones de BlaR1 y MecR1. Se logró sobre-expresar la proteína BlaR1JH1, una versión trunca de la proteína BlaR1, presente en la cepa de S. aureus JH1 resistente a β-lactámicos, como fusión a la proteína Mistic. Se verificó su localización en membrana y se puso a punto la solubilización y purificación de la misma. Además, pudo demostrarse la localización extracelular del dominio sensor en esferoplastos de E. coli BL21StarTM (DE3). Podríamos decir, que se ha logrado por primera vez en diez años de trabajo, sobre-expresar en membrana una de las versiones más largas reportadas de la proteína BlaR1 y demostrar que posee un dominio sensor funcional. También, se ha logrado sobre-expresar el dominio gluzincina de la metaloproteasa MecR1 (aminoácidos R147-Y304). Este dominio contiene el sitio activo de la misma y se probó que se localiza en membrana al ser expresado en E. coli. Además el mismo pudo ser solubilizado y purificadoFil: Mihovilcevic, Damila. Universidad Nacional de RosarioFil: Llarrull, Leticia. Universidad Nacional de Rosari

    Evolution of Metallo-β-lactamases: Trends Revealed by Natural Diversity and in vitro Evolution

    Get PDF
    The production of β-lactamase enzymes is one of the most distributed resistance mechanisms towards β-lactam antibiotics. Metallo-β-lactamases constitute a worrisome group of these kinds of enzymes, since they present a broad spectrum profile, being able to hydrolyze not only penicillins, but also the latest generation of cephalosporins and carbapenems, which constitute at present the last resource antibiotics. The VIM, IMP, and NDM enzymes comprise the main groups of clinically relevant metallo-β-lactamases. Here we present an update of the features of the natural variants that have emerged and of the ones that have been engineered in the laboratory, in an effort to find sequence and structural determinants of substrate preferences. This knowledge is of upmost importance in novel drug design efforts. We also discuss the advances in knowledge achieved by means of in vitro directed evolution experiments, and the potential of this approach to predict natural evolution of metallo-β-lactamases.Fil: Meini, María Rocío. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Llarrull, Leticia Irene. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Vila, Alejandro Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Biología Molecular y Celular de Rosario; Argentin

    Asp-120 Locates Zn2 for Optimal Metallo-β-lactamase Activity

    Get PDF
    Metallo-β-lactamases are zinc-dependent hydrolases that inactivate β-lactam antibiotics, rendering bacteria resistant to them. Asp-120 is fully conserved in all metallo-β-lactamases and is central to catalysis. Several roles have been proposed for Asp-120, but so far there is no agreed consensus. We generated four site-specifically substituted variants of the enzyme BcII from Bacillus cereus as follows: D120N, D120E, D120Q, and D120S. Replacement of Asp-120 by other residues with very different metal ligating capabilities severely impairs the lactamase activity without abolishing metal binding to the mutated site. A kinetic study of these mutants indicates that Asp-120 is not the proton donor, nor does it play an essential role in nucleophilic activation. Spectroscopic and crystallographic analysis of D120S BcII, the least active mutant bearing the weakest metal ligand in the series, reveals that this enzyme is able to accommodate a dinuclear center and that perturbations in the active site are limited to the Zn2 site. It is proposed that the role of Asp-120 is to act as a strong Zn2 ligand, locating this ion optimally for substrate binding, stabilization of the development of a partial negative charge in the β-lactam nitrogen, and protonation of this atom by a zinc-bound water molecule

    Exploring the functional space of thiiranes as gelatinase inhibitors using click chemistry

    Get PDF
    A series of 4-[(triazolyl)methoxy]phenyl analogs of the phenoxyphenyl-substituted thiirane SB-3CT 1 was evaluated for its ability to inhibit gelatinases, members of the matrix metalloproteinase family of enzymes. The triazole segment of these inhibitors was assembled using the Meldal-Sharpless copper-catalyzed Huisgen dipolar cycloaddition of an azide and a terminal alkyne. While these triazole derivatives possessed fair activity as gelatinase inhibitors, an intermediate used in the dipolar cycloaddition, 4-(propargyloxy)phenyl derivative 2, showed very good activity (<50% inhibitory activity following a 3 h pre-incubation of 2 at a concentration of 3 μM) as an inhibitor of human matrix metalloproteinase-2.Fil: Testero, Sebastian Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; ArgentinaFil: Llarrull, Leticia Irene. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Fisher, Jed F.. University of Notre Dame; Estados UnidosFil: Chang, Mayland. University of Notre Dame; Estados UnidosFil: Mobashery, Shahriar. University of Notre Dame; Estados Unido

    An experiment-informed signal transduction model for the role of the Staphylococcus aureus MecR1 protein in β-lactam resistance

    Get PDF
    The treatment of hospital- and community-associated infections by methicillin-resistant Staphylococcus aureus (MRSA) is a perpetual challenge. This Gram-positive bacterium is resistant specifically to β-lactam antibiotics, and generally to many other antibacterial agents. Its resistance mechanisms to β-lactam antibiotics are activated only when the bacterium encounters a β-lactam. This activation is regulated by the transmembrane sensor/signal transducer proteins BlaR1 and MecR1. Neither the transmembrane/metalloprotease domain, nor the complete MecR1 and BlaR1 proteins, are isolatable for mechanistic study. Here we propose a model for full-length MecR1 based on homology modeling, residue coevolution data, a new extensive experimental mapping of transmembrane topology, partial structures, molecular simulations, and available NMR data. Our model defines the metalloprotease domain as a hydrophilic transmembrane chamber effectively sealed by the apo-sensor domain. It proposes that the amphipathic helices inserted into the gluzincin domain constitute the route for transmission of the β-lactam-binding event in the extracellular sensor domain, to the intracellular and membrane-embedded zinc-containing active site. From here, we discuss possible routes for subsequent activation of proteolytic action. This study provides the first coherent model of the structure of MecR1, opening routes for future functional investigations on how β-lactam binding culminates in the proteolytic degradation of MecI.Fil: Belluzo, Bruno Salvador. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Abriata, Luciano Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentina. École Polytechnique Fédérale de Lausanne; SuizaFil: Giannini, Estefanía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Mihovilcevic, Damila. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Dal Peraro, Matteo. École Polytechnique Fédérale de Lausanne; SuizaFil: Llarrull, Leticia Irene. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentin

    The reaction mechanism of metallo-beta-lactamases is tuned by the conformation of an active site mobile loop

    Get PDF
    Carbapenems are "last resort" β-lactam antibiotics used to treat serious and life-threatening health care-associated infections caused by multidrug-resistant Gram-negative bacteria. Unfortunately, the worldwide spread of genes coding for carbapenemases among these bacteria is threatening these life-saving drugs. Metallo-β-lactamases (MβLs) are the largest family of carbapenemases. These are Zn(II)-dependent hydrolases that are active against almost all β-lactam antibiotics. Their catalytic mechanism and the features driving substrate specificity have been matter of intense debate. The active sites of MβLs are flanked by two loops, one of which, loop L3, was shown to adopt different conformations upon substrate or inhibitor binding, and thus are expected to play a role in substrate recognition. However, the sequence heterogeneity observed in this loop in different MβLs has limited the generalizations about its role. Here, we report the engineering of different loops within the scaffold of the clinically relevant carbapenemase NDM-1. We found that the loop sequence dictates its conformation in the unbound form of the enzyme, eliciting different degrees of active-site exposure. However, these structural changes have a minor impact on the substrate profile. Instead, we report that the loop conformation determines the protonation rate of key reaction intermediates accumulated during the hydrolysis of different β-lactams in all MβLs. This study demonstrates the existence of a direct link between the conformation of this loop and the mechanistic features of the enzyme, bringing to light an unexplored function of active-site loops on MβLs.Fil: Palacios, Antonela Rocio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Mojica, María F.. Case Western Reserve University; Estados UnidosFil: Giannini, Estefanía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Taracila, Magdalena A.. Case Western Reserve University; Estados Unidos. Louis Stokes Veterans Affairs Medical Center; Estados UnidosFil: Bethel, Christopher R.. Louis Stokes Veterans Affairs Medical Center; Estados UnidosFil: Alzari, Pedro M.. Institut Pasteur de Paris; FranciaFil: Otero, Lisandro Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Klinke, Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Llarrull, Leticia Irene. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Bonomo, Robert A.. Case Western Reserve University; Estados UnidosFil: Vila, Alejandro Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentin

    Trapping and Characterization of a Reaction Intermediate in Carbapenem Hydrolysis by \u3cem\u3eB. cereus\u3c/em\u3e Metallo-β-lactamase

    Get PDF
    Metallo-β-lactamases hydrolyze most β-lactam antibiotics. The lack of a successful inhibitor for them is related to the previous failure to characterize a reaction intermediate with a clinically useful substrate. Stopped-flow experiments together with rapid freeze−quench EPR and Raman spectroscopies were used to characterize the reaction of Co(II)−BcII with imipenem. These studies show that Co(II)−BcII is able to hydrolyze imipenem in both the mono- and dinuclear forms. In contrast to the situation met for penicillin, the species that accumulates during turnover is an enzyme−intermediate adduct in which the β-lactam bond has already been cleaved. This intermediate is a metal-bound anionic species with a novel resonant structure that is stabilized by the metal ion at the DCH or Zn2 site. This species has been characterized based on its spectroscopic features. This represents a novel, previously unforeseen intermediate that is related to the chemical nature of carbapenems, as confirmed by the finding of a similar intermediate for meropenem. Since carbapenems are the only substrates cleaved by B1, B2, and B3 lactamases, identification of this intermediate could be exploited as a first step toward the design of transition-state-based inhibitors for all three classes of metallo-β-lactamases

    Cross-class metallo-β-lactamase inhibition by bisthiazolidines reveals multiple binding modes

    Get PDF
    Metallo-β-lactamases (MBLs) hydrolyze almost all β-lactam antibiotics and are unaffected by clinically available β-lactamase inhibitors (βLIs). Active-site architecture divides MBLs into three classes (B1, B2, and B3), complicating development of βLIs effective against all enzymes. Bisthiazolidines (BTZs) are carboxylate-containing, bicyclic compounds, considered as penicillin analogs with an additional free thiol. Here, we show both L- and D-BTZ enantiomers are micromolar competitive βLIs of all MBL classes in vitro, with Ki sof6-15 μM or 36-84 μM for subclass B1 MBLs (IMP-1 and BcII, respectively), and 10-12 μM for the B3 enzyme L1. Against the B2 MBL Sfh-I, the L-BTZ enantiomers exhibit 100-fold lower Ki s (0.26-0.36 μM) than D-BTZs (26-29 μM). Importantly, cell-based time-kill assays show BTZs restore β-lactam susceptibility of Escherichia coli-producing MBLs (IMP-1, Sfh-1, BcII, and GOB-18) and, significantly, an extensively drug-resistant Stenotrophomonas maltophilia clinical isolate expressing L1. BTZs therefore inhibit the full range of MBLs and potentiate β-lactam activity against producer pathogens. X-ray crystal structures reveal insights into diverse BTZ binding modes, varying with orientation of the carboxylate and thiol moieties. BTZs bind the di-zinc centers of B1 (IMP-1; BcII) and B3 (L1) MBLs via the free thiol, but orient differently depending upon stereochemistry. In contrast, the L-BTZ carboxylate dominates interactions with the monozinc B2 MBL Sfh-I, with the thiol uninvolved. D-BTZ complexes most closely resemble β-lactam binding to B1 MBLs, but feature an unprecedented disruption of the D120-zinc interaction. Cross-class MBL inhibition therefore arises from the unexpected versatility of BTZ binding.Fil: Hinchliffe, Philip. University of Bristol; Reino UnidoFil: Gonzalez, Javier Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Mojica, María. Louis Stokes Cleveland Department of Veterans Affairs Medical Center; Estados Unidos. Case Western Reserve University; Estados UnidosFil: Gonzalez, Javier Marcelo. Universidad Nacional de Santiago del Estero. Instituto de Bionanotecnología del Noa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Bionanotecnología del Noa; ArgentinaFil: Castillo, Valerie. Universidad de la República; UruguayFil: Saiz Garcia, Cecilia. Universidad de la República; UruguayFil: Kosmopoulou, Magda. University of Bristol; Reino UnidoFil: Tooke, Catherine. University of Bristol; Reino UnidoFil: Llarrull, Leticia Irene. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Mahler, Graciela. Universidad de la República; UruguayFil: Bonomo, Robert. Louis Stokes Cleveland Department of Veterans Affairs Medical Center; Estados Unidos. Case Western Reserve University; Estados UnidosFil: Vila, Alejandro Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Spencer, James. University of Bristol; Reino Unid
    corecore