9 research outputs found

    Potential of histamine-degrading microorganisms and diamine oxidase (DAO) for the reduction of histamine accumulation along the cheese ripening process

    Get PDF
    Lentilactobacillus parabuchneri is the main bacteria responsible for the accumulation of histamine in cheese. The goal of this study was to assess the efficiency of potential histamine-degrading microbial strains or, alternatively, the action of the diamine oxidase (DAO) enzyme in the reduction of histamine accumulation along the ripening process in cheese. A total of 8 cheese variants of cow milk cheese were manufactured, all of them containing L. parabuchneri Deutsche Sammlung von Mikroorganismen 5987 (except for the negative control cheese variant) along with histamine–degrading strains (Lacticaseibacillus casei 4a and 18b; Lactobacillus delbrueckii subsp. bulgaricus Colección Española de Cultivos Tipo (CECT) 4005 and Streptococcus salivarius subsp. thermophilus CECT 7207; two commercial yogurt starter cultures; or Debaryomyces hansenii), or DAO enzyme, tested in each cheese variant. Histamine was quantified along 100 days of cheese ripening. All the degrading measures tested significantly reduced the concentration of histamine. The highest degree of degradation was observed in the cheese variant containing D. hansenii, where the histamine content decreased up to 45.32 %. Cheese variants with L. casei, or L. bulgaricus and S. thermophilus strains, also decreased in terms of histamine content by 43.05 % and 42.31 %, respectively. No significant physicochemical changes (weight, pH, water activity, color, or texture) were observed as a consequence of the addition of potential histamine-degrading adjunct cultures or DAO in cheeses. However, the addition of histamine-degrading microorganisms was associated with a particular, not unpleasant aroma. Altogether, these results suggest that the use of certain histamine-degrading microorganisms could be proposed as a suitable measure in order to decrease the amount of histamine accumulated in cheeses. © 2022 The Author

    The significance of cheese sampling in the determination of histamine concentration: Distribution pattern of histamine in ripened cheeses

    Get PDF
    Cheeses are becoming a major safety and public health concern: cheeses available in supermarkets occasionally contain high histamine concentrations that can have negative effects on consumer health. In this study, we have attempted to assess the histamine distribution pattern in ripened cheeses, with the purpose of establishing a correct cheese sampling strategy for the quantification of histamine. To this aim, histamine was determined in four distinct areas of twelve long-ripened hard cheeses: the external and internal rind, along with the outer and inner core of the wedge. The concentrations measured were remarkably different: histamine accumulated in the central core, whereas the lowest amount was found in the peripheral rind. To explain this heterogenous distribution, histamine producers were determined in the four areas by identifying the hdc sequences obtained from cheese samples. Non-starter bacteria were identified as main histamine producers; however, these microbiota were homogeneously distributed throughout the wedge. Nevertheless, the analysis of psychochemical properties of the different areas revealed an observable trend: histamine tended to accumulate in the saltier, more humid, and less oxidized areas in a wedge. Overall, this study highlights the significance of a correct sampling strategy when histamine is quantified in cheese

    Lactic Acid Bacteria Isolated from Fermented Doughs in Spain Produce Dextrans and Riboflavin

    Get PDF
    Many lactic acid bacteria (LAB) produce metabolites with applications in the food industry, such as dextran-type exopolysaccharides (EPS) and riboflavin (vitamin B2). Here, 72 bacteria were isolated from sourdoughs made by Spanish bread-makers. In the presence of sucrose, colonies of 22 isolates showed a ropy phenotype, and NMR analysis of their EPS supported that 21 of them were dextran producers. These isolates were identified by their random amplified polymorphic DNA (RAPD) patterns and their rrs and pheS gene sequences as LAB belonging to four species (Weissella cibaria, Leuconostoc citreum, Leuconostoc falkenbergense and Leuconostoc mesenteroides). Six selected strains from the Leuconostoc (3) and Weissella (3) genera grew in the absence of riboflavin and synthesized vitamin B2. The EPS produced by these strains were characterized as dextrans by physicochemical analysis, and the L. citreum polymer showed an unusually high degree of branching. Quantification of the riboflavin and the EPS productions showed that the W. cibaria strains produce the highest levels (585–685 μg/and 6.5–7.4 g/L, respectively). Therefore, these new LAB strains would be good candidates for the development of fermented foods bio-fortified with both dextrans and riboflavin. Moreover, this is the first report of riboflavin and dextran production by L. falkenbergense.This research was funded by the Spanish Ministry of Science, Innovation and Universities, (grants RTI2018-097114-B-I00 and PCIN-2017-075), by the Basque Government Industry and Education Department (grant PIBA_2020_1_0032) and by the University of the Basque Country (General Grant to Research Groups (GIU 19/014))

    Lactic Acid Bacteria Isolated from Fermented Doughs in Spain Produce Dextrans and Riboflavin

    Get PDF
    Many lactic acid bacteria (LAB) produce metabolites with applications in the food industry, such as dextran-type exopolysaccharides (EPS) and riboflavin (vitamin B2). Here, 72 bacteria were isolated from sourdoughs made by Spanish bread-makers. In the presence of sucrose, colonies of 22 isolates showed a ropy phenotype, and NMR analysis of their EPS supported that 21 of them were dextran producers. These isolates were identified by their random amplified polymorphic DNA (RAPD) patterns and their rrs and pheS gene sequences as LAB belonging to four species (Weissella cibaria, Leuconostoc citreum, Leuconostoc falkenbergense and Leuconostoc mesenteroides). Six selected strains from the Leuconostoc (3) and Weissella (3) genera grew in the absence of riboflavin and synthesized vitamin B2. The EPS produced by these strains were characterized as dextrans by physicochemical analysis, and the L. citreum polymer showed an unusually high degree of branching. Quantification of the riboflavin and the EPS productions showed that the W. cibaria strains produce the highest levels (585–685 μg/and 6.5–7.4 g/L, respectively). Therefore, these new LAB strains would be good candidates for the development of fermented foods bio-fortified with both dextrans and riboflavin. Moreover, this is the first report of riboflavin and dextran production by L. falkenbergense.This research was funded by the Spanish Ministry of Science, Innovation and Universities, (grants RTI2018-097114-B-I00 and PCIN-2017-075), by the Basque Government Industry and Education Department (grant PIBA_2020_1_0032) and by the University of the Basque Country (General Grant to Research Groups (GIU 19/014))

    Effectiveness of an mHealth intervention combining a smartphone app and smart band on body composition in an overweight and obese population: Randomized controlled trial (EVIDENT 3 study)

    Get PDF
    Background: Mobile health (mHealth) is currently among the supporting elements that may contribute to an improvement in health markers by helping people adopt healthier lifestyles. mHealth interventions have been widely reported to achieve greater weight loss than other approaches, but their effect on body composition remains unclear. Objective: This study aimed to assess the short-term (3 months) effectiveness of a mobile app and a smart band for losing weight and changing body composition in sedentary Spanish adults who are overweight or obese. Methods: A randomized controlled, multicenter clinical trial was conducted involving the participation of 440 subjects from primary care centers, with 231 subjects in the intervention group (IG; counselling with smartphone app and smart band) and 209 in the control group (CG; counselling only). Both groups were counselled about healthy diet and physical activity. For the 3-month intervention period, the IG was trained to use a smartphone app that involved self-monitoring and tailored feedback, as well as a smart band that recorded daily physical activity (Mi Band 2, Xiaomi). Body composition was measured using the InBody 230 bioimpedance device (InBody Co., Ltd), and physical activity was measured using the International Physical Activity Questionnaire. Results: The mHealth intervention produced a greater loss of body weight (–1.97 kg, 95% CI –2.39 to –1.54) relative to standard counselling at 3 months (–1.13 kg, 95% CI –1.56 to –0.69). Comparing groups, the IG achieved a weight loss of 0.84 kg more than the CG at 3 months. The IG showed a decrease in body fat mass (BFM; –1.84 kg, 95% CI –2.48 to –1.20), percentage of body fat (PBF; –1.22%, 95% CI –1.82% to 0.62%), and BMI (–0.77 kg/m2, 95% CI –0.96 to 0.57). No significant changes were observed in any of these parameters in men; among women, there was a significant decrease in BMI in the IG compared with the CG. When subjects were grouped according to baseline BMI, the overweight group experienced a change in BFM of –1.18 kg (95% CI –2.30 to –0.06) and BMI of –0.47 kg/m2 (95% CI –0.80 to –0.13), whereas the obese group only experienced a change in BMI of –0.53 kg/m2 (95% CI –0.86 to –0.19). When the data were analyzed according to physical activity, the moderate-vigorous physical activity group showed significant changes in BFM of –1.03 kg (95% CI –1.74 to –0.33), PBF of –0.76% (95% CI –1.32% to –0.20%), and BMI of –0.5 kg/m2 (95% CI –0.83 to –0.19). Conclusions: The results from this multicenter, randomized controlled clinical trial study show that compared with standard counselling alone, adding a self-reported app and a smart band obtained beneficial results in terms of weight loss and a reduction in BFM and PBF in female subjects with a BMI less than 30 kg/m2 and a moderate-vigorous physical activity level. Nevertheless, further studies are needed to ensure that this profile benefits more than others from this intervention and to investigate modifications of this intervention to achieve a global effect

    RICORS2040 : The need for collaborative research in chronic kidney disease

    Get PDF
    Chronic kidney disease (CKD) is a silent and poorly known killer. The current concept of CKD is relatively young and uptake by the public, physicians and health authorities is not widespread. Physicians still confuse CKD with chronic kidney insufficiency or failure. For the wider public and health authorities, CKD evokes kidney replacement therapy (KRT). In Spain, the prevalence of KRT is 0.13%. Thus health authorities may consider CKD a non-issue: very few persons eventually need KRT and, for those in whom kidneys fail, the problem is 'solved' by dialysis or kidney transplantation. However, KRT is the tip of the iceberg in the burden of CKD. The main burden of CKD is accelerated ageing and premature death. The cut-off points for kidney function and kidney damage indexes that define CKD also mark an increased risk for all-cause premature death. CKD is the most prevalent risk factor for lethal coronavirus disease 2019 (COVID-19) and the factor that most increases the risk of death in COVID-19, after old age. Men and women undergoing KRT still have an annual mortality that is 10- to 100-fold higher than similar-age peers, and life expectancy is shortened by ~40 years for young persons on dialysis and by 15 years for young persons with a functioning kidney graft. CKD is expected to become the fifth greatest global cause of death by 2040 and the second greatest cause of death in Spain before the end of the century, a time when one in four Spaniards will have CKD. However, by 2022, CKD will become the only top-15 global predicted cause of death that is not supported by a dedicated well-funded Centres for Biomedical Research (CIBER) network structure in Spain. Realizing the underestimation of the CKD burden of disease by health authorities, the Decade of the Kidney initiative for 2020-2030 was launched by the American Association of Kidney Patients and the European Kidney Health Alliance. Leading Spanish kidney researchers grouped in the kidney collaborative research network Red de Investigación Renal have now applied for the Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS) call for collaborative research in Spain with the support of the Spanish Society of Nephrology, Federación Nacional de Asociaciones para la Lucha Contra las Enfermedades del Riñón and ONT: RICORS2040 aims to prevent the dire predictions for the global 2040 burden of CKD from becoming true

    Lactic acid bacteria isolated from fermented doughs in Spain produce dextrans and riboflavin

    Get PDF
    20 páginas, 8 figuras, 3 tablasMany lactic acid bacteria (LAB) produce metabolites with applications in the food industry, such as dextran-type exopolysaccharides (EPS) and riboflavin (vitamin B2). Here, 72 bacteria were isolated from sourdoughs made by Spanish bread-makers. In the presence of sucrose, colonies of 22 isolates showed a ropy phenotype, and NMR analysis of their EPS supported that 21 of them were dextran producers. These isolates were identified by their random amplified polymorphic DNA (RAPD) patterns and their rrs and pheS gene sequences as LAB belonging to four species (Weissella cibaria, Leuconostoc citreum, Leuconostoc falkenbergense and Leuconostoc mesenteroides). Six selected strains from the Leuconostoc (3) and Weissella (3) genera grew in the absence of riboflavin and synthesized vitamin B2. The EPS produced by these strains were characterized as dextrans by physicochemical analysis, and the L. citreum polymer showed an unusually high degree of branching. Quantification of the riboflavin and the EPS productions showed that the W. cibaria strains produce the highest levels (585–685 μg/and 6.5–7.4 g/L, respectively). Therefore, these new LAB strains would be good candidates for the development of fermented foods bio-fortified with both dextrans and riboflavin. Moreover, this is the first report of riboflavin and dextran production by L. falkenbergenseThis research was funded by the Spanish Ministry of Science, Innovation and Universities, (grants RTI2018-097114-B-I00 and PCIN-2017-075), by the Basque Government Industry and Education Department (grant PIBA_2020_1_0032) and by the University of the Basque Country (General Grant to Research Groups (GIU 19/014))Peer reviewe
    corecore