14 research outputs found

    A new antibiotic-loaded sol-gel can prevent bacterial intravenous catheter-related infections

    Get PDF
    The aim of this study was to evaluate the effectiveness of a moxifloxacin-loaded organic-inorganic sol-gel (A50) by locally preventing the catheter-related bloodstream infection (CRBSI) provoked by Staphylococcus epidermidis (S. epidermidis) and the effect resulting from its hydrolytic degradation on coagulation by using a rabbit in-vivo model. A50 coating can completely inhibit growth and would locally prevent CRBSI provoked by S. epidermidis. None of the coagulation blood parameters showed a significant difference constant over time between the control catheter group and the A50-coated catheter group, despite the visible silica release resulting from physiological A50 sol-gel degradation detected in serum at least during the first week. At pathological level, foreign body reaction was present in both of types of catheter, and it was characterized by the presence of macrophages and foreign body giant cell. However, this reaction was different in each group: the A50-coated catheter group showed a higher inflammation with histiocytes, which were forming granuloma-like aggregates with an amorphous crystalline material inside, accompanied by other inflammatory cells such as plasma cells, lymphocytes and mast cells. In conclusion, A50 coating a venous catheter showed excellent bactericidal anti-biofilm response since it completely inhibited S. epidermidis biofilm development and, far from showing procoagulant effects, showed slightly anticoagulant effects.This research received financial support from the Mutua Madrileña Foundation (04078/001). J.J.A.-C. was funded by an FPI grant from the Spanish Ministry of Economics and Competitiveness (BES-2014-069007)

    Exploiting the passenger ACO1-deficiency arising from 9p21 deletions to kill T-cell lymphoblastic neoplasia cells

    Full text link
    Precursor T-cell lymphoblastic neoplasms are aggressive malignancies in need for more effective and specific therapeutic treatments. A significant fraction of these neoplasms harbor deletions on the locus 9p21, targeting the tumor suppressor CDKN2A but also deleting the aconitase 1 (ACO1) gene, a neighboring housekeeping gene involved in cytoplasm and mitochondrial metabolism. Here we show that reducing the aconitase activity with fluorocitrate decreases the viability of T-cell lymphoblastic neoplasia cells in correlation to the differential aconitase expression. The consequences of the treatment were evidenced in vitro using T-cell lymphoblastic neoplasia cell lines exhibiting 9p21 deletions and variable levels of ACO1 expression or activity. Similar results were observed in melanoma cell lines, suggesting a true potential for fluorocitrate in different cancer types. Notably, ectopic expression of ACO1 alleviated the susceptibility of cell lines to fluorocitrate and, conversely, knockdown experiments increased susceptibility of resistant cell lines. These findings were confirmed in vivo on athymic nude mice by using tumor xenografts derived from two T-cell lines with different levels of ACO1. Taken together, our results indicate that the non-targeted ACO1 deficiency induced by common deletions exerts a collateral cellular lethality that can be used as a novel therapeutic strategy in the treatment of several types of cancerInstituto de Salud Carlos III (ACCI-CIBERER-17); Spanish Ministerio de Economía y Competitividad (SAF2015-70561 R;MINECO/FEDER, EU); Spanish Ministerio de Ciencia, Innovación y Universidades (RTI2018-093330-B-I00; MCIU/FEDER, EU); Universidad Autónoma de Madrid, Spain (B2017/BMD-3778; LINFOMAS-CM); Spanish Association Against Cancer (AECC, 2018; PROYE18054PIRI); Fundación Ramón Areces (CIVP19S7917); Institutional grants from Fundación Ramón Areces and Banco de Santander to Centro de Biología Molecular Severo Ochoa are also acknowledge

    SOCS3 deregulation contributes to aberrant activation of the JAK/STAT pathway in precursor T-cell neoplasms

    Get PDF
    Despite the Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway being frequently altered in T-ALL/LBL, no specific therapy has been approved for T-ALL/LBL patients with constitutive signalling by JAK/STAT, so there is an urgent need to identify pathway members that may be potential therapeutic targets. In the present study, we searched for JAK/STAT pathway members potentially modulated through aberrant methylation and identified SOCS3 hypermethylation as a recurrent event in T-ALL/LBL. Additionally, we explored the implications of SOCS3 deregulation in T-ALL/LBL and demonstrated that SOCS3 counteracts the constitutive activation of the JAK/STAT pathway through different molecular mechanisms. Therefore, SOCS3 emerges as a potential therapeutic target in T-ALL/LBLComunidad de Madrid, Grant/Award Number: B2017/BMD-3778; LINFOMAS-CM; Fundación Científica Asociación Española Contra el Cáncer, Grant/Award Number: PROYE18054PIRI; Fundación Ramón Areces, Grant/Award Number: CIVP19S7917; Instituto de Investigación Sanitaria Fundación Jiménez Díaz; Ministerio de Ciencia, Innovación y Universidades, Grant/ Award Number: RTI2018- 093330-B-I00 and MCIU/FEDER; Ministerio de Economía y Competitividad, Grant/Award Number: SAF2015-70561-R and MINECO/FEDE

    Newer generations of multi-target CAR and STAb-T immunotherapeutics: NEXT CART Consortium as a cooperative effort to overcome current limitations

    Get PDF
    Adoptive T cellular immunotherapies have emerged as relevant approaches for treating cancer patients who have relapsed or become refractory (R/R) to traditional cancer treatments. Chimeric antigen receptor (CAR) T-cell therapy has improved survival in various hematological malignancies. However, significant limitations still impede the widespread adoption of these therapies in most cancers. To advance in this field, six research groups have created the “NEXT Generation CART MAD Consortium” (NEXT CART) in Madrid’s Community, which aims to develop novel cell-based immunotherapies for R/R and poor prognosis cancers. At NEXT CART, various basic and translational research groups and hospitals in Madrid concur to share and synergize their basic expertise in immunotherapy, gene therapy, and immunological synapse, and clinical expertise in pediatric and adult oncology. NEXT CART goal is to develop new cell engineering approaches and treatments for R/R adult and pediatric neoplasms to evaluate in multicenter clinical trials. Here, we discuss the current limitations of T cell-based therapies and introduce our perspective on future developments. Advancement opportunities include developing allogeneic products, optimizing CAR signaling domains, combining cellular immunotherapies, multi-targeting strategies, and improving tumor-infiltrating lymphocytes (TILs)/T cell receptor (TCR) therapy. Furthermore, basic studies aim to identify novel tumor targets, tumor molecules in the tumor microenvironment that impact CAR efficacy, and strategies to enhance the efficiency of the immunological synapse between immune and tumor cells. Our perspective of current cellular immunotherapy underscores the potential of these treatments while acknowledging the existing hurdles that demand innovative solutions to develop their potential for cancer treatment fully

    A Multidisciplinary Journey towards Bone Tissue Engineering

    No full text
    Millions of patients suffer yearly from bone fractures and disorders such as osteoporosis or cancer, which constitute the most common causes of severe long-term pain and physical disabilities. The intrinsic capacity of bone to repair the damaged bone allows normal healing of most small bone injuries. However, larger bone defects or more complex diseases require additional stimulation to fully heal. In this context, the traditional routes to address bone disorders present several associated drawbacks concerning their efficacy and cost-effectiveness. Thus, alternative therapies become necessary to overcome these limitations. In recent decades, bone tissue engineering has emerged as a promising interdisciplinary strategy to mimic environments specifically designed to facilitate bone tissue regeneration. Approaches developed to date aim at three essential factors: osteoconductive scaffolds, osteoinduction through growth factors, and cells with osteogenic capability. This review addresses the biological basis of bone and its remodeling process, providing an overview of the bone tissue engineering strategies developed to date and describing the mechanisms that underlie cell–biomaterial interactions

    Cut-Off Values of Hematologic Parameters to Predict the Number of Alpha Genes Deleted in Subjects with Deletional Alpha Thalassemia

    No full text
    Most α-thalassemia cases are caused by deletions of the structural α-globin genes. The degree of microcytosis and hypochromia has been correlated with the number of affected α-globin genes, suggesting a promising role of hematologic parameters as predictive diagnostic tools. However, cut-off points for these parameters to discriminate between the different subtypes of α-thalassemia are yet to be clearly defined. Six hematologic parameters (RBC, Hb, MCV, MCH, MCHC and RDW) were evaluated in 129 cases of deletional α-thalassemia (56 heterozygous α+ thalassemia, 36 homozygous α+ thalassemia, 29 heterozygous α0 thalassemia and 8 cases of Hb H disease). A good correlation between the number of deleted alpha genes and MCV (r = −0.672, p < 0.001), MCH (r = −0.788, p < 0.001) and RDW (r = 0.633, p < 0.001) was observed. The presence of an α0 allele should be discarded in individuals with microcytosis without iron deficiency and normal values of Hb A2 and Hb F with MCH < 23.40 pg. Furthermore, MCH < 21.90 pg and/or MCV < 70.80 fL are strongly suggestive of the presence of one α0 allele. Finally, an accurate presumptive diagnosis of Hb H disease can be made if both RDW ≥ 20% and MCH < 19 pg are seen

    Spontaneous Remission of Acute Myeloid Leukemia: A Case Report

    No full text
    Spontaneous remissions (SRs) in acute myeloid leukemia (AML) are infrequent, poorly documented and transient. Similarly, morphological and cytogenetic complete remissions (CR) under azacitidine treatment are scarce. We report a 71-year-old man with a secondary AML arising from essential thrombocythemia (ET), who developed an SR after discontinuation of azacitidine following a respiratory infection (four courses were administered). The distinctive feature of our case is the depth of the achieved CR, documented by next-generation sequencing (NGS) techniques. We also detected persistence of molecular lesions that might already have been present in the previous ET clone. Our patient relapsed 5 months after achieving CR. We conclude that our patient showed a spontaneous remission of his AML rather than an exquisite response to azacitidine. We hypothesize that the concurrent respiratory infection, or any other unknown trigger, might have activated his immune system forcing the leukemic stem cell to enter a quiescent state through a yet unexplained mechanism

    ZBTB16-RARα-Positive Atypical Promyelocytic Leukemia: A Case Report

    No full text
    Background: The majority of patients with acute promyelocytic leukemia (APL) manifest a specific chromosomal translocation t(15;17)(q22;q21), characterized by the fusion of RARA and PML genes. However, a proportion of APL cases are due to variant translocations, being t(11;17) (q23;q21) the most common amongst them. With the major exception of ZBTB16-RARA t(11;17) APL, these variant APL cases present similar morphological features as classic APL and are characterized by a lack of differentiation response to retinoids. Case summary: We describe the case of variant APL with the ZBTB16-RARA fusion gene, showing a distinct morphology of classical APL, characterized by crystalline intracytoplasmic inclusions in both peripheral blood (PB) and bone marrow (BM) patients’ blasts. Our patient was treated with two courses of intensive chemotherapy, initiating maintenance treatment with all-trans retinoic acid (ATRA) on day twenty-eight of the second course. Our patient achieved complete remission (CR) once the intensive chemotherapy was combined with ATRA.Conclusions: This is the second case described of APL with t(11;17) that showed crystalline intracytoplasmic inclusions. The finding of these morphological features may suggest the presence of a variant translocation with RARA, being that both cases described are related to the presence of t(11;17). Despite induction treatment with intensive chemotherapy that included a seven-day continuous treatment with cytarabine (200 mg/m2), plus daily idarubicin (12 mg/m2) during the first three days, our patient did not achieve complete remission (CR) until scheduled 3 + 7 regimen combined with ATRA treatment was established. This observation suggests that ATRA may be partially effective in some ZBTB16-RARA APLs
    corecore