19 research outputs found

    Experimental measurement of stress at a four-domain junction in lead zirconate titanate

    Get PDF
    A junction between two lamellar bands of ferroelectric domains in a lead zirconate titanate (PZT) ceramic is analysed using Kikuchi diffraction patterns in the transmission electron microscope. Indexing of the diffraction patterns allowed the determination of the 3D relative orientation of the 4 different domains at the junction and thus the characterisation of the domain boundaries. The local c/a ratio could also be determined from the misorientations at the domain boundaries. Analysis of the data showed that large stresses were concentrated at the junction, and that this is inevitable at such band junctions. Such stress concentrations could act as nuclei for cracking of the ceramic under additional loading in service, perhaps particularly as a consequence of extended electromechanical cycling. Moreover, the stresses would increase with increasing c/a making the issues all the more serious for Ti-rich compositions having larger c/a ratios

    Piezoelectricity and rotostriction through polar and non-polar coupled instabilities in bismuth-based piezoceramics

    Get PDF
    Coupling of order parameters provides a means to tune functionality in advanced materials including multiferroics, superconductors, and ionic conductors. We demonstrate that the response of a frustrated ferroelectric state leads to coupling between order parameters under electric field depending on grain orientation. The strain of grains oriented along a specific crystallographic direction, 〈h00〉, is caused by converse piezoelectricity originating from a ferrodistortive tetragonal phase. For 〈hhh〉 oriented grains, the strain results from converse piezoelectricity and rotostriction, as indicated by an antiferrodistortive instability that promotes octahedral tilting in a rhombohedral phase. Both strain mechanisms combined lead to a colossal local strain of (2.4 ± 0.1) % and indicate coupling between oxygen octahedral tilting and polarization, here termed “rotopolarization”. These findings were confirmed with electromechanical experiments, in situ neutron diffraction, and in situ transmission electron microscopy in 0.75Bi1/2_{1/2}Na1/2_{1/2}TiO3_{3}-0.25SrTiO3_{3}. This work demonstrates that polar and non-polar instabilities can cooperate to provide colossal functional responses

    On the phase identity and its thermal evolution of lead free (Bi1/2Na1/2)TiO3-6 mol% BaTiO3

    Get PDF
    Temperature-dependent dielectric permittivity of 0.94(Bi1/2Na1/2) TiO3-0.06BaTiO(3) (BNT-6BT) lead-free piezoceramics was studied to disentangle the existing unclear issues over the crystallographic aspects and phase stability of the system. Application of existing phenomenological relaxor models enabled the relaxor contribution to the entire dielectric permittivity spectra to be deconvoluted. The deconvoluted data in comparison with the temperature-dependent dielectric permittivity of a classical perovskite relaxor, La-modified lead zirconate titanate, clearly suggest that BNT-6BT belongs to the same relaxor category, which was also confirmed by a comparative study on the temperature-dependent polarization hysteresis loops of both materials. Based on these results, we propose that the low-temperature dielectric anomaly does not involve any phase transition such as ferroelectric-toantiferroelectric. Supported by transmission electron microscopy and X-ray diffraction experiments at ambient temperature, we propose that the commonly observed two dielectric anomalies are attributed to thermal evolution of ferroelectric polar nanoregions of R3c and P4bm symmetry, which coexist nearly throughout the entire temperature range and reversibly transform into each other with temperature.open1128

    Piezoelectricity and rotostriction through polar and non-polar coupled instabilities in bismuth-based piezoceramics

    Get PDF
    Coupling of order parameters provides a means to tune functionality in advanced materials including multiferroics, superconductors and ionic conductors. We demonstrate that the response of a frustrated ferroelectric state leads to coupling between order parameters under electric field depending on grain orientation. The strain of grains oriented along a specific crystallographic direction,〈h00〉, is caused by converse piezoelectricity originating from a ferrodistortive tetragonal phase. For〈hhh〉oriented grains, the strain results from converse piezoelectricity and rotostriction, as indicated by an antiferrodistortive instability that promotes octahedral tilting in a rhombohedral phase. Both strain mechanisms combined lead to a colossal local strain of (2.4 ± 0.1) % and indicate coupling between oxygen octahedral tilting and polarization, here termed “rotopolarization”. These findings were confirmed with electromechanical experiments, in situ neutron diffraction and in situ transmission electron microscopy in 0.75Bi1/2Na1/2TiO3-0.25SrTiO3. This work demonstrates that polar and non-polar instabilities can cooperate to provide colossal functional responses

    Single Grains Hosting Two Space Groups: A Transmission Electron Microscopy Study of a Lead-Free Ferroelectric

    No full text
    In this letter, conclusive experimental evidence is presented for the coexistence of two phases within individual grains in the system (Bi0.5Na0.5TiO3)0.91-(BaTiO3)0.06-(K0.5Na0.5NbO3)0.03. Electron diffraction data unequivocally reveal the presence of a rhombohedral and a tetragonal phase with space group R3c and P4bm, respectively, both on the nanoscale level. Superlattice reflections, observed in the corresponding selected area electron diffraction, were used to identify the rhombohedral and tetragonal phase present at different regions within one grain. It is thought that the rhombohedral phase acts as a nucleation site for the phase transformation monitored under applied electrical field. The coexistence of these two phases in conjunction with the triggered tetragonal to rhombohedral phase transformation rationalizes the high bipolar and unipolar strain recorded for this lead-free ferroelectric material

    De-aging of Fe-doped lead-zirconate-titanate ceramics by electric field cycling: 180°- vs. non-180° domain wall processes

    No full text
    Acceptor-doped ferroelectrics tend to show pronounced aging behavior. The microscopic effects of aging are commonly related to oxygen vacancies, however, there are still open questions with respect to their impact on domain wall movements. To elucidate the latter, the reverse process of de-aging by electric field cycling is investigated here on Pb(Zr0.54Ti0.46)O3 doped with iron in different concentrations. Measurements of the hysteretic behavior of large-signal parameters, i.e., polarization and strain, as well as small-signal parameters, i.e., electrical permittivity and piezoelectric coefficient, are used to distinguish between reversible and irreversible movement of 180°- and non-180° domain walls. The results indicate that for low doping concentrations, the de-aging behavior of 180° domain wall motion is governed by irreversible domain wall motion and a coarsening of the domain structure, while for non-180° domain walls the change in reversible domain wall mobility is the dominant de-aging mechanism. For high doping concentrations, an additional clamping effect related to the smaller grain size occurs

    A-site occupancy in the lead-free (Bi1/2Na1/2TiO3)0.94–(BaTiO3)0.06 piezoceramic: Combining first-principles study and TEM

    No full text
    The crystal structure of the lead-free piezoelectric ceramic (Bi1/2Na1/2TiO3)0.94–(BaTiO3)0.06 was investigated by first-principles calculations and high-resolution transmission electron microscopy (HRTEM) imaging. Structures with different A-site occupation were relaxed by total energy calculations within density functional theory and then used for simulating the corresponding HRTEM images. Simulated and experimental HRTEM images were compared and the closest match selected for structure interpretation. By combining these techniques, we have identified the Bi(Ba)/Na distribution on the A-site to be homogeneous. We exclude the possibility that regions visible in HRTEM images within one grain can be attributed to different ordering but to a slight tilting of the structure with respect to the electron beam

    Composition dependence of the domain configuration and size in Pb(Zr[sub 1−x]Ti[sub x])O[sub 3] ceramics

    No full text
    The composition dependent variation of domain configuration and size in Pb(Zr1−xTix)O3 (PZT) has been investigated in a detailed transmission electron microscopy study in the range of 0.40 ⩽ x ⩽ 0.55. Single phase composition, Pb(Zr0.45Ti0.55)O3 and Pb(Zr0.60Ti0.40)O3, the former belonging to the tetragonal, the latter to the rhombohedral phase, feature small microdomain widths coupled with a pronounced bimodal domain distribution. Samples with compositions around the morphotropic phase boundary exhibit a decrease of bimodal distribution and an increase in microdomain width associated with nanodomain formation. The investigation of micro- and nanodomains, as well as the bimodal distribution of microdomains in undoped PZT ceramics, with respect to composition, is reported. We define nanodomains as “domains arranged within microdomains possessing a width of a few nanometers.” The strict alternation of the two orientation variants of microdomains is denoted as “bimodal domain distribution,” and is characterized by narrow and broad microdomains, which join each other in turn

    A-site occupancy in the lead-free (Bi1/2Na1/2TiO3)0.94-(BaTiO3)0.06 piezoceramic : combining first-principles study and TEM

    No full text
    The crystal structure of the lead-free piezoelectric ceramic(Bi1/2Na1/2TiO3)0.94–(BaTiO3)0.06 was investigated by first-principles calculations and high-resolution transmission electron microscopy(HRTEM) imaging. Structures with different A-site occupation were relaxed by total energy calculations within density functional theory and then used for simulating the corresponding HRTEM images. Simulated and experimental HRTEM images were compared and the closest match selected for structure interpretation. By combining these techniques, we have identified the Bi(Ba)/Na distribution on the A-site to be homogeneous. We exclude the possibility that regions visible in HRTEM images within one grain can be attributed to different ordering but to a slight tilting of the structure with respect to the electron beam
    corecore