12 research outputs found

    Flexible lateral isocenter : A novel mechanical functionality contributing to dose reduction in neurointerventional procedures

    No full text
    Aim of the study A new functionality that enables vertical mobility of the lateral arm of a biplane angiographic machine is referred to as the flexible lateral isocenter. The aim of this study was to analyze the impact of the flexible lateral isocenter on the air-kerma rate under experimental conditions. Material and methods An anthropomorphic head-and-chest phantom with anteroposterior (AP) diameter of the chest varying from 22 cm to 30 cm simulated human bodies of different body constitutions. The angulation of the AP arm in the sagittal plane varied from 35 degrees to 55 degrees for each AP diameter. The air-kerma rate (mGy/min) values were read from the system dose display in two settings for each angle: flexible lateral isocenter and fixed lateral isocenter. Results The air-kerma rate was significantly lower for all AP diameters of the chest of the phantom when the flexible lateral isocenter was used: (a) For 22 cm, the p value was 0.028; (b) For 25 cm, the p value was 0.0169; (c) For 28 cm, the p value was 0.01005 and (d) For 30 cm, the p value was 0.01703. Conclusion Our results show that the flexible lateral isocenter contributes significantly to the reduction of the air-kerma rate, and thus to a safer environment in terms of dose lowering both for patients and staff

    Spot Region of Interest Imaging : A Novel Functionality Aimed at X-Ray Dose Reduction in Neurointerventional Procedures

    No full text
    AIM OF THE STUDY: The aim of this study was to describe a new functionality aimed at X-ray dose reduction, referred to as spot region of interest (Spot ROI) and to compare it with existing dose-saving functionalities, spot fluoroscopy (Spot F), and conventional collimation (CC). MATERIAL AND METHODS: Dose area product, air kerma, and peak skin dose were measured for Spot ROI, Spot F, and CC in three different fields of view (FOVs) 20 × 20 cm, 15 × 15 cm, and 11 × 11 cm using an anthropomorphic head phantom RS-230T. The exposure sequence was 5 min of pulsed fluoroscopy (7.5 pulses per s) followed by 7× digital subtraction angiography (DSA) runs with 30 frames per DSA acquisition (3 fps × 10 s). The collimation in Spot F and CC was adjusted such that the size of the anatomical area exposed was as large as the Spot ROI area in each FOV. RESULTS: The results for all FOVs were the following: for the fluoroscopy, all measured parameters for Spot ROI and Spot F were lower than corresponding values for CC. For DSA and DSA plus fluoroscopy, all measured parameters for Spot ROI were lower than corresponding parameters for Spot F and CC. CONCLUSION: Spot ROI is a promising dose-saving technology that can be applied in fluoroscopy and acquisition. The biggest benefit of Spot ROI is its ability to keep the entire FOV information always visible

    Use of Distal Intracranial Catheters for Better Working View of Cerebral Aneurysms Hidden by Parent Artery or Its Branches : A Technical Note

    Get PDF
    A good working view is critical for safe and successful endovascular treatment of cerebral aneurysms. In a few cases, endovascular treatment of cerebral aneurysms may be challenging due to difficulty in obtaining a proper working view. In this report of 6 cases, we described the advantage of using a distal intracranial catheter (DIC) to achieve better visualization of cerebral aneurysms hidden by a parent artery or its branches. Between September 2017 and January 2021, we treated 390 aneurysms with endovascular techniques. In 6 cases in which it was difficult to obtain a proper working view, the DIC was placed distally close to the aneurysm in order to remove the parent artery projection from the working view and obtain better visualization of the aneurysm. Clinical and procedural outcomes and complications were evaluated. The position of the DIC was above the internal carotid artery siphon in the 6 cases. All aneurysms were successfully embolized. Raymond-Roy class 1 occlusion was achieved in all 4 unruptured aneurysms, while the result was class 2 in the 2 ruptured aneurysms. Placement of the DIC was atraumatic without dissections or significant catheter-induced vasospasm in all patients. Transient dysphasia was seen in 2 cases and transient aphasia in 1. Using this technique, we have found it possible to better visualize the aneurysm sac or neck and thereby treat cases we otherwise would have considered untreatable

    Expanded range of indications for Neuroform Atlas stent in the treatment of very small, wide-necked cerebral aneurysms

    No full text
    The purpose of this study was to investigate the range of indications for using the Neuroform Atlas stent. Between 2016 and 2020, we treated 20 females and 5 males for aneurysms with a diameter of less than 3 mm and an aspect ratio less than 1.5. The diameter of the parent arteries varied from 1.1 mm to 4.5 mm. There were 13 ruptured and 12 unruptured aneurysms. Double stent-assisted coiling was performed in 14 cases, and single stent-assisted coiling was performed in 11 cases. After deployment, the morphology of the Neuroform Atlas stents was analyzed in tapered or Y-shaped silicone tubes that simulated parent arteries. Radiological results were assessed 7 months and 2 years after the intervention using the Raymond-Roy scale. Clinical outcome was assessed 1 year after the intervention using the modified Rankin score. There were three fatal outcomes. One aneurysm was recoiled. The rate of class I aneurysm occlusion was registered in 21 patients at the last follow-up. At the end of the clinical follow-up period, a favorable outcome (modified Rankin scale 0 -1) was registered in nine patients with ruptured aneurysms. An analysis of the morphology of the stents deployed in the silicone tubes provided an explanation for the stability of the coil mass in the treated aneurysms. Our results suggest that the range of indications for use of the Neuroform Atlas stent can be expanded beyond the present range with regard to the diameter of the parent vessels and size of the aneurysms

    Variable Temporal Cerebral Blood Flow Response to Acetazolamide in Moyamoya Patients Measured Using Arterial Spin Labeling

    No full text
    Cerebrovascular reserve capacity (CVR), an important predictor of ischaemic events and a prognostic factor for patients with moyamoya disease (MMD), can be assessed by measuring cerebral blood flow (CBF) before and after administration of acetazolamide (ACZ). Often, a single CBF measurement is performed between 5 and 20 min after ACZ injection. Assessment of the temporal response of the vasodilation secondary to ACZ administration using several repeated CBF measurements has not been studied extensively. Furthermore, the high standard deviations of the group-averaged CVRs reported in the current literature indicate a patient-specific dispersion of CVR values over a wide range. This study aimed to assess the temporal response of the CBF and derived CVR during ACZ challenge using arterial spin labeling in patients with MMD. Eleven patients with MMD were included before or after revascularisation surgery. CBF maps were acquired using pseudo-continuous arterial spin labeling before and 5, 15, and 25 min after an intravenous ACZ injection. A vascular territory template was spatially normalized to patient-specific space, including the bilateral anterior, middle, and posterior cerebral arteries. CBF increased significantly post-ACZ injection in all vascular territories and at all time points. Group-averaged CBF and CVR values remained constant throughout the ACZ challenge in most patients. The maximum increase in CBF occurred most frequently at 5 min post-ACZ injection. However, peaks at 15 or 25 min were also present in some patients. In 68% of the affected vascular territories, the maximum increase in CBF did not occur at 15 min. In individual cases, the difference in CVR between different time points was between 1 and 30% points (mean difference 8% points). In conclusion, there is a substantial variation in CVR between different time points after the ACZ challenge in patients with MMD. Thus, there is a risk that the use of a single post-ACZ measurement time point overestimates disease progression, which could have wide implications for decision-making regarding revascularisation surgery and the interpretation of the outcome thereof. Further studies with larger sample sizes using multiple CBF measurements post-ACZ injection in patients with MMD are encouraged

    Complete functional recovery in a child after endovascular treatment of basilar artery occlusion caused by spontaneous dissection: a case report

    No full text
    Stroke caused by dissection of arteries of the vertebrobasilar system in children is still poorly investigated in terms of etiology, means of treatment, course of disease, and prognosis. The aim of this report was to describe the unusual course of a spontaneous dissection of the basilar artery (BA) in a child treated with endovascular techniques and to point out that the plasticity of the brain stem can fully compensate for structural damage caused by stroke. We report the case of a 15-year-old boy who suffered a wake-up stroke with BA occlusion caused by spontaneous dissection. A blood clot was aspirated from the false lumen and the true lumen re-opened, but the patient deteriorated a few hours later, and repeated angiography revealed that the intimal flap was detached, occluding the BA again. The lumen of BA was then reconstructed by a stent. Despite a large pons infarction, the patient was completely recovered 11 months after the onset. The case was analyzed with angiograms and magnetic resonance imaging, macroscopic and microscopic pathological analysis, computed tomographic angiography, magnetic resonance-based angiography, and diffusion tensor imaging. This case illustrates that applied endovascular techniques and intensive care measures can alter the course of potentially fatal brain stem infarction. Our multimodal analysis gives new insight into the anatomical basis for the plasticity mechanism of the brain stem

    Magnetic resonance imaging detected radiation-induced changes in patients with proton radiation-treated arteriovenous malformations

    No full text
    Background Treatment of intracranial arteriovenous malformations (AVMs) includes surgery, radiation therapy, endovascular occlusion, or a combination. Proton radiation therapy enables very focused radiation, minimizing dose to the surrounding brain. Purpose To evaluate the presence of radiation-induced changes on post-treatment MRI in patients with AVMs treated with proton radiation and to compare these with development of symptoms and nidus obliteration. Material and Methods Retrospective review of pre- and post-treatment digital subtraction angiography and MRI and medical records in 30 patients with AVMs treated with proton radiation. Patients were treated with two or five fractions; total radiation dose was 20–35 physical Gy. Vasogenic edema (minimal, perinidal, or severe), contrast enhancement (minimal or annular), cavitation and nidus obliteration (total, partial, or none) were assessed. Results 26 of 30 patients (87%) developed MRI changes. Vasogenic edema was seen in 25 of 30 (83%), abnormal contrast enhancement in 18 of 26 (69%) and cavitation in 5 of 30 (17%). Time from treatment to appearance of MRI changes varied between 5 and 25 months (median 7, mean 10). Seven patients developed new or deteriorating symptoms that required treatment with corticosteroids; all these patients had extensive MRI changes (severe vasogenic edema and annular contrast enhancement). Not all patients with extensive MRI changes developed symptoms. We found no relation between MRI changes and nidus obliteration. Conclusion Radiation-induced MRI changes are seen in a majority of patients after proton radiation treatment of AVMs. Extensive MRI changes are associated with new or deteriorating symptoms

    Positive correlation between occlusion rate and nidus size of proton beam treated brain arteriovenous malformations (AVMs)

    No full text
    <p><b>Background.</b> Proton beam radiotherapy of arteriovenous malformations (AVM) in the brain has been performed in Uppsala since 1991. An earlier study based on the first 26 patients concluded that proton beam can be used for treating large and medium sized AVMs that were considered difficult to treat with photons due to the risk of side effects. In the present study we analyzed the result from treating the subsequent 65 patients.</p> <p><b>Material and methods.</b> A retrospective review of the patients’ medical records, treatment protocols and radiological results was done. Information about gender, age, presenting symptoms, clinical course, the size of AVM nidus and rate of occlusion was collected. Outcome parameters were the occlusion of the AVM, clinical outcome and side effects.</p> <p><b>Results.</b> The rate of total occlusion was overall 68%. For target volume 0–2cm<sup>3</sup> it was 77%, for 3–10 cm<sup>3</sup> 80%, for 11–15 cm<sup>3</sup> 50% and for 16–51 cm<sup>3</sup> 20%. Those with total regress of the AVM had significantly smaller target volumes (p < 0.009) higher fraction dose (p < 0.001) as well as total dose (p < 0.004) compared to the rest. The target volume was an independent predictor of total occlusion (p = 0.03). There was no difference between those with and without total occlusion regarding mean age, gender distribution or symptoms at diagnosis. Forty-one patients developed a mild radiation-induced brain edema and this was more common in those that had total occlusion of the AVM. Two patients had brain hemorrhages after treatment. One of these had no effect and the other only partial occlusion from proton beams. Two thirds of those presenting with seizures reported an improved seizure situation after treatment.</p> <p><b>Conclusion.</b> Our observations agree with earlier results and show that proton beam irradiation is a treatment alternative for brain AVMs since it has a high occlusion rate even in larger AVMs.</p
    corecore