133 research outputs found
Investigations of the R5(Si(subscript x)Ge(subscript 1-x)4 intermetallic compounds by X-ray resonant magnetic scattering
Recommended from our members
Investigations of the R5(SixGe1-x)4 Intermetallic Compounds by X-Ray Resonant Magnetic Scattering
The XRMS experiment on the Gd{sub 5}Ge{sub 4} system has shown that, below the Neel temperature, T{sub N} = 127 K, the magnetic unit cells is the same as the chemical unit cell. From azimuth scans and the Q dependence of the magnetic scattering, all three Gd sites in the structure were determined to be in the same magnetic space group Pnma. The magnetic moments are aligned along the c-axis and the c-components of the magnetic moments at the three different sites are equal. The ferromagnetic slabs are stacked antiferromagnetically along the b-direction. They found an unusual order parameter curve in Gd{sub 5}Ge{sub 4}. A spin-reorientation transition is a possibility in Gd{sub 5}Ge{sub 4}, which is similar to the Tb{sub 5}Ge{sub 4} case. Tb{sub 5}Ge{sub 4} possesses the same Sm{sub 5}Ge{sub 4}-type crystallographic structure and the same magnetic space group as Gd{sub 5}Ge{sub 4} does. The difference in magnetic structure is that Tb{sub 5}Ge{sub 4} has a canted one but Gd{sub 5}Ge{sub 4} has nearly a collinear one in the low temperature antiferromagnetic phase. The competition between the magneto-crystalline anisotropy and the nearest-neighbor magnetic exchange interactions may allow a 3-dimensional canted antiferromagnetic structure in Tb{sub 5}Ge{sub 4}. The spin-reorientation transition in both Gd{sub 5}Ge{sub 4} and Tb{sub 5}Ge{sub 4} may arise from the competition between the magnetic anisotropy from the spin-orbit coupling of the conduction electrons and the dipolar interactions anisotropy
Factors affecting the rumen fluid foaming performance in goat fed high concentrate diet
Feeding high concentrate diets is highly prone to rumen bloat in ruminants, which is very common in production. This study explored the factors responsible for the occurrence of foamy rumen bloat. The experiment was conducted using goats as test animals, fed high concentrate diets and scored for rumen distension into high, medium and low bloat score groups. Rumen fluid was collected from 6 goats in each group separately. The foaming production, foam persistence, pH value, viscosity and the content of protein, total saccharide and mineral elements in rumen original fluid (ROL) were measured, and the protein and total saccharide content in rumen foam liquid (RFL) and rumen residual liquid (RRL) were determined. The results showed that the protein content in rumen original fluid and rumen foam liquid was significantly higher than that in rumen residual liquid (p < 0.05), and the protein content in rumen foam liquid was 10.81% higher than that in rumen original fluid. The higher the rumen bloat score, the higher the foam production, foam persistence, viscosity, protein, Ni, Mg, Ca, and K concentrations of the rumen original fluid, and the lower the PH and Na concentrations of the rumen original fluid; correlation analysis showed that the viscosity of the rumen original fluid was significantly and positively correlated with the foam production and foam persistence (p < 0.05). Foaming production and foam persistence of rumen original fluid were significantly and positively correlated with the contents of protein, total saccharide, K, Ca, Mg and Ni (p < 0.05). and negatively correlated with the content of Na (p < 0.05); after controlling other components those were significantly related to the foaming performance of rumen original fluid only protein still was significantly positively correlated with the foam persistence of rumen original fluid (P<0.05). In summary, the contents of protein, total saccharide and mineral elements in the rumen fluid had a significant effect on the foaming performance of rumen in ruminants, with protein playing a decisive role and the other components playing a supporting role. Reducing the content of protein in the diet in production is beneficial to reduce the occurrence of rumen bloat in ruminants
Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context
Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts
Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas
This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing
molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin
Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images
Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images
of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL
maps are derived through computational staining using a convolutional neural network trained to
classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and
correlation with overall survival. TIL map structural patterns were grouped using standard
histopathological parameters. These patterns are enriched in particular T cell subpopulations
derived from molecular measures. TIL densities and spatial structure were differentially enriched
among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial
infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic
patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for
the TCGA image archives with insights into the tumor-immune microenvironment
Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas
Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN
Comprehensive Experimental Study on the Gas Breakthrough Pressure and Its Implication for the Reservoir Performance
AbstractIt is challenging to interpret the gas breakthrough mechanisms, controlling factors, and its relationships with the reservoir parameters for unconventional reservoirs such as the gas shale, due to the accumulation characteristics of source-reservoir integration. Take the typical marine shale gas of the B field for example, we use the step-by-step (SBS) test to measure the gas breakthrough pressure of the water saturated shales, and investigate the influential factors such as the pore size distribution, mineral composition, and organic geochemical properties. Moreover, the implication of the gas breakthrough capability for the reservoir quality such as the porosity, permeability, the gas content, and the gas occurrence state are addressed. Based on our work, it is observed that the gas breakthrough capability in shale is influenced by many factors. Generally, the gas breakthrough pressure is positively with the amount of ductile minerals such as the clay and the plagioclase, but negatively with the amount of brittle minerals such as the quartz. In addition, the gas breakthrough pressure is decreased with the increase of the pore radius and the specific surface areas. What is more, the influences of geochemical properties on the gas breakthrough capability should not be neglected. Due to the development of organic pores in the kerogen, the gas breakthrough pressure is found to decrease with the increase of the total organic carbon content (TOC) and the residual carbon content (RC). The breakthrough pressure can be used as the significant parameter to indicate the reservoir quality of the shale gas. It is shown that the breakthrough pressure is inversely with the porosity, permeability, the total gas content, and the adsorbed gas content. It is practical and meaningful to measure and estimate the breakthrough pressure for the formation evaluation in shale gas reservoirs
Expression of CD44v6 and integrin-β1 for the prognosis evaluation of pancreatic cancer patients after cryosurgery
Abstract
Background
Many previous studies demonstrated that cell adhesion molecules CD44v6 and integrin-β1 had been extensively investigated as potential prognostic markers of various cancers. However, data in PC are scarce.
Methods
We now investigate CD44v6 and integrin-β1 mRNA expression in PBMC by a triplex real-time RT-PCR assay and protein expression in plasma by ELISA. All specimens were collected from 54 PC patients who received the treatment of cryosurgery as well as 20 healthy individuals (control).
Results
The mRNA and protein expression levels of CD44v6 and integrin-β1 in patients were significantly increased compared with control group (P<0.05). The high CD44v6 mRNA and protein expression were significantly correlated with clinical stage, tumor differentiation, LNM, liver metastasis and decreased median DFS (P<0.05), while the high integrin-β1 mRNA and protein expression were significantly correlated with clinical stage, LNM, liver metastasis and decreased median DFS (P<0.05). Clinical stage, LNM, liver metastasis, CD44v6 mRNA and protein expression were the independent predictors of survival in PC patients (P<0.05). Moreover, CD44v6 and integrin-β1 mRNA and protein expression levels were significantly decreased in patients in 3 months after cryosurgery (P<0.05). No significant difference was found in CD44v6 mRNA and protein expression between patients in 3 months after cryosurgery and control group (P>0.05).
Conclusion
CD44v6 and integrin-β1 mRNA and protein expression in blood may serve as biomarkers for the development and metastasis of PC, and as prognostic indicators for PC. They may become useful predictors in assessing outcome of PC patients after cryosurgery.
Virtual slides
The virtual slides for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/4035308681009006
</jats:sec
Genome-wide variation study and inter-tissue communication analysis unveil regulatory mechanisms of egg-laying performance in chickens
Egg-laying performance is of great economic importance in poultry, but the underlying genetic mechanisms are still elusive. In this work, we conduct a multi-omics and multi-tissue integrative study in hens with distinct egg production, to detect the hub candidate genes and construct hub molecular networks contributing to egg-laying phenotypic differences. We identifiy three hub candidate genes as egg-laying facilitators: TFPI2, which promotes the GnRH secretion in hypothalamic neuron cells; CAMK2D, which promotes the FSHβ and LHβ secretion in pituitary cells; and OSTN, which promotes granulosa cell proliferation and the synthesis of sex steroid hormones. We reveal key endocrine factors involving egg production by inter-tissue crosstalk analysis, and demonstrate that both a hepatokine, APOA4, and an adipokine, ANGPTL2, could increase egg production by inter-tissue communication with hypothalamic-pituitary-ovarian axis. Together, These results reveal the molecular mechanisms of multi-tissue coordinative regulation of chicken egg-laying performance and provide key insights to avian reproductive regulation.</p
- …
