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Feeding high concentrate diets is highly prone to rumen bloat in ruminants, 
which is very common in production. This study explored the factors responsible 
for the occurrence of foamy rumen bloat. The experiment was conducted 
using goats as test animals, fed high concentrate diets and scored for rumen 
distension into high, medium and low bloat score groups. Rumen fluid was 
collected from 6 goats in each group separately. The foaming production, foam 
persistence, pH value, viscosity and the content of protein, total saccharide and 
mineral elements in rumen original fluid (ROL) were measured, and the protein 
and total saccharide content in rumen foam liquid (RFL) and rumen residual 
liquid (RRL) were determined. The results showed that the protein content in 
rumen original fluid and rumen foam liquid was significantly higher than that in 
rumen residual liquid (p  <  0.05), and the protein content in rumen foam liquid 
was 10.81% higher than that in rumen original fluid. The higher the rumen bloat 
score, the higher the foam production, foam persistence, viscosity, protein, Ni, 
Mg, Ca, and K concentrations of the rumen original fluid, and the lower the PH 
and Na concentrations of the rumen original fluid; correlation analysis showed 
that the viscosity of the rumen original fluid was significantly and positively 
correlated with the foam production and foam persistence (p  <  0.05). Foaming 
production and foam persistence of rumen original fluid were significantly and 
positively correlated with the contents of protein, total saccharide, K, Ca, Mg 
and Ni (p  <  0.05). and negatively correlated with the content of Na (p  <  0.05); 
after controlling other components those were significantly related to the 
foaming performance of rumen original fluid only protein still was significantly 
positively correlated with the foam persistence of rumen original fluid (P<0.05). 
In summary, the contents of protein, total saccharide and mineral elements in 
the rumen fluid had a significant effect on the foaming performance of rumen in 
ruminants, with protein playing a decisive role and the other components playing 
a supporting role. Reducing the content of protein in the diet in production is 
beneficial to reduce the occurrence of rumen bloat in ruminants.
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1 Introduction

In the modern intensive farming model, the use of high concentrate diet (HCD) is often 
increased to improve production performance (1, 2). Horse used for meat production are often 
fed a starch-based concentrate feed in many European countries to shorten the fattening 
period. However, long-term feeding HCD tends to increase the total amount of volatile fatty 
acids and valeric acid in the horse’s intestinal tract, which reduces the integrity of the intestinal 
mucosa, thus leading to gastrointestinal inflammation (3, 4). Offering total mixed rations 
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(TMR) to ruminants, promote synchronized intake of concentrate and 
roughage can reduce the risk of rumen toxicity and promote animal 
health and welfare (5). However, long-term feeding of HCD can lead 
to digestive diseases, rumen bloat is one of the common digestive 
diseases. One study found that digestive-related mortality on 
rangelands accounted for 19.5–28.4% of all mortality compared to 
mortality from other causes, with 96.3% of digestive mortality 
diagnosed as rumen bloat (6). In most cases, rumen bloat leads to the 
death of ruminants due to digestive diseases. Early studies believed 
that too much and too fast gas produced by rumen fermentation was 
the main reason of rumen bloat induced by HCD. Rumen 
microorganisms decompose starch to produce low-grade fatty acids, 
carbon dioxide and methane (7), and use monosaccharides and 
disaccharides produced by feed decomposition to synthesize glycogen 
for storage in microorganisms. Therefore, compared with fiber 
substances, equivalent amount of starch produces more gas in the 
rumen, so the rumen is prone to bloat (8). The starch content in 
ruminants rises in accordance with the increased proportion of 
concentrate in their diet, leading to an elevated incidence of rumen 
bloat. However, studies have found that although the digestion rate 
and gas production rate of pressed barley in the rumen are faster than 
that of whole barley, the incidence of rumen bloat of pressed barley 
diet is significantly lower than that of whole barley diet (9, 10). In 
addition, studies have shown that rumen fermentation rate and degree 
of wheat is higher than that of barley, sorghum or corn (11). However, 
recent studies reported that rumen bloat is caused by foam-encased 
gases produced by rumen fermentation that cannot be  properly 
expelled (12–14). Protein (15), polysaccharide (16), mineral ions (17), 
etc. coming from diet, rumen microbial synthesis and rumen 
microbial fermentation diet in rumen fluid may act as the foaming 
agent or foam stabilizer. But up to now, the key components in rumen 
fluid that affect the foaming production or foam persistence have not 
been determined. Our study hypothesized that factors affecting rumen 
foam production and foam stability may be related to the nutrient 
composition in high concentrate. In this study, the components 
affecting the foaming performance of rumen fluid in goats fed with 
HCD were analyzed. The results can lay a foundation for the rational 
application of HCD in production.

2 Materials and methods

For The research procedure used in current study was approved 
by Animals policy and welfare committee of Agricultural research 
organization of Sichuan province China and in agreement with rules 
of the Animal Care and Ethical Committee of the Sichuan Agricultural 
University (Ethics Approval Code: SCAUAC201608-5).

2.1 Experimental animals and management

The animal experiments were conducted at the farm of the Animal 
Nutrition Institute, Sichuan Agricultural University, Ya’an, Sichuan 
Province, China. The experimental animals were 26 healthy Jianzhou 
big-eared goats, aged 8–10 months, weighing about 30 kg, which were 
immunized and dewormed before the experiment. During the 
experiment, the goats were kept in a single pen and feed twice a day 
(feeding at 9:00  in the morning and at 17:00  in the afternoon, 

respectively) to ensure that the goats eat freely, and enable the goats to 
drink freely.

2.2 Experimental diet

The experimental diet were configured in according with the to 
the Chinese Feeding Standard of Meat-producing Sheep and Goats 
(NY/T816-2004). Before the start of the experiment, the goats were 
fed with oat hay, and the diet was gradually transitioned to a total 
mixed ration with a concentrate-roughage ratio of 80:20 in 14 days 
(see Table 1 for the composition and nutrient level of the diet).

2.3 Chemical analysis

Chemical analysis was carried out according to the methodology 
described in the literature (18, 19): Diet samples were dried in an oven 
at 65°C and passed through a 1-mm sieve before determining the DM 
was determined. Crude protein (CP) content was determined by 
Kjeldahl method. Ether extract (EE) was determined by Soxhlet 
extraction method as described by AOAC (20). Ash was determined 
by scorching in a muffle furnace at 550°C. Neutral detergent fiber 
(NDF) and acid detergent fiber (ADF) were determined using the 
method of Van Soest et al. (21). In order to avoid the interference of 
aflatoxin (AFB1) on the experimental results, the content of aflatoxin 
in feed ingredients was effectively controlled in this study. Control of 
aflatoxins in feed at levels well below the established safety limits for 
animal feed. This precaution was taken to safeguard the health and 
welfare of the animals. Aflatoxin contamination in animal feed can 
cause serious health hazards, including effects on growth and damage 
to the liver by maintaining feed quality within safe limits (22), we aim 

TABLE 1 Composition and nutrient levels of experimental diet (basis on 
DM).

Ingredients % Nutrients %

Corn 48.25 CP 15.93

Wheat bran 7.30 EE 5.23

Soybean meal 10.50 NDF 19.55

Rapeseed meal 2.00 ADF 7.34

Cottonseed cake 8.00 Ca 0.76

Oat grass 4.00 P 0.49

Wheat straw 2.00 Starch 36.18

Alfalfa hay 14.00 DE (Mcal.kg−1) 2.88

Calcium carbonate 1.00

Calcium 

hydrophosphate
0.45

NaCl 0.50

NaHCO3 1.00

Premix1 1.00

Total 100.00

1The premix provided the following per kg of diet: vitamin A 2200 IU; vitamin D 250 IU; 
vitamin E 20 IU; Fe 40 mg; Cu 10 mg; Zn 30 mg; Mn 40 mg; I 0.8 mg; Se 0.2 mg; Co 0.11 mg.
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to minimize the potential impact of aflatoxins on the results 
of research.

2.4 Bloat scoring and sample collection

A 20-day feeding trial was performed. The 14th-19th days of the 
feeding trial, animals were scored for bloat 2-3 h after morning feeding 
daily, three raters scored the animals’ bloat on a 0–5 severity scale 
(From 0 to 5, the severity of bloat increased): 0 = no foam; 1 = slight 
foam, but no pressure and abdominal bloat; 2 = some foam, enough 
pressure to expel foam, but no abdominal bloat; 3 = some foam, 
enough pressure to cause abdominal bloat on one side; 4 = some foam, 
enough pressure to cause abdominal bloat on right and left sides; 
5 = some foam, severe abdominal bloat, and in a state of severe 
compression (23). The average of the three scorers’ scores was taken 
as the bloat score for each goat. The mean and standard deviation (SD) 
of bloat score (BS) was calculated for each goat. Then, the SD values 
above and below the mean were used to group animals into high-
bloat-score (HBS, BS > mean + 0.5 × SD) group, middle-bloat-score 
(MBS, mean 0.5 × SD < BS < mean + 0.5 × SD) group and low-bloat-
score (LBS, BS < mean – 0.5 × SD) group according to the literature 
described method (24, 25). Rumen contents was collected from six 
goat in each group separately after 3 h after the 20th day morning 
feeding: The selected goats were immobilized and the rumen contents 
were collected using a stomach tube with a vacuum pump, the first 
30 mL of contents pumped were discarded. Afterwards, 50 mL of 
rumen contents were collected and the collected samples were 
photographed and observed. The pH value was immediately measured 
using a portable magnetic-thunder pH meter (PHBJ-260, China), 
were filtered through four layers of gauze to obtain the rumen fluid 
and after centrifugation (3,000 g, 2 min), the rumen supernatant was 
collected and defined as the rumen original liquid (ROL) in this 
experiment. The ROL was stored at - 20°C for subsequent analysis.

2.5 Determination of foaming performance

The improved Roche method combined with the Rudin method 
was used to measure the foamability and foam stability of ROL (14, 
26). The foaming power measured by the improved Roche method 
is expressed in terms of the volume of foam obtained under specific 
experimental conditions. The ROL was first treated in a constant 
temperature water bath at 39°C for half an hour, introduce 30 mL 
of ROL into a 100 mL airtight separatory funnel tube, slowly inject 
CO2 gas into the ROL, transforms ROL into a massive foam and 
continue ventilation at a pressure of 1 Pascal (Pa) for 60 s. Foaming 
power is related to the decay of foam volume within 5 min after 
foam formation. At the end of inflation, record the number of 
milliliters of foam formed at 30 s, 1 min, and 5 min after stopping 
the liquid flow, and the average value of the three time points is 
taken as the foaming production (mL) of the ROL. Open the 
sampling valve of the separatory funnel to let the rumen fluid flow 
out slowly, and collect it with a 50 mL beaker. When the foam is 
about to flow out, close the sampling valve immediately, and the 
fluid collected at this time is defined as rumen residual liquid 

(RRL). The Rudin method measures foam stability with attention 
to the effects of temperature, ventilation rate, gas type, and other 
factors. After ventilating to convert ROL to foam, The time required 
for the foam column to collapse by itself until all the foam 
completely disappears is used as an indicator of foam stability, 
expressed in foam persistence (min), each sample was measured 3 
times and the average value was taken. The liquid formed after the 
collapse of the foam column was collected and defined as rumen 
foam liquid (RFL).

2.6 Determination of protein content

Coomassie blue staining method (14) was used to determine the 
protein content in the ROL, RRL and RFL, respectively. The brief 
process is: take 1 mL of liquid, centrifuge (10,000 g, 10 min) and take 
the supernatant and dilute it with normal saline at a ratio of 1:3. Dilute 
the Coomassie Brilliant Blue storage solution with distilled water at a 
ratio of 1:4. Add 1.5 mL of diluted Coomassie Brilliant Blue working 
solution to 25 μL of sample supernatant., shake and mix. After 
standing at room temperature for 10 min, the OD595nm value was 
measured under a microplate reader.

2.7 Determination of viscosity

The dynamic viscosity of ROL was determined by capillary 
viscometer (GB/T 22235–2008) (27). The process is: take 5 mL of ROL 
and add it to the inlet of the viscometer, and let it stand in a water bath 
at (39 ± 0.1) °C for 5 min. Use the ear washing ball to suck the liquid, 
and let the liquid flow down naturally under the action of gravity after 
the rumen fluid is sucked up to the scale line. Use a stopwatch to 
record the time t1 when the ROL flows through the upper and lower 
scale lines of the viscometer, and repeat 3 times to get the average 
value. Finally, take 5 mL of absolute ethanol and repeat the above steps 
to obtain the time t2, and finally calculate the liquid viscosity 
according to the formula.

2.8 Determination of saccharide content

The phenol-sulfuric acid method (14) was used to measure 
the total saccharide content in ROL, RRL and RFL. The process 
is: take the glucose standard solution and configure the 
concentration of the standard curve according to the instructions. 
Take 1 mL of liquid, centrifuge for 10 min to get supernatant, 
dilute 1,000 times with normal saline for later use. Take 2 mL of 
the standard substance of each concentration and the sample to 
be  tested, add 1 mL of the pre-prepared 5% phenol solution, 
shake and mix. Slowly add 5 mL of concentrated sulfuric acid 
along the tube wall, shake well, and let stand at room temperature 
for 30 min. A microplate reader (SpectraMax-190, Molecular 
Devices, United States) was used to measure the OD490nm value 
of the standard and samples, and calculate the total saccharide 
concentration of the samples.
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2.9 Determination of mineral element 
content

The concentrations of main mineral elements (Na, K, Ca, Mg, S, 
P, Cl) and trace mineral elements (Fe, Cu, Mn, Zn, Ni) in ROL were 
determined by an Agilent Technologies 7500c inductively coupled 
plasma mass spectrometry (28) (ICP-Ms) system (Agilent 
Technologies, Santa Clara, CA). According to the test results, the 
anion and cation balance value (CAD), the sum of the concentration 
of cations (Na, K, Ca, Mg, Fe, Cu, Mn, Zn, Ni) and the sum of the 
concentration of anions (S, P, Cl) was calculated, respectively. The 
CAD unit is mEq/Kg, and the calculation formula is CAD = (Na/23+ 
K/39) - (Cl/35 + S/16) (29).

2.10 Calculations and statistical analyses

All data were first preliminarily organized using Excel 2016. Using 
SPSS 23.0 statistical software, the Shapiro–Wilk test and Levene’s test 
were first performed for normality and chi-square test (30). A one-way 
ANOVA was performed on the differences between groups. Duncan’s 
multiple comparisons were then performed. And the Pearson method 
in SPSS 23.0 was used to perform correlation analysis and partial 
correlation analysis between foaming performance and components 
of rumen original fluid. The differences were considered statistically 
significant when p < 0.05. All data were presented as 
mean ± standard deviation.

3 Results

3.1 Comparison of foaming characteristics

Compared to the LBS group,the HBS and MBS groups exhibited 
significantly higher foaming production,and viscosity and significantly 
lower PH values. Moreover, the HBS group demonstrated notably 
higher foaming production, pH values was significantly lower than 
that of the MBS group. Additionally, the foam persistence of the LBS 
group was significantly lower than both the HBS and MBS groups 
(p < 0.05) (Table 2).

3.2 Comparison of protein and total 
saccharide content

The protein content in the ROL, the difference among the three 
groups all reached a significant level (P < 0.05), and the higher the 
bloat score, the higher the protein content in the ROL (Table 3). The 
protein content in the RFL was significantly lower in the MBS group 
and in the LBS group than in the HBS group (P < 0.05), but there was 
no significant difference between the MBS group and the LBS group 
(P > 0.05). The protein content in RRL had no significant difference 
among the three groups (P > 0.05). The total saccharide content in 
ROL, RFL and RRL was significantly lower in MBS group and LBS 
group than in HBS group (P < 0.05), but there was no significant 
difference between MBS group and LBS group (P > 0.05).

Regardless of grouping effect, the comparison of protein and total 
saccharide content among ROL, RRL and RFL was presented in 
Table 4. The protein content, ROL and RFL were significantly higher 
than that of RRL (P < 0.05), although the difference between ROL and 
RFL was not significant (P > 0.05), but in value, RFL was 10.81% 
higher than ROL. There was no significant difference in total 
saccharide content among ROL, RRL and RFL (P > 0.05) (Table 4).

3.3 Foaming performance and content of 
mineral elements

The content of Ni in HBS group and MBS group was significantly 
higher than that in LBS group (P < 0.05); the content of Na in HBS 
group and MBS group was significantly lower than that in LBS group 
(P < 0.05); The content of Ca in the HBS group was significantly higher 
than that in the MBS group and the LBS group (P < 0.05); the content 

TABLE 2 The foaming performance, pH value and viscosity of rumen 
original liquid (n  =  6).

Items Group1

LBS2 MBS2 HBS2

Foaming 

production (mL)
11.97 ± 3.33c 17.31 ± 0.70b 23.76 ± 4.60a

Foam 

persistence 

(min)

15.45 ± 7.78b 29.91 ± 5.53a 32.76 ± 5.96a

pH value 6.36 ± 0.06c 6.16 ± 0.03b 6.00 ± 0.16a

Viscosity 

(mpa.s)
52.74 ± 5.66c 73.30 ± 8.48b 97.67 ± 11.09a

1In the same row, values with same or no small letter superscripts meaning no significant 
difference (p > 0.05), at the same time different small letter superscripts meaning significant 
difference (p < 0.05). 2LBS, low rumen bloat score; MBS, medium rumen bloat score; HBS, 
high rumen bloat score.

TABLE 3 The comparison of protein and total saccharide content in the 
rumen liquid among groups (n  =  6).

Items Group1

LBS2 MBS2 HBS2

Protein content (g/L)

Rumen original 

liquid
4.4 ± 0.47c 5.15 ± 0.35b 6.25 ± 0.69a

Rumen foam 

liquid
5.09 ± 0.41b 5.66 ± 0.37b 6.78 ± 0.65a

Rumen 

residual liquid
2.97 ± 0.43 2.87 ± 0.78 3.43 ± 0.97

Total saccharide content (g/L)

Rumen original 

liquid
5.51 ± 0.99b 8.75 ± 2.17b 18.14 ± 4.88a

Rumen foam 

liquid
5.65 ± 0.99b 8.74 ± 1.9b 17.97 ± 5.08a

Rumen 

residual liquid
5.33 ± 0.74b 8.43 ± 1.88b 18.05 ± 4.85a

1In the same row, values with same or no small letter superscripts meaning no significant 
difference (P > 0.05), at the same time different small letter superscripts meaning significant 
difference (P < 0.05). 2LBS, low rumen bloat score; MBS, medium rumen bloat score; HBS, 
high rumen bloat score.
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of Mg in the HBS group and the MBS group significantly higher than 
the LBS group (P < 0.05); the sum of the cation concentrations in the 
HBS group and the MBS group was significantly higher than that in 
the LBS group (P < 0.05), and the sum of the cation concentrations in 
the HBS group was significantly higher than that in the MBS group 
(P < 0.05) (Table 5).

3.4 Correlation analysis between foam 
properties and rumen fluid properties

The pH value of rumen fluid was significantly negatively 
correlated with its foaming production and foam persistence 
(P < 0.05), and the viscosity was significantly positively correlated with 
foaming production and foam persistence (P < 0.05) (Table 6).

3.5 Correlation analysis of foaming 
performance and components

There was a significant positive correlation between the protein 
concentration in the ROL and the foaming production and foam 
persistence of ROL (P < 0.05), which were also significant positive 
correlation (P < 0.05) with the total saccharide concentration of rumen 
fluid (Table 7).

The content of Ni in trace mineral elements was significantly 
positively correlated with the foaming production and foam 
persistence of rumen fluid (P < 0.05); the content of Na in main 
mineral elements was significantly Negatively correlated with the 
foaming production and foam persistence of rumen fluid 
(P < 0.05); the content of K, Ca, Mg in the main mineral elements 
and the foaming production and foam persistence of the rumen 
fluid were significantly positively correlated (P < 0.05); There was 
a significant positive correlation between the sum of cations and 
the foam production and foam persistence of rumen fluid 
(P < 0.05) (Table 7).

3.6 Analysis of partial correlation between 
foaming production performance and 
rumen fluid components

Correlation analysis was performed on the components in Table 7 
those were significantly correlated with the foaming performance of 
the rumen fluid. The results showed that after controlling the influence 
of other components, only the protein and the foam persistence was 
significantly positively correlated (p < 0.05). The correlation between 
other components and rumen foaming production and foam 
persistence, and the correlation between protein and foaming 
production were no longer significant (p > 0.05). And compared with 
the correlation analysis, the correlation between the protein and the 
foam persistence in the partial correlation analysis decreased (Table 8).

4 Discussion

The current study shows that HCD leads to swelling and 
enlargement of the foam in the rumen, which hinders the expulsion 
of rumen fermentation gases, thus leading to rumen bloat (31). In the 
present experiment, a large amount of foam was also observed during 
the collection of rumen fluid from highly grouped goats. There is a 
lack of research on the causes of rumen foam formation, our study 
examines factors affecting rumen foam formation and foam stability 
with the aim of reducing rumen bloat in ruminant production through 
nutritional modulation.

TABLE 4 The comparison of protein and total saccharide content among 
rumen original liquid, rumen foam liquid and rumen residual liquid 
(n  =  18).

Items Protein content 
(g/L)1

Total saccharide 
content (g/L)1

Rumen original 

liquid
5.27 ± 0.92a,1 10.80 ± 6.26

Rumen foam liquid 5.84 ± 0.86a 10.79 ± 6.16

Rumen residual 

liquid
3.09 ± 0.75b 10.61 ± 6.27

1The same column of data with the same or no letter indicates that the difference is not 
significant (p > 0.05), and the same column of data with different shoulder letters indicates 
that the difference is significant (p < 0.05).

TABLE 5 Contents of mineral elements in rumen fluid (n  =  6).

Item Group

LBS2 MBS2 HBS2

Fe (mg/Kg) 40.24 ± 10.271 32.98 ± 6.92 44.84 ± 11.63

Cu (mg/Kg) 2.208 ± 0.67 1.596 ± 0.41 2.26 ± 0.29

Mn (mg/Kg) 16.7 ± 4.20 14.72 ± 2.61 15.56 ± 4.51

Zn (mg/Kg) 1.25 ± 0.38 0.906 ± 0.08 1.304 ± 0.35

Ni (mg/Kg) 0.154 ± 0.05b 0.236 ± 0.02a 0.28 ± 0.08a

Na (mg/Kg) 3,484 ± 41.59b 3,482 ± 8.36a 3,362 ± 61.81a

K (mg/Kg) 2090 ± 22.36b 2,142 ± 13.04b 2,272 ± 69.79a

Ca (mg/Kg) 351.2 ± 93.22b 418 ± 50.77b 509.2 ± 24.68a

Mg (mg/Kg) 78.84 ± 20.69b 136.6 ± 17.99a 151.8 ± 40.75a

S (mg/Kg) 306.4 ± 98.54 235.2 ± 22.84 278.6 ± 45.44

P (mg/Kg) 1966 ± 243.88 1940 ± 266.08 1984 ± 291.08

Cl (mg/Kg) 286.89 ± 53.76 297.16 ± 58.87 316.48 ± 63.37

CAD (mEq/Kg) 4980.71 ± 132.34 5091.64 ± 50.99 5038.92 ± 88.53

Sum of Cation 

(mg/Kg)
490.59 ± 119.55c 605.04 ± 65.78b 725.24 ± 38.31a

Sum of Anion 

(mg/Kg)
8133.29 ± 311.57 8096.36 ± 287.72 8213.08 ± 323.19

1In the same row, values with same or no small letter superscripts meaning no significant 
difference (P > 0.05), at the same time different small letter superscripts meaning significant 
difference (P < 0.05). 2LBS, low rumen bloat score; MBS, medium rumen bloat score; HBS, 
high rumen bloat score.

TABLE 6 Correlation analysis of pH value and viscosity with foaming 
production and foam persistence of rumen fluid (n  =  18).

Items Foaming 
production (mL)

Foam persistence 
(min)

pH value −0.70** 1 −0.82**

Viscosity (mpa.s) 0.96** 0.76**

1Pearson correlation analysis was used for correlation analysis, *P<0.05, **P<0.01.
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4.1 PH value and rumen foam

Previous studies have shown that when ruminants were fed HCD, 
the pH value in the rumen usually decreases (32–35) due to the 
accumulation of VFAs produced by fermentation of rumen 
microorganisms (36, 37). This was also verified in the present 
experiment. The pH value of all the samples tested in this study was 
below 6.5, and it was also found that the pH value of the rumen fluid 
was significantly negatively correlated with the foaming production 
and foam persistence (P < 0.05) (Table 2), which may be due to the fact 
that pH affects the hydrophilicity of the headgroups of the solution, 
leading to structural changes in the film of the foam fluid (38). This 
result suggests that the lower the rumen pH value, the higher risk of 
developing foamy rumen bloat, which is consistent with the higher 
incidence of rumen bloat in production with higher ratio of 
dietary concentrate.

4.2 Viscosity and rumen foam

The viscosity of the rumen fluid was significantly positively 
correlated with the foaming production and foam persistence of the 
goats fed the HCD (P < 0.05) (Table 7). Previous studies have shown 
that the higher the viscosity of a liquid, the more stable the foam it 
produces (39). Lewis et al. (40) also showed that improving liquid 

viscosity has a positive impact on the stability of liquid foam, which is 
consistent with the results of this study. Cheng et al. (41) believed that 
a soluble mucopolysaccharide secreted by bacteria in the rumen 
increased the viscosity of rumen fluid. This soluble 
mucopolysaccharide was an exopolysaccharide produced by microbial 
fermentation. However, in this study, the high viscosity of rumen fluid 
may also be related to the high proportion of corn, meal and cake 
material in the diet, because these feedstuffs also contain a high 
proportion of soluble non-starch polysaccharides (such as β-glucan, 
arabinoxylan, etc). Dissolution of endosperm cell wall macromolecules 
NSP in high concentrate feeds alters the molecular chain length, 
leading to an increase in viscosity (42). The viscosity of rumen fluid is 
elevated by the increase in NSP content in HCD, resulting in a large 
amount of stable foam in the rumen. Previous studies have shown that 
NSP enzymes are able to cleave the long chain structure of NSP (43), 
which reduces the viscosity of chowders in the gastrointestinal tract 
of animals. This provides a new idea to reduce the occurrence of 
rumen bloat by altering the viscosity of rumen fluid.

4.3 Protein and rumen foam

The present study found that the protein content in the RFL was 
much higher than that in the ROL and RRL (P<0.05), which indicated 
that the protein could be enriched in the rumen foam, which was 
consistent with the study of Ying et  al. (44). As the skeleton 
component of foam, protein plays a vital role in maintaining the 
stability of rumen foam. Proteins are low-activity surfactants that can 
be adsorbed at the air-liquid interface and be carried into the foam, 
where they are finally enriched in the foam liquid. When its peptide 
chain is stretched on the foam liquid surface, it will form a 
two-dimensional protective network through the interaction of 
intramolecular and intermolecular forces, which can maintain the 
stability of the foam. Since true protein in ruminant saliva is almost 
negligible, rumen protein can only be  derived from dietary and 
microbial sources. Although rumen microorganisms can synthesize 
a large number of bacterial proteins every day, there is no clue that 
rumen foam formation is related to bacterial proteins so far. Rumen 

TABLE 7 Correlation analysis between foaming performance and 
components of rumen original fluid (n  =  18).

Items Foaming performance of rumen 
original fluid

Foaming 
production (mL)

Foam persistence 
(min)

Protein (g/L) 0.90** 0.79**

Total saccharide (g/) 0.73** 0.56*

Fe (mg/Kg) 0.36 0.19

Cu (mg/Kg) 0.24 0.01

Mn (mg/Kg) 0.17 −0.16

Zn (mg/Kg) 0.38 0.04

Ni (mg/Kg) 0.81** 0.58*

Na (mg/Kg) −0.90** −0.52*

K (mg/Kg) 0.96** 0.62*

Ca (mg/Kg) 0.88** 0.68**

Mg (mg/Kg) 0.55* 0.76**

S (mg/Kg) 0.15 −0.13

P (mg/Kg) 0.17 0.24

Cl (mg/Kg) 0.40 0.3

CAD 2 (mEq/Kg) −0.467 −0.168

The sum of the 

cations (mg/Kg)
0.84** 0.75**

The sum of the 

anions (mg/Kg)
0.33 0.29

1Pearson correlation analysis was used for correlation analysis, *P<0.05, **P<0.01.2. CAD, 
anion and cation balance value.

TABLE 8 Partial correlation analysis between foaming performance and 
components of rumen fluid.

Items Foaming performance of rumen fluid

Foaming 
production (mL)

Foam persistence 
(min)

Protein (g/L) 0.49 0.75*

Total saccharide 

(g/L)
−0.69 −0.33

Ni (mg/Kg) 0.47 0.10

Na (mg/Kg) −0.51 −0.45

K (mg/Kg) 0.43 −0.56

Ca (mg/Kg) 0.63 0.52

Mg (mg/Kg) 0.58 0.62

The sum of the 

cations (mg/Kg)
−0.55 0.50

1Pearson correlation analysis was used for correlation analysis, *P<0.05, **P<0.01.
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microorganisms can also synthesize a large number of secreted 
proteins. If the formation of rumen foams is related to the secreted 
proteins of microorganisms, and only high-concentrate diet can 
cause the formation of a large number of rumen foams, it can 
be  inferred that high-concentrate diet may affect the microbial 
community structure of the type or quantity of secreted proteins by 
changing the structure and composition of rumen microorganisms, 
and ultimately induce rumen foams. Whether this conjecture is 
correct remains to be proved. However, previous studies have shown 
that soluble protein level in feed plays a role in rumen bloating, and 
reducing soluble protein level in feed can reduce the risk of rumen 
bloating (45). The application of some antinutritional factors can 
reduce soluble proteins in the rumen, for example, water-soluble 
condensed tannins can bind to soluble proteins and convert them 
into condensed tannin-bound forms of proteins, thus reducing the 
amount of soluble proteins in the rumen and reducing the production 
of rumen foam (46). The key to reducing the incidence of rumen 
bloat is to control the amount of soluble protein in the rumen, which 
requires research into better nutritional strategies to counteract it.

4.4 Total saccharides and rumen foam

In this experiment, although the total saccharide content in the 
rumen fluid has a certain facilitating effect on improving the 
foaming production and foam persistence of the rumen fluid, the 
total saccharide is not significantly enriched in the foam fluid, but 
is more uniformly dispersed in the RFL, RRL and ROL, this is the 
same result as Michael et al. (44). Generally speaking, during the 
formation of foam, substances in the liquid that are conducive to 
foaming will be  adsorbed on the surface of the foam, such as 
protein, which will change the surface activity of the foam and affect 
the ability of the foam to drain liquid, thus affecting the foam 
stability. The reason why carbohydrates could not be enriched in 
foam fluid may be  that they are low polar molecules and thus 
cannot be  adsorbed. Soluble polysaccharides have a high 
characteristic viscosity, which when dissolved in water leads to an 
increase in solution viscosity (47), and this increase in viscosity 
slows down the liquid flow rate at the surface of the foam, thus 
contributing to the stabilization of the foam. Previous studies have 
found that rumen microbial mucopolysaccharides produced by 
rumen bacterial fermentation are the main substances leading to 
the increase in rumen viscosity, and that such mucopolysaccharides 
may contribute to the generation of rumen foams, but this role has 
not been studied yet (31).

4.5 Minerals and rumen foam

Mineral elements play a very important role in maintaining the 
normal physiological activities of animals (48–51). For example, the 
distribution of Ca in extracellular fluid and soft tissue is related to the 
blood agglutination, membrane permeability, muscle contraction, 
nerve impulse conduction, secretion of some hormones, and activity 
and stability of some enzymes (49). K is the main cation in the 
intracellular fluid, which participates in the physiological activities of 
maintaining osmotic pressure to regulate acid–base and water balance. 
Fe is an essential component of many proteins related to the transport 

and utilization of oxygen. These proteins include hemoglobin, 
myoglobin, and many cytochromes and iron sulfur proteins in the 
electron transport chain. Fe is also a component or activator of several 
mammalian enzymes (49–51) Therefore, macro and trace mineral 
elements are generally supplemented in ruminant feed. This 
experiment found that mineral elements also have a significant impact 
on the foaming performance of rumen fluid. Compared with anions, 
mineral cations have a greater impact on the foaming performance of 
rumen fluid. The contents of Ni, Mg, Ca and K in the rumen fluid 
detected in this test, as well as the sum of cations, were significantly 
positively correlated with the foaming production and foam 
persistence of the rumen fluid (P<0.05) (Table 7). Harris et al. (17) 
reported that trace amounts of mineral cations and mineral hydroxides 
would affect the foam stability in some cases, the concentration of Ni2+ 
would affect the stability of rumen foam, and the reduction of foam 
stability was accompanied by the decrease of Ni2+ concentration in the 
foam. Smith et al. (52) found that Ca2+ or Mg2+ solution was used to 
spray alfalfa foliage. After eating the alfalfa, the incidence of rumen 
bloat of lambs increased significantly, and the concentrations of Ca2+ 
and Mg2+ of animals with bloat increased significantly increased. 
Majak et  al. (53) found that the occurrence of bloat in cattle was 
related to the increase and decrease of K+ and Na+ concentrations in 
the rumen. The above research results were consistent with the results 
of this experiment. It is worth noting that, unlike other cations, Na+ 
showed a significant negative correlation with the foaming 
performance of rumen fluid in this study, suggesting that increasing 
the concentration of Na in HCD may significantly reduce the 
occurrence of rumen bloat Rate. This finding can be  used in the 
development of technologies to prevent high concentrate diet 
rumen bloat.

Rumen bloat can have a direct impact on animal health, which in 
turn can lead to economic losses. In studies by Rumbaugh (54) and 
Tanner et  al. (55), the average annual loss due to rumen bloat in 
Australia was estimated at $180 million, while in the United States it 
was estimated at more than $310 million per year. These figures 
underscore the financial strain imposed on livestock production due 
to rumen bloat. It is vital to find out what is causing the bloat. In this 
study, the influence of various components of rumen fluid on the 
interrelationship of foam formation was analyzed in depth. 
Correlation analyses emphasized the important relationship between 
protein, total sugars and mineral elements and rumen fluid foaming 
characteristics, but the partial correlation analysis showed that after 
controlling the influence of other factors, only protein was still related 
to the foam persistence of rumen foam. This suggests that, although a 
variety of components contribute to foaming, the production and 
stability of foam in rumen fluid is primarily influenced by the presence 
and impact of proteins. This finding confirms the conclusions of Isabel 
et al. (56). This demonstrates the decisive role of proteins in all the 
factors affecting the foaming properties of rumen liquor. Tannin is a 
secondary metabolite in plants. Tannin can promote protein 
metabolism in the rumen of ruminants and increase the absorption of 
amino acids in the small intestine of animals. Some studies have 
shown that adding tannins to diets can eliminate bloat, due to the fact 
that tannins can destroy protein foam (57). However, tannins are 
poorly palatable and have a bitter taste that animals do not like to feed 
on. In one study, goats and sheep preferred poorly palatable hay when 
fed high grain concentrates, and the addition of plant odors to feed 
increased ruminant intake (58). This is feasible for the addition of 
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moderate amounts of tannins to feeds in production to control rumen 
bloat. In addition, the defoamer’s help to break the tension on the 
surface of the bubbles, thus making it easier for the bubbles to burst. 
Defoamers accelerate the fusion of bubbles, making it easier for gases 
to escape. Such additives require further research.

This study highlights the importance of proteins in influencing 
rumen foam performance, but further research is needed to more 
fully understand the role of other factors in rumen distension. For 
example, total saccharide, its contribution to the foaming 
performance of rumen fluid may be because it increases the viscosity 
of the whole rumen fluid system, enriches more protein into the foam 
of rumen fluid, and helps to improve the stability of rumen foam. 
Sodium bicarbonate was added to the diets in this study, which is 
commonly used in production to increase rumen pH and reduce the 
risk of rumen acidosis, but sodium bicarbonate and other inorganic 
salts in the feeds react with fatty acids to form carboxylates (59), 
which have a better foaming function. Does this have an effect on 
rumen foam formation, Whether this could have an effect on rumen 
foam formation needs further investigation. Additionally, although 
this study showed that proteins are the main factor influencing 
rumen foam production and foam stability, no in-depth study was 
conducted to investigate the source of the proteins. A deeper 
understanding of the function of proteins in the rumen and their 
association with foam formation can help improve feed formulation 
and management practices to reduce the incidence of rumen 
foamy bloat.

5 Conclusion

This study found that protein content in rumen fluid was 
significantly and positively correlated with foam production and foam 
stability under high concentrate feeding conditions in goats and 
played a decisive role. Reducing the protein content of the diet during 
production is essential for rumen bloat prevention. Application of low 
protein diets is an effective measure to prevent rumen bloat.
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