9 research outputs found

    Surface Coat Differences between Invasive Entamoeba histolytica and Non-Invasive Entamoeba dispar

    Get PDF
    Using ultrastructural cytochemical techniques we have found differences in the distribution of surface coat components between the invasive protozoan parasite Entamoeba histolytica and the non-invasive Entamoeba dispar. Carbohydrate-containing components and anionic sites in the cell surface of both species were detected by staining with ruthenium red and cationized ferritin, respectively. Ruthenium red staining revealed a thicker surface coat in E. histolytica trophozoites, whereas trophozoites of E. dispar showed a higher concentration of cationized ferritin particles on its surface. Mannose or glucose residues were found at the plasma membrane of both parasites treated with Concanavalin A (Con A)-peroxidase; the surface reaction product was more evident in E. dispar, compared with E. histolytica. Con A rapidly produced surface caps in E. histolytica trophozoites, whereas E. dispar showed a much less efficient mobilization of surface Con A receptors. Agglutination with Con A produced much larger clumps in E. histolytica in comparison with E. dispar. In turn, biotinylation assays revealed striking differences in the composition of surface membrane proteins in both amebic species. Overall, these results further emphasize the phenotypic differences between these two common parasites of the human intestinal tract, once considered to be the same protozoan

    Gongolarones as antiamoeboid chemical scaffold

    Get PDF
    Free Living Amoeba (FLA) infections caused by Acanthamoeba genus include chronic nervous system diseases such as Granulomatous Amoebic Encephalitis (GAE), or a severe eye infection known as Acanthamoeba keratitis (AK). Current studies focused on therapy against these diseases are aiming to find novel compounds with amoebicidal activity and low toxicity to human tissues. Brown algae, such as Gongolaria abies-marina (previously known as Cystoseira abies-marina, S.G. Gmelin), presents bioactive molecules of interest, including some with antiprotozoal activity. In this study, six meroterpenoids were isolated and purified from the species Gongolaria abies-marina. Gongolarones A (1), B (2) and C (3) were identified as new compounds. Additionally, cystomexicone B (4), 1′-methoxyamentadione (5) and 6Z-1′-methoxyamentadione (6) were isolated. All compounds exhibited amoebicidal activity against Acanthamoeba castellanii Neff, A. polyphaga and A. griffini strains. Gongolarones A (1) and C (3) showed the lowest IC50 values against the two stages of these amoebae (trophozoite and cyst). Structure-activity relationship revealed that the cyclization by ether formation from C-12 to C-15 of 1, and the isomerization Δ2 t to Δ3 t of 3, increased the antiamoeboid activity of both compounds. Furthermore, gongolarones A (1) and C (3) triggered chromatin condensation, mitochondrial malfunction, oxidative stress, and disorganization of the tubulin-actin cytoskeleton in treated trophozoites. Moreover, transmission electron microscopy (TEM) images analysis revealed that compounds 1 and 3 induced autophagy process and inhibited the encystation process. All those results suggest that both compounds could induce programmed cell death (PCD) in Acanthamoeba.This study was supported funded by projects PID2019-109476RB-C21 (BIOALGRI) (Spanish Ministry of Science), Madrid, Spain; Fundación CajaCanarias–Fundación Bancaria “La Caixa” (2019SP52). Red de Investigación Cooperativa en Enfermedades Tropicales (RICET), Spain (project no. RD16/0027/0001 of the programe of Redes Temáticas de Investigación Cooperativa, FIS). Consorcio Centro de Investigación Biomédica en Red (CIBER), Área de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain (CB21/13/00100). Project No. 21/0587 funded by the Cabildo de Tenerife, Tenerife innova, Marco Estratégico de Desarrollo Insular (MEDI) and Fondo de Desarrollo de Canarias (FDCAN). Project number ProID2021010118 funded by Agencia Canaria de Investigación, Innovación y Sociedad de la Información (ACIISI). RLRE was funded by a grant from ACIISI cofunded by Fondo Social Europeo (FSE) and FEDER, (TESIS2020010117). MOM was supported by the Programa de Apoyos para la Superación del Personal Académico de la UNAM (PASPA 2021) for carrying out the research stay between the Universidad de La Laguna and la Facultad de Estudios Superiores Iztacala.Peer reviewe

    Acrylonitrile derivatives: In vitro activity and mechanism of cell death induction against Trypanosoma cruzi and Leishmania amazonensis

    No full text
    Leishmaniasis and Chagas disease are parasitic infections that affect millions of people worldwide, producing thousands of deaths per year. The current treatments against these pathologies are not totally effective and produce some side effects in the patients. Acrylonitrile derivatives are a group of compounds that have shown activity against these two diseases. In this work, four novels synthetic acrylonitriles were evaluated against the intracellular form and extracellular forms of L. amazonensis and T. cruzi. The compounds 2 and 3 demonstrate to have good selectivity indexes against both parasites, specifically the compound 3 against the amastigote form (SI = 6 against L. amazonensis and SI = 7.4 against T. cruzi). In addition, the parasites treated with these two compounds demonstrate to produce a programmed cell death, since they were positive for the events studied related to this type of death, including chromatin condensation, accumulation of reactive oxygen species and alteration of the mitochondrial membrane potential. In conclusion, this work confirms that acrylonitriles is a source of possible new compounds against kinetoplastids, however, more studies are needed to corroborate this activity

    Acrylonitrile derivatives: In vitro activity and mechanism of cell death induction against Trypanosoma cruzi and Leishmania amazonensis

    No full text
    Leishmaniasis and Chagas disease are parasitic infections that affect millions of people worldwide, producing thousands of deaths per year. The current treatments against these pathologies are not totally effective and produce some side effects in the patients. Acrylonitrile derivatives are a group of compounds that have shown activity against these two diseases. In this work, four novels synthetic acrylonitriles were evaluated against the intracellular form and extracellular forms of L. amazonensis and T. cruzi. The compounds 2 and 3 demonstrate to have good selectivity indexes against both parasites, specifically the compound 3 against the amastigote form (SI = 6 against L. amazonensis and SI = 7.4 against T. cruzi). In addition, the parasites treated with these two compounds demonstrate to produce a programmed cell death, since they were positive for the events studied related to this type of death, including chromatin condensation, accumulation of reactive oxygen species and alteration of the mitochondrial membrane potential. In conclusion, this work confirms that acrylonitriles is a source of possible new compounds against kinetoplastids, however, more studies are needed to corroborate this activity.This study was supported funded by the Consorcio Centro de Investigación Biomédica (CIBER) de Enfermedades Infecciosas (CIBERINFEC); the Instituto de Salud Carlos III, 28,006 Madrid, Spain [CB21/13/00100]; C.J.B.E [CC20230222, CABILDO.23] was funded by Cabildo Insular de Tenerife 2023–2028 and the Ministerio de Sanidad, Spain. C.J.B.E. [TESIS2020010057] was funded by a grant from the Agencia Canaria de Investigación, Innovación y Sociedad de la Información, co-funded with 85% by Fondo Social Europeo (FSE).Peer reviewe

    Schwann Cell Autophagy and Necrosis as Mechanisms of Cell Death by Acanthamoeba

    No full text
    Amoebae of the genus Acanthamoeba are etiological agents of granulomatous amoebic encephalitis (GAE). Recently, through an in vivo GAE model, Acanthamoeba trophozoites were immunolocalized in contact with the peripheral nervous system (PNS) cells—Schwann cells (SC). In this study, we analyzed in greater detail the in vitro early morphological events (1, 2, 3, and 4 h) during the interaction of A. culbertsoni trophozoites (ATCC 30171) with SC from Rattus norvegicus (ATCC CRL-2941). Samples were processed for scanning and transmission electron microscopy as well as confocal microscopy. After 1 h of interaction, amoebae were observed to be adhered to the SC cultures, emitting sucker-like structures associated with micro-phagocytic channels. In addition, evidence of necrosis was identified since edematous organelles as well as multivesicular and multilamellar bodies characteristics of autophagy were detected. At 2 h, trophozoites migrated beneath the SC culture in which necrosis and autophagy persisted. By 3 and 4 h, extensive lytic zones were observed. SC necrosis was confirmed by confocal microscopy. We reported for the first time the induction of autophagic and necrotic processes in PNS cells, associated in part with the contact-dependent pathogenic mechanisms of A. culbertsoni trophozoites

    Meroterpenoids from <i>Gongolaria abies-marina</i> against Kinetoplastids: <i>In Vitro</i> Activity and Programmed Cell Death Study

    Get PDF
    Leishmaniasis and Chagas disease affect millions of people worldwide. The available treatments against these parasitic diseases are limited and display multiple undesired effects. The brown alga belonging to the genus Gongolaria has been previously reported as a source of compounds with different biological activities. In a recent study from our group, Gongolaria abies-marine was proven to present antiamebic activity. Hence, this brown alga could be a promising source of interesting molecules for the development of new antiprotozoal drugs. In this study, four meroterpenoids were isolated and purified from a dichloromethane/ethyl acetate crude extract through a bioguided fractionation process targeting kinetoplastids. Moreover, the in vitro activity and toxicity were evaluated, and the induction of programmed cell death was checked in the most active and less toxic compounds, namely gongolarone B (2), 6Z-1′-methoxyamentadione (3) and 1′-methoxyamentadione (4). These meroterpenoids triggered mitochondrial malfunction, oxidative stress, chromatin condensation and alterations of the tubulin network. Furthermore, a transmission electron microscopy (TEM) image analysis showed that meroterpenoids (2–4) induced the formation of autophagy vacuoles and ER and Golgi complex disorganization. The obtained results demonstrated that the mechanisms of action at the cellular level of these compounds were able to induce autophagy as well as an apoptosis-like process in the treated parasites

    Extracellular Vesicles Secreted by <i>Acanthamoeba culbertsoni</i> Have COX and Proteolytic Activity and Induce Hemolysis

    No full text
    Several species of Acanthamoeba genus are potential pathogens and etiological agents of several diseases. The pathogenic mechanisms carried out by these amoebae in different target tissues have been documented, evidencing the relevant role of contact-dependent mechanisms. With the purpose of describing the pathogenic processes carried out by these protozoans more precisely, we considered it important to determine the emission of extracellular vesicles (EVs) as part of the contact-independent pathogenicity mechanisms of A. culbertsoni, a highly pathogenic strain. Through transmission electronic microscopy (TEM) and nanoparticle tracking analysis (NTA), EVs were characterized. EVs showed lipid membrane and a size between 60 and 855 nm. The secretion of large vesicles was corroborated by confocal and TEM microscopy. The SDS-PAGE of EVs showed proteins of 45 to 200 kDa. Antigenic recognition was determined by Western Blot, and the internalization of EVs by trophozoites was observed through Dil-labeled EVs. In addition, some EVs biological characteristics were determined, such as proteolytic, hemolytic and COX activity. Furthermore, we highlighted the presence of leishmanolysin in trophozites and EVs. These results suggest that EVs are part of a contact-independent mechanism, which, together with contact-dependent ones, allow for a better understanding of the pathogenicity carried out by Acanthamoeba culbertsoni
    corecore