18 research outputs found

    A Model-Based Real-Time Decision Support System for Irrigation Scheduling to Improve Water Productivity

    No full text
    A precisely timed irrigation schedule to match crop water demand is vital to improving water use efficiency in arid farmland. In this study, a real-time irrigation-scheduling infrastructure, Decision Support System for Irrigation Scheduling (DSSIS), based on water stresses predicted by an agro-hydrological model, was constructed and evaluated. The DSSIS employed the Root Zone Water Quality Model (RZWQM2) to predict crop water stresses and soil water content, which were used to trigger irrigation and calculate irrigation amount, respectively, along with forecasted rainfall. The new DSSIS was evaluated through a cotton field experiment in Xinjiang, China in 2016 and 2017. Three irrigation scheduling methods (DSSIS-based (D), soil moisture sensor-based (S), and conventional experience-based (E)), factorially combined with two irrigation rates (full irrigation (FI), and deficit irrigation (DI, 75% of FI)) were compared. The DSSIS significantly increased water productivity (WP) by 26% and 65.7%, compared to sensor-based and experience-based irrigation scheduling methods (p < 0.05), respectively. No significant difference was observed in WP between full and deficit irrigation treatments. In addition, the DSSIS showed economic advantage over sensor- and experience-based methods. Our results suggested that DSSIS is a promising tool for irrigation scheduling

    Risk factors for asymptomatic malaria infections from seasonal cross-sectional surveys along the China–Myanmar border

    No full text
    Abstract Background Border malaria, a shared phenomenon in the Greater Mekong Sub-region of Southeast Asia, is a major obstacle for regional malaria elimination. Along the China–Myanmar border, an additional problem arose as a result of the settlement of internally displaced people (IDP) in the border region. Since asymptomatic malaria significantly impacts transmission dynamics, assessment of the prevalence, dynamics and risk factors of asymptomatic malaria infections is necessary. Methods Cross-sectional surveys were carried out in 3 seasons (March and April, July and November) and 2 sites (villages and IDP camps) in 2015. A total of 1680 finger-prick blood samples were collected and used for parasite detection by microscopy and nested RT-PCR (nRT-PCR). Logistic regression models were used to explore the risk factors associated with asymptomatic malaria at individual and household levels. Results The prevalence of asymptomatic Plasmodium infections was 23.3% by nRT-PCR, significantly higher than that detected by microscopy (1.5%). The proportions of Plasmodium vivax, Plasmodium falciparum and mixed-species infections were 89.6, 8.1 and 2.3%, respectively. Asymptomatic infections showed obvious seasonality with higher prevalence in the rainy season. Logistic regression analysis identified males and school children (≤ 15 years) as the high-risk populations. Vector-based interventions, including bed net and indoor residual spray, were found to have significant impacts on asymptomatic Plasmodium infections, with non-users of these measures carrying much higher risks of infection. In addition, individuals living in poorly constructed households or farther away from clinics were more prone to asymptomatic infections. Conclusions Sub-microscopic Plasmodium infections were highly prevalent in the border human populations from IDP camps and surrounding villages. Both individual- and household-level risk factors were identified, which provides useful information for identifying the high-priority populations to implement targeted malaria control

    Genomic and Transcriptomic Insights into the Evolution and Divergence of MIKC-Type MADS-Box Genes in <i>Carica papaya</i>

    No full text
    MIKC-type MADS-box genes, also known as type II genes, play a crucial role in regulating the formation of floral organs and reproductive development in plants. However, the genome-wide identification and characterization of type II genes as well as a transcriptomic survey of their potential roles in Carica papaya remain unresolved. Here, we identified and characterized 24 type II genes in the C. papaya genome, and investigated their evolutional scenario and potential roles with a widespread expression profile. The type II genes were divided into thirteen subclades, and gene loss events likely occurred in papaya, as evidenced by the contracted member size of most subclades. Gene duplication mainly contributed to MIKC-type gene formation in papaya, and the duplicated gene pairs displayed prevalent expression divergence, implying the evolutionary significance of gene duplication in shaping the diversity of type II genes in papaya. A large-scale transcriptome analysis of 152 samples indicated that different subclasses of these genes showed distinct expression patterns in various tissues, biotic stress response, and abiotic stress response, reflecting their divergent functions. The hub-network of male and female flowers and qRT-PCR suggested that TT16-3 and AGL8 participated in male flower development and seed germination. Overall, this study provides valuable insights into the evolution and functions of MIKC-type genes in C. papaya

    Unraveling the Complexity of Imported Malaria Infections by Amplicon Deep Sequencing

    Get PDF
    Imported malaria and recurrent infections are becoming an emerging issue in many malaria non-endemic countries. This study aimed to determine the molecular patterns of the imported malaria infections and recurrence. Blood samples were collected from patients with imported malaria infections during 2016-2018 in Guangxi Zhuang Autonomous Region, China. Next-generation amplicon deep-sequencing approaches were used to assess parasite genetic diversity, multiplexity of infection, relapse, recrudescence, and antimalarial drug resistance. A total of 44 imported malaria cases were examined during the study, of which 35 (79.5%) had recurrent malaria infections within 1 year. The majority (91.4%) had one recurrent malaria episode, whereas two patients had two recurrences and one patient had three recurrences. A total of 19 recurrence patterns (the species responsible for primary and successive clinical episodes) were found in patients returning from malaria epidemic countries. Four parasite species were detected with a higher than usual proportion (46.2%) of non-falciparum infections or mixed-species infections. An increasing trend of recurrence infections and reduced drug treatment efficacy were observed among the cases of imported malaria. The high recurrence rate and complex patterns of imported malaria from Africa to non-endemic countries have the potential to initiate local transmission, thereby undermining efforts to eliminate locally acquired malaria. Our findings highlight the power of amplicon deep-sequencing applications in molecular epidemiological studies of the imported malaria recurrences

    Longitudinal surveillance of drug resistance in Plasmodium falciparum isolates from the China-Myanmar border reveals persistent circulation of multidrug resistant parasites

    No full text
    Multidrug-resistant Plasmodium falciparum in the Greater Mekong Subregion of Southeast Asia is a major threat to malaria elimination and requires close surveillance. In this study, we collected 107 longitudinal clinical samples of P. falciparum in 2007–2012 from the malaria hypoendemic region of the China-Myanmar border and measured their in vitro susceptibilities to 10 antimalarial drugs. Overall, parasites had significantly different IC50 values to all the drugs tested as compared to the reference 3D7 strain. Parasites were also genotyped in seven genes that were associated with drug resistance including pfcrt, pfmdr1, pfmrp1, pfdhfr, pfdhps, pfnhe1, and PfK13 genes. Despite withdrawal of chloroquine and antifolates from treating P. falciparum, parasites remained highly resistant to these drugs and mutations in pfcrt, pfdhfr, and pfdhps genes were highly prevalent and almost reached fixation in the study parasite population. Except for pyronaridine, quinine and lumefantrine, all other tested drugs exhibited significant temporal variations at least between some years, but only chloroquine and piperaquine had a clear temporal trend of continuous increase of IC50s. For the pfmrp1 gene, several mutations were associated with altered sensitivity to a number of drugs tested including chloroquine, piperaquine, lumefantrine and dihydroartemisinin. The association of PfK13 mutations with resistance to multiple drugs suggests potential evolution of PfK13 mutations amid multidrug resistance genetic background. Furthermore, network analysis of drug resistance genes indicated that certain haplotypes associated multidrug resistance persisted in these years, albeit there were year-to-year fluctuations of the predominant haplotypes. Keywords: Drug resistance, Plasmodium falciparum, Mutation, In vitro assay, China-Myanmar borde

    Genetic diversity of Plasmodium vivax populations from the China–Myanmar border identified by genotyping merozoite surface protein markers

    No full text
    Abstract Background Parasite diversity and population structure influence malaria control measures. Malaria transmission at international borders affects indigenous residents and migrants, defying management efforts and resulting in malaria re-introduction. Here we aimed to determine the extent and distribution of genetic variations in Plasmodium vivax populations and the complexity of infections along the China–Myanmar border. Methods We collected clinical P. vivax samples from local and migrant malaria patients from Laiza and Myitsone, Kachin State, Myanmar, respectively. We characterized the polymorphisms in two P. vivax merozoite surface protein markers, Pvmsp-3α and Pvmsp-3β, by PCR-restriction fragment length polymorphism (PCR–RFLP) analysis. We sought to determine whether these genetic markers could differentiate these two neighboring parasite populations. Results PCR revealed three major size variants for Pvmsp-3α and four for Pvmsp-3β among the 370 and 378 samples, respectively. PCR–RFLP resolved 26 fragment-size alleles by digesting Pvmsp-3α with Alu I and Hha I and 28 alleles by digesting Pvmsp-3β with Pst I. PCR–RFLP analysis of Pvmsp-3α found that infections in migrant laborers from Myitsone bore more alleles than did infections in residents of Laiza, while such difference was not evident from genotyping Pvmsp-3β. Infections originating from these two places contained distinct but overlapping subpopulations of P. vivax. Infections from Myitsone had a higher multiplicity of infection as judged by the size of the Pvmsp-3α amplicons and alleles after Alu I/Hha I digestion. Conclusions Migrant laborers from Myitsone and indigenous residents from Laiza harbored overlapping but genetically distinct P. vivax parasite populations. The results suggested a more diverse P. vivax population in Myitsone than in the border town of Laiza. PCR–RFLP of Pvmsp-3α offers a convenient method to determine the complexity of P. vivax infections and differentiate parasite populations

    Ex vivo susceptibilities of Plasmodium vivax isolates from the China-Myanmar border to antimalarial drugs and association with polymorphisms in Pvmdr1 and Pvcrt-o genes.

    No full text
    BackgroundVivax malaria is an important public health problem in the Greater Mekong Subregion (GMS), including the China-Myanmar border. Previous studies have found that Plasmodium vivax has decreased sensitivity to antimalarial drugs in some areas of the GMS, but the sensitivity of P. vivax to antimalarial drugs is unclear in the China-Myanmar border. Here, we investigate the drug sensitivity profile and genetic variations for two drug resistance related genes in P. vivax isolates to provide baseline information for future drug studies in the China-Myanmar border.Methodology/principal findingsA total of 64 P. vivax clinical isolates collected from the China-Myanmar border area were assessed for ex vivo susceptibility to eight antimalarial drugs by the schizont maturation assay. The medians of IC50 (half-maximum inhibitory concentrations) for chloroquine, mefloquine, pyronaridine, piperaquine, quinine, artesunate, artemether, dihydroartemisinin were 84.2 nM, 34.9 nM, 4.0 nM, 22.3 nM, 41.4 nM, 2.8 nM, 2.1 nM and 2.0 nM, respectively. Twelve P. vivax clinical isolates were found over the cut-off IC50 value (220 nM) for chloroquine resistance. In addition, sequence polymorphisms in pvmdr1 (P. vivax multidrug resistance-1), pvcrt-o (P. vivax chloroquine resistance transporter-o), and difference in pvmdr1 copy number were studied. Sequencing of the pvmdr1 gene in 52 samples identified 12 amino acid substitutions, among which two (G698S and T958M) were fixed, M908L were present in 98.1% of the isolates, while Y976F and F1076L were present in 3.8% and 78.8% of the isolates, respectively. Amplification of the pvmdr1 gene was only detected in 4.8% of the samples. Sequencing of the pvcrt-o in 59 parasite isolates identified a single lysine insertion at position 10 in 32.2% of the isolates. The pvmdr1 M908L substitutions in pvmdr1 in our samples was associated with reduced sensitivity to chloroquine, mefloquine, pyronaridine, piperaquine, quinine, artesunate and dihydroartemisinin.ConclusionsOur findings depict a drug sensitivity profile and genetic variations of the P. vivax isolates from the China-Myanmar border area, and suggest possible emergence of chloroquine resistant P. vivax isolates in the region, which demands further efforts for resistance monitoring and mechanism studies
    corecore