293 research outputs found

    7-Keto-Cholesterol and Cholestan-3beta, 5alpha, 6beta-Triol Induce Eryptosis through Distinct Pathways Leading to NADPH Oxidase and Nitric Oxide Synthase Activation

    Get PDF
    BACKGROUND/AIMS: We showed that patho-physiological concentrations of either 7-keto-cholesterol (7-KC), or cholestane-3beta, 5alpha, 6beta-triol (TRIOL) caused the eryptotic death of human red blood cells (RBC), strictly dependent on the early production of reactive oxygen species (ROS). The goal of the current study was to assess the contribution of the erythrocyte ROS-generating enzymes, NADPH oxidase (RBC-NOX), nitric oxide synthase (RBC-NOS) and xanthine oxido-reductase (XOR) to the oxysterol-dependent eryptosis and pertinent activation pathways. METHODS: Phosphatidylserine exposure at the cell surface was estimated from annexin-V-binding, reactive oxygen/nitrogen species (RONS) and nitric oxide formation from 2',7'-dichloro-dihydrofluorescein (DCF-DA) and 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate (DAF-FM DA) -dependent fluorescence, respectively; Akt1, phospho-NOS3 Ser1177, and PKCζ from Western blot analysis. The activity of individual 7-KC (7 μM) and TRIOL (2, μM) on ROS-generating enzymes and relevant activation pathways was assayed in the presence of Diphenylene iodonium chloride (DPI), N-nitro-L-arginine methyl ester (L-NAME), allopurinol, NSC23766 and LY294002, inhibitors in this order of RBC-NOX, RBC-NOS, XOR and upstream regulatory proteins Rac GTPase and phosphoinositide3 Kinase (PI3K); hemoglobin oxidation from spectrophotometric analysis. RESULTS: RBC-NOX was the target of 7-KC, through a signaling including Rac GTPase and PKCζ, whereas TRIOL caused activation of RBC-NOS according to the pathway PI3K/Akt, with the concurrent activity of a Rac-GTPase. In concomitance with the TRIOL-induced .NO production, formation of methemoglobin with global loss of heme were observed, ascribable to nitrosative stress. XOR, activated after modification of the redox environment by either RBC-NOX or RBC-NOS activity, concurred to the overall oxidative/nitrosative stress by either oxysterols. When 7-KC and TRIOL were combined, they acted independently and their effect on ROS/RONS production and PS exposure appeared the result of the effects of the oxysterols on RBC-NOX and RBC-NOS. CONCLUSION: Eryptosis of human RBCs may be caused by either 7-KC or TRIOL by oxidative/nitrosative stress through distinct signaling cascades activating RBC-NOX and RBC-NOS, respectively, with the complementary activity of XOR; when combined, the oxysterols act independently and both concur to the final eryptotic effect

    Soluble beta-amyloid1-40 induces NMDA-dependent degradation of postsynaptic density-95 at glutamatergic synapses

    Get PDF
    Amyloid-beta (Abeta) has been implicated in memory loss and disruption of synaptic plasticity observed in early-stage Alzheimer\u27s disease. Recently, it has been shown that soluble Abeta oligomers target synapses in cultured rat hippocampal neurons, suggesting a direct role of Abeta in the regulation of synaptic structure and function. Postsynaptic density-95 (PSD-95) is a postsynaptic scaffolding protein that plays a critical role in synaptic plasticity and the stabilization of AMPA (AMPARs) and NMDA (NMDARs) receptors at synapses. Here, we show that exposure of cultured cortical neurons to soluble oligomers of Abeta(1-40) reduces PSD-95 protein levels in a dose- and time-dependent manner and that the Abeta1(1-40)-dependent decrease in PSD-95 requires NMDAR activity. We also show that the decrease in PSD-95 requires cyclin-dependent kinase 5 activity and involves the proteasome pathway. Immunostaining analysis of cortical cultured neurons revealed that Abeta treatment induces concomitant decreases in PSD-95 at synapses and in the surface expression of the AMPAR glutamate receptor subunit 2. Together, these data suggest a novel pathway by which Abeta triggers synaptic dysfunction, namely, by altering the molecular composition of glutamatergic synapses

    3-[4-(1H-indol-3-yl)-1,3-thiazol-2-yl]-1H-pyrrolo[2,3-b]pyridines, nortopsentin Analogues with antiproliferative activity

    Get PDF
    A new series of nortopsentin analogues, in which the imidazole ring of the natural product was replaced by thiazole and the indole unit bound to position 2 of the thiazole ring was substituted by a 7-azaindole moiety, was efficiently synthesized. Two of the new nortopsentin analogues showed good antiproliferative effect against the totality of the NCI full panel of human tumor cell lines ( 3c60) having GI50 values ranging from low micromolar to nanomolar level. The mechanism of the antiproliferative effect of these derivatives, investigated on human hepatoma HepG2 cells, was pro-apoptotic, being associated with externalization of plasma membrane phosphatidylserine and mitochondrial dysfunction. Moreover, the compounds induced a concentration-dependent accumulation of cells in the subG0/G1phase, while confined viable cells in G2/M phase

    Brain atrophy and lesion load in a large population of patients with multiple sclerosis

    Get PDF
    OBJECTIVE: To measure white matter (WM) and gray matter (GM) atrophy and lesion load in a large population of patients with multiple sclerosis (MS) using a fully automated, operator-independent, multiparametric segmentation method. METHODS: The study population consisted of 597 patients with MS and 104 control subjects. The MRI parameters were abnormal WM fraction (AWM-f), global WM-f (gWM-f), and GM fraction (GM-f). RESULTS: Significant differences between patients with MS and control subjects included higher AWM-f and reduced gWM-f and GM-f. MRI data showed significant differences between patients with relapsing-remitting and secondary progressive forms of MS. Significant correlations between MRI parameters and between MRI and clinical data were found. CONCLUSIONS: Patients with multiple sclerosis have significant atrophy of both white matter (WM) and gray matter (GM); secondary progressive patients have significantly more atrophy of both WM and GM than do relapsing-remitting patients and a significantly higher lesion load (abnormal WM fraction); lesion load is related to both WM and even more to GM atrophy; lesion load and WM and GM atrophy are significantly related to Expanded Disability Status Scale score and age at onset (suggesting that the younger the age at disease onset, the worse the lesion load and brain atrophy); and GM atrophy is the most significant MRI variable in determining the final disabilit

    Sodium valproate in migraine without aura and medication overuse headache: A randomized controlled trial

    Get PDF
    Objective: To assess the efficacy, safety and tolerability of sodium valproate (800. mg/die) compared with placebo in medication-overuse headache patients with a history of migraine without aura. Methods: This is a multicenter, randomized, double-blind, placebo-controlled study enrolled medication-overuse headache patients for a 3-month treatment period with sodium valproate (800. mg/day) or placebo after a 6 day outpatient detoxification regimen, followed by a 3-month follow-up. Primary outcome was defined by the proportion of patients achieving ≥50% reduction in the number of days with headache per month (responders) from the baseline to the last 4 weeks of the 3-month treatment. Multivariate logistic regression models were used on the primary endpoint, adjusting for age, sex, disease duration, comorbidity and surgery. The last-observation-carried-forward method was used to adjust for missing values. Results: Nine sites enrolled 130 patients and, after a 6-day detoxification phase, randomized 88 eligible patients. The 3-month responder rate was higher in the sodium valproate (45.0%) than in the placebo arm (23.8%) with an absolute difference of about 20% (p=0.0431). Sodium valproate had safety and tolerability profiles comparable to placebo. Conclusions: The present study supports the efficacy and safety of sodium valproate in the treatment of medication overuse headache with history of migraine after detoxification

    Melatonin inhibira lipidnu peroksidaciju u jetri štakora uzrokovanu benzenom

    Get PDF
    We studied the antioxidative role of melatonin against benzene toxicity in rat liver. The inhibition of mitochondrial and microsomal lipid peroxidation differed between 24-hour (single-dose), 15-day, and 30-day treatments. Inhibition of mitochondrial lipid peroxidation was the highest after the single dose of melatonin, whereas highest microsomal inhibition was recorded after 30 days of melatonin treatment. No signifi cant difference was recorded between 15-day and 30-day treatments. Cytochrome P4502E1 (CYP4502E1) activity declined after the single-dose and 15-day melatonin treatment in the benzenetreated group, but it rose again, though not signifi cantly after 30 days of treatment. Liver histopathology generally supported these fi ndings. Phenol concentration in the urine samples declined in melatonin and benzene-treated rats. Our results show that melatonin affects CYP4502E1, which is responsible for benzene metabolism. Inhibition of its metabolism correlated with lower lipid peroxidation. In conclusion, melatonin was found to be protective against lipid peroxidation induced by benzene.Istražena je antioksidacijska uloga melatonina u zaštiti protiv toksičnoga djelovanja benzena u jetri štakora. Utvrđeno je da kratkoročno odnosno dugoročnije liječenje štakora melatoninom u različitoj mjeri štiti štakore istodobno izložene benzenu. Inhibicija lipidne peroksidacije mitohondrija i mikrosoma bila je različita nakon 24 h, 15 dana, odnosno 30 dana liječenja melatoninom. Najveća inhibicija lipidne peroksidacije mitohondrija zamijećena je nakon primjene jednokratne doze melatonina, dok je najizraženija inhibicija u mikrosomima zamijećena nakon 30 dana liječenja melatoninom. Slična istraživanja pokazuju da razina glutationa (GSH) najviše raste nakon 24 h liječenja melatoninom. Nije zamijećena razlika između liječenja u trajanju od 15 odnosno 30 dana. U štakora koji su uz benzen istodobno primali i melatonin razine citokroma P4502E1 pale su nakon 24 h odnosno 15 dana izloženosti. U štakora koji su primali samo melatonin te su razine nakon 30 dana statistički neznačajno porasle u odnosu na skupinu izloženu samo benzenu. Histopatološka analiza jetre načelno je potvrdila ove nalaze. Koncentracije fenola u mokraći bile su niže u štakora koji su istodobno primali melatonin i benzen. Ovi rezultati pokazuju da melatonin utječe na citokrom P4502E1, koji je odgovoran za metabolizam benzena. Inhibira li se njegov metabolizam, smanjuje se lipidna peroksidacija. Zaključak je da melatonin štiti od lipidne peroksidacije uzrokovane benzenom

    Preoperative dexamethasone reduces postoperative pain, nausea and vomiting following mastectomy for breast cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dexamethasone has been reported to reduce postoperative symptoms after different surgical procedures. We evaluated the efficacy of preoperative dexamethasone in ameliorating postoperative nausea and vomiting (PONV), and pain after mastectomy.</p> <p>Methods</p> <p>In this prospective, double-blind, placebo-controlled study, 70 patients scheduled for mastectomy with axillary lymph node dissection were analyzed after randomization to treatment with 8 mg intravenous dexamethasone (<it>n </it>= 35) or placebo (<it>n </it>= 35). All patients underwent standardized procedures for general anesthesia and surgery. Episodes of PONV and pain score were recorded on a visual analogue scale. Analgesic and antiemetic requirements were also recorded.</p> <p>Results</p> <p>Demographic and medical variables were similar between groups. The incidence of PONV was lower in the dexamethasone group at the early postoperative evaluation (28.6% <it>vs</it>. 60%; <it>p </it>= 0.02) and at 6 h (17.2% <it>vs</it>. 45.8%; <it>p </it>= 0.03). More patients in the placebo group required additional antiemetic medication (21 <it>vs</it>. 8; <it>p </it>= 0.01). Dexamethasone treatment significantly reduced postoperative pain just after surgery (VAS score, 4.54 ± 1.55 <it>vs</it>. 5.83 ± 2.00; <it>p </it>= 0.004), at 6 h (3.03 ± 1.20 <it>vs</it>. 4.17 ± 1.24; <it>p </it>< 0.0005) and at 12 h (2.09 ± 0.85 <it>vs</it>. 2.54 ± 0.98; <it>p </it>= 0.04). Analgesics were required in more patients of the control group (21 <it>vs</it>. 10; <it>p </it>= 0.008). There were no adverse events, morbidity or mortality.</p> <p>Conclusions</p> <p>Preoperative intravenous dexamethasone (8 mg) can significantly reduce the incidence of PONV and pain in patients undergoing mastectomy with axillary dissection for breast cancer.</p> <p>Trial registration number</p> <p>NCT01116713</p

    Indicaxanthin inhibits NADPH oxidase (NOX)-1 activation and NF-κB-dependent release of inflammatory mediators and prevents the increase of epithelial permeability in IL-1β-exposed Caco-2 cells

    Get PDF
    Dietary redox-active/antioxidant phytochemicals may help control or mitigate the inflammatory response in chronic inflammatory bowel disease (IBD). In the present study, the anti-inflammatory activity of indicaxanthin (Ind), a pigment from the edible fruit of cactus pear (Opuntia ficus-indica, L.), was shown in an IBD model consisting of a human intestinal epithelial cell line (Caco-2 cells) stimulated by IL-1β, a cytokine known to play a major role in the initiation and amplification of inflammatory activity in IBD. The exposure of Caco-2 cells to IL-1β brought about the activation of NADPH oxidase (NOX-1) and the generation of reactive oxygen species (ROS) to activate intracellular signalling leading to the activation of NF-κB, with the over-expression of inflammatory enzymes and release of pro-inflammatory mediators. The co-incubation of the cells with Ind, at a nutritionally relevant concentration (5-25Â μm), and IL-1β prevented the release of the pro-inflammatory cytokines IL-6 and IL-8, PGE2 and NO, the formation of ROS and the loss of thiols in a dose-dependent manner. The co-incubation of the cells with Ind and IL-1β also prevented the IL-1β-induced increase of epithelial permeability. It was also shown that the activation of NOX-1 and NF-κB was prevented by Ind and the expression of COX-2 and inducible NO synthase was reduced. The uptake of Ind in Caco-2 cell monolayers appeared to be unaffected by the inflamed state of the cells. In conclusion, our findings suggest that the dietary pigment Ind may have the potential to modulate inflammatory processes at the intestinal level. © 2013 The Authors

    Anti-Proliferative Activity of A Hydrophilic Extract of Manna from Fraxinus angustifolia Vahl through Mitochondrial Pathway-Mediated Apoptosis and Cell Cycle Arrest in Human Colon Cancer Cells

    Get PDF
    Manna is produced from the spontaneous solidification of the sap of some Fraxinus species, and, owing its content in mannitol, is used in medicine as a mild laxative. Manna is also a rich source of characteristic bio-phenols with reducing, antioxidant and anti-inflammatory properties. This study assesses the activity of a hydrophilic extract of manna (HME) on cellular and molecular events in human colon-rectal cancer cells. HME showed a time- and concentration-dependent anti-proliferative activity, measured by MTT assay, in all the cell lines examined, namely Caco-2, HCT-116 and HT-29. The amounts of HME that caused 50% of cell death after a 24 h treatment were 8.51 ± 0.77, 10.73 ± 1.22 and 28.92 ± 1.99 mg manna equivalents/mL, respectively; no toxicity was observed in normally differentiated Caco-2 intestinal cells. Hydroxytyrosol, a component of HME known for its cytotoxic effects on colon cancer cells, was ineffective, at least at the concentration occurring in the extract. Through flow-cytometric techniques and Western blot analysis, we show that HME treatment causes apoptosis, assessed by phosphatidylserine exposure, as well as a loss of mitochondrial membrane potential, an intracellular formation of reactive oxygen species (ROS), increases in the levels of cleaved PARP-1, caspase 3 and Bax, and a decrease in Bcl-2 expression. Moreover, HME interferes with cell cycle progression, with a block at the G1/S transition. In conclusion, the phytocomplex extracted from manna exerts an anti-proliferative activity on human colon cancer cells through the activation of mitochondrial pathway-mediated apoptosis and cell cycle arrest. Our data may suggest that manna could have the potential to exert chemo-preventive effects for the intestine
    corecore