48 research outputs found

    Mucociliary Clearance in Mice Measured by Tracking Trans-tracheal Fluorescence of Nasally Aerosolized Beads

    Get PDF
    Mucociliary clearance (MCC) is the first line of defense in clearing airways. In genetically engineered mice, each component of this system (ciliary beat, mucus, airway surface hydration) can be studied separately to determine its contribution to MCC. Because MCC is difficult to measure in mice, MCC measurements are often omitted from these studies. We report a simple method to measure MCC in mice involving nasal inhalation of aerosolized fluorescent beads and trans-tracheal bead tracking. This method has a number of advantages over existing methods: (1) a small volume of liquid is deposited thus minimally disturbing the airway surface; (2) bead behavior on airways can be visualized; (3) useful for adult or neonatal mice; (4) the equipment is relatively inexpensive and easily obtainable. The type of anesthetic had no significant effect on the rate of MCC, but overloading the airways with beads significantly decreased MCC. In addition, the rate of bead transport was not different in alive (3.11 mm/min) vs recently euthanized mice (3.10 mm/min). A 5-min aerosolization of beads in a solution containing UTP significantly increased the rate of MCC, demonstrating that our method would be of value in testing the role of various pharmacological agents on MCC

    Reduced mucociliary clearance in old mice is associated with a decrease in muc5b mucin

    Get PDF
    infections are a major cause of morbidity and mortality in the elderly. Previous reports have suggested that mucociliary clearance (MCC) is impaired in older individuals, but the cause is unclear. To unravel the mechanisms responsible for the age-associated decline in MCC, we investigated the MCC system in young (3 mo) and old (2 yr) C57BL/6 mice. We found that old mice had significantly reduced MCC function in both the upper and lower airways compared with young mice. Measurement of bioelectric properties of isolated tracheal and bronchial tissue revealed a significant decrease in Cl- secretion, suggesting that the older mice may have a reduced ability to maintain a sufficiently hydrated airway surface for efficient MCC. Ciliary beat frequency was also observed to be reduced in the older animals; however, this reduction was small relative to the reduction in MCC. Interestingly, the level of the major secreted mucin, Muc5b, was found to be reduced in both bronchioalveolar lavage and isolated tracheal tissue. Our previous studies of Muc5b-/- mice have demonstrated that Muc5b is essential for normal MCC in the mouse. Furthermore, examination of Muc5b+/- and wild-type animals revealed that heterozygous animals, which secrete ∼50% of the wild-type level of Muc5b, also demonstrate a markedly reduced level of MCC, confirming the importance of Muc5b levels to MCC. These results demonstrate that aged mice exhibit a decrease in MCC and suggest that a reduced level of secretion of both Cl- and Muc5b may be responsible

    Neonatal Pulmonary Macrophage Depletion Coupled to Defective Mucus Clearance Increases Susceptibility to Pneumonia and Alters Pulmonary Immune Responses

    Get PDF
    Resident immune cells (e.g., macrophages [MΦs]) and airway mucus clearance both contribute to a healthy lung environment. To investigate interactions between pulmonary MΦ function and defective mucus clearance, a genetic model of lysozyme M (LysM) promoter–mediated MΦ depletion was generated, characterized, and crossed with the sodium channel β subunit transgenic (Scnn1b-Tg) mouse model of defective mucus clearance. Diphtheria toxin A–mediated depletion of LysM+ pulmonary MΦs in wild-type mice with normal mucus clearance resulted in lethal pneumonia in 24% of neonates. The pneumonias were dominated by Pasteurella pneumotropica and accompanied by emaciation, neutrophilic inflammation, and elevated Th1 cytokines. The incidence of emaciation and pneumonia reached 51% when LysM+ MΦ depletion was superimposed on the airway mucus clearance defect of Scnn1b-Tg mice. In LysM+ MΦ-depleted Scnn1b-Tg mice, pneumonias were associated with a broader spectrum of bacterial species and a significant reduction in airway mucus plugging. Bacterial burden (CFUs) was comparable between Scnn1b-Tg and nonpneumonic LysM+ MΦ-depleted Scnn1b-Tg mice. However, the nonpneumonic LysM+ MΦ-depleted Scnn1b-Tg mice exhibited increased airway inflammation, the presence of neutrophilic infiltration, and increased levels of inflammatory cytokines in bronchoalveolar lavage fluid compared with Scnn1b-Tg mice. Collectively, these data identify key MΦ–mucus clearance interactions with respect to both infectious and inflammatory components of muco-obstructive lung disease

    Mice with a deletion of Rsph1 exhibit a low level of mucociliary clearance and develop a primary ciliary dyskinesia phenotype

    Get PDF
    Primary ciliary dyskinesia (PCD) is a genetically and phenotypically heterogeneous disease caused by mutations in over 40 different genes. Individuals with PCD caused by mutations in RSPH1 (radial spoke head 1 homolog) have been reported to have a milder phenotype than other individuals with PCD, as evidenced by a lower incidence of neonatal respiratory distress, higher nasal nitric oxide concentrations, and better lung function. To better understand genotype-phenotype relationships in PCD, we have characterized a mutant mouse model with a deletion of Rsph1. Approximately 50% of cilia from Rsph1-/- cells appeared normal by transmission EM, whereas the remaining cilia revealed a range of defects, primarily transpositions or a missing central pair. Ciliary beat frequency in Rsph1-/- cells was significantly lower than in control cells (20.2±0.8 vs. 25.0±0.9 Hz), and the cilia exhibited an aberrant rotational waveform. Young Rsph1-/- animals demonstrated a low rate of mucociliary clearance in the nasopharynx that was reduced to zero by about 1 month of age. Rsph1-/- animals accumulated mucus in the nasal cavity but had a lower bacterial burden than animals with a deletion of dynein axonemal intermediate chain 1 (Dnaic1-/-). Thus, Rsph1-/- mice display a PCD phenotype similar to but less severe than that observed in Dnaic1-/- mice, similar to what has been observed inhumans. The results suggest that some individuals with PCD may not have a complete loss of mucociliary clearance and further suggest that early diagnosis and intervention may be important to maintain this low amount of clearance

    UDP-glucose promotes neutrophil recruitment in the lung

    Get PDF
    In addition to their role in glycosylation reactions, UDP-sugars are released from cells and activate widely distributed cell surface P2Y 14 receptors (P2Y 14 R). However, the physiological/pathophysiological consequences of UDP-sugar release are incompletely defined. Here, we report that UDP-glucose levels are abnormally elevated in lung secretions from patients with cystic fibrosis (CF) as well as in a mouse model of CF-like disease, the βENaC transgenic (Tg) mouse. Instillation of UDP-glucose into wild-type mouse tracheas resulted in enhanced neutrophil lung recruitment, and this effect was nearly abolished when UDP-glucose was co-instilled with the P2Y 14 R antagonist PPTN [4-(piperidin-4-yl)-phenyl)-7-(4-(trifluoromethyl)-phenyl-2-naphthoic acid]. Importantly, administration of PPTN to βENaC-Tg mice reduced neutrophil lung inflammation. These results suggest that UDP-glucose released into the airways acts as a local mediator of neutrophil inflammation

    The Cystic Fibrosis-Like Airway Surface Layer Is not a Significant Barrier for Delivery of Eluforsen to Airway Epithelial Cells

    Get PDF
    Background: Eluforsen (previously known as QR-010) is a 33-mer antisense oligonucleotide under development for oral inhalation in cystic fibrosis (CF) patients with the delta F508 mutation. Previous work has shown that eluforsen restores CF transmembrane conductance regulator (CFTR) function in vitro and in vivo. To be effective, eluforsen has first to reach its primary target, the lung epithelial cells. Therefore, it has to diffuse through the CF airway surface layer (ASL), which in CF is characterized by the presence of thick and viscous mucus, impaired mucociliary clearance, and persistent infections. The goal of this study was to assess delivery of eluforsen through CF-like ASL. Methods and Results: First, air-liquid interface studies with cultured primary airway epithelial cells revealed that eluforsen rapidly diffuses through CF-like mucus at clinically relevant doses when nebulized once or repeatedly, over a range of testing doses. Furthermore, eluforsen concentrations remained stable in CF patient sputum for at least 48 hours, and eluforsen remained intact in the presence of various inhaled CF medications for at least 24 hours. When testing biodistribution of eluforsen after orotracheal administration in vivo, no differences in lung, liver, trachea, and kidney eluforsen concentration were observed between mice with a CF-like lung phenotype (ENaC-overexpressing mice) and control wild-Type (WT) littermates. Also, eluforsen was visualized in the airway epithelial cell layer of CF-like muco-obstructed mice and WT littermates. Finally, studies of eluforsen uptake and binding to bacteria prevalent in CF lungs, and diffusion through bacterial biofilms showed that eluforsen was stable and not absorbed by, or bound to bacteria. In addition, eluforsen was found to be able to penetrate Pseudomonas aeruginosa biofilms. Conclusions: The thickened and concentrated CF ASL does not constitute a significant barrier for delivery of eluforsen, and feasibility of oral inhalation of eluforsen is supported by these data

    Effect of LysM+ macrophage depletion on lung pathology in mice with chronic bronchitis

    Get PDF
    Macrophages (MΦ) are key sentinels of respiratory exposure to inhaled environmental stimuli. In normal “healthy” tissues, MΦ are believed to be a dormant cell type that, upon exposure to stress-causing stimuli, may get activated to exhibit pro- or anti-inflammatory roles. To test whether stress present in chronic bronchitic (CB) airways triggers MΦ to manifest protective or detrimental responses, the DTA+ (LysM-regulated Diphtheria Toxin A expressing) strain with partial MΦ-deficiency was crossed with the Scnn1b-Tg mouse model of CB and the progenies were studied at 4–5 weeks of age. Compared with DTA− littermates, the DTA+ mice had ~50% reduction in bronchoalveolar lavage (BAL) MΦ, and the recovered MΦ were immature, phenotypically distinct, and functionally defective. DTA+/Scnn1b-Tg mice exhibited a similar depletion of LysM+ MΦ offset by a significant increase in LysM- MΦ in the BAL. In DTA+/Scnn1b-Tg mice, lung disease was more severe than in DTA−/Scnn1b-Tg littermates, as indicated by an increased incidence of mucus plugging, mucous cells, airway inflammation, higher levels of cytokines/chemokines (KC, TNF-α, MIP-2, M-CSF, IL-5, and IL-17), and worsened alveolar airspace enlargement. DTA+/Scnn1b-Tg mice exhibited increased occurrence of lymphoid nodules, which was concomitant with elevated levels of immunoglobulins in BAL. Collectively, these data indicate that numerical deficiency of MΦ in stressed airspaces is responded via compensatory increase in the recruitment of immature MΦ and altered non-MΦ effector cell-centered responses, for example, mucus production and adaptive immune defense. Overall, these data identify dynamic roles of MΦ in moderating, rather than exacerbating, the severity of lung disease in a model of CB

    Identification of trans protein QTL for secreted airway mucins in mice and a causal role for Bpifb1

    Get PDF
    Mucus hyper-secretion is a hallmark feature of asthma and other muco-obstructive airway diseases. The mucin proteins MUC5AC and MUC5B are the major glycoprotein components of mucus and have critical roles in airway defense. Despite the biomedical importance of these two proteins, the loci that regulate them in the context of natural genetic variation have not been studied. To identify genes that underlie variation in airway mucin levels, we performed genetic analyses in founder strains and incipient lines of the Collaborative Cross (CC) in a house dust mite mouse model of asthma. CC founder strains exhibited significant differences in MUC5AC and MUC5B, providing evidence of heritability. Analysis of gene and protein expression of Muc5ac and Muc5b in incipient CC lines (n = 154) suggested that post-transcriptional events were important regulators of mucin protein content in the airways. Quantitative trait locus (QTL) mapping identified distinct, trans protein QTL for MUC5AC (chromosome 13) and MUC5B (chromosome 2). These two QTL explained 18 and 20% of phenotypic variance, respectively. Examination of the MUC5B QTL allele effects and subsequent phylogenetic analysis allowed us to narrow the MUC5B QTL and identify Bpifb1 as a candidate gene. Bpifb1 mRNA and protein expression were upregulated in parallel to MUC5B after allergen challenge, and Bpifb1 knockout mice exhibited higher MUC5B expression. Thus, BPIFB1 is a novel regulator of MUC5B

    Mucus clearance, MyD88-dependent and MyD88-independent immunity modulate lung susceptibility to spontaneous bacterial infection and inflammation

    Get PDF
    It has been postulated that mucus stasis is central to the pathogenesis of obstructive lung diseases. In Scnn1b-transgenic (Scnn1b-Tg+) mice, airway-targeted overexpression of the epithelial Na+ channel β subunit causes airway surface dehydration, which results in mucus stasis and inflammation. Bronchoalveolar lavage from neonatal Scnn1b-Tg+ mice, but not wild-type littermates, contained increased mucus, bacteria, and neutrophils, which declined with age. Scnn1b-Tg+ mice lung bacterial flora included environmental and oropharyngeal species, suggesting inhalation and/or aspiration as routes of entry. Genetic deletion of the Toll/Interleukin-1 receptor adapter molecule MyD88 in Scnn1b-Tg+ mice did not modify airway mucus obstruction, but caused defective neutrophil recruitment and increased bacterial infection, which persisted into adulthood. Scnn1b-Tg+ mice derived into germ-free conditions exhibited mucus obstruction similar to conventional Scnn1b-Tg+ mice and sterile inflammation. Collectively, these data suggest that dehydration-induced mucus stasis promotes infection, compounds defects in other immune mechanisms, and alone is sufficient to trigger airway inflammation

    Lung disease phenotypes caused by overexpression of combinations of α-, β-, and γ-subunits of the epithelial sodium channel in mouse airways

    Get PDF
    The epithelial Na+ channel (ENaC) regulates airway surface hydration. In mouse airways, ENaC is composed of three subunits, α, β, and γ, which are differentially expressed (α > β > γ). Airway-targeted overexpression of the β subunit results in Na+ hyperabsorption, causing airway surface dehydration, hyperconcentrated mucus with delayed clearance, lung inflammation, and perinatal mortality. Notably, mice overexpressing the α- or γ-subunit do not exhibit airway Na+ hyperabsorption or lung pathology. To test whether overexpression of multiple ENaC subunits produced Na+ transport and disease severity exceeding that of βENaC-Tg mice, we generated double (αβ, αγ, βγ) and triple (αβγ) transgenic mice and characterized their lung phenotypes. Double αγENaC-Tg mice were indistinguishable from WT littermates. In contrast, double βγENaC-Tg mice exhibited airway Na+ absorption greater than that of βENaC-Tg mice, which was paralleled by worse survival, decreased mucociliary clearance, and more severe lung pathology. Double αβENaC-Tg mice exhibited Na+ transport rates comparable to those of βENaC-Tg littermates. However, αβENaC-Tg mice had poorer survival and developed severe parenchymal consolidation. In situ hybridization (RNAscope) analysis revealed both alveolar and airway αENaC-Tg overexpression. Triple αβγENaC-Tg mice were born in Mendelian proportions but died within the first day of life, and the small sample size prevented analyses of cause(s) of death. Cumulatively, these results indicate that overexpression of βENaC is rate limiting for generation of pathological airway surface dehydration. Notably, airway co-overexpression of β- and γENaC had additive effects on Na+ transport and disease severity, suggesting dose dependency of these two variables
    corecore