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Abstract

Resident immune cells (e.g., macrophages [MFs]) and airwaymucus
clearance both contribute to a healthy lung environment. To
investigate interactions between pulmonary MF function and
defective mucus clearance, a genetic model of lysozyme M (LysM)
promoter–mediatedMFdepletionwas generated, characterized, and
crossed with the sodium channel b subunit transgenic (Scnn1b-Tg)
mouse model of defective mucus clearance. Diphtheria toxin
A–mediated depletion of LysM1 pulmonary MFs in wild-type
mice with normal mucus clearance resulted in lethal pneumonia in
24% of neonates. The pneumonias were dominated by Pasteurella
pneumotropica and accompanied by emaciation, neutrophilic
inflammation, and elevated Th1 cytokines. The incidence of
emaciation andpneumonia reached 51%whenLysM1MFdepletion
was superimposed on the airway mucus clearance defect of

Scnn1b-Tg mice. In LysM1 MF-depleted Scnn1b-Tg mice,
pneumonias were associated with a broader spectrum of bacterial
species and a significant reduction in airway mucus plugging.
Bacterial burden (CFUs) was comparable between Scnn1b-Tg and
nonpneumonic LysM1MF-depleted Scnn1b-Tgmice. However, the
nonpneumonic LysM1 MF-depleted Scnn1b-Tg mice exhibited
increased airway inflammation, the presence of neutrophilic
infiltration, and increased levels of inflammatory cytokines in
bronchoalveolar lavage fluid compared with Scnn1b-Tg mice.
Collectively, these data identify key MF–mucus clearance
interactions with respect to both infectious and inflammatory
components of muco-obstructive lung disease.
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Airway and alveolar host defense is
mediated by multiple interconnected
mechanisms, including airway mucociliary
clearance and innate immune responses.
Innate immune responses are performed by
multiple cell populations (e.g., resident
pulmonary macrophages [MFs]) and
secretion of soluble antimicrobial factors in
both airway and alveolar regions. Primary

defects in each of these layers of defense can
produce disease and/or compensatory
responses in other defenses, which may be
beneficial to the host, or harmful, if they
persist for protracted intervals. Elucidation
of the interactions between defense
mechanisms that maintain lung health
is complex and requires direct experimental
testing.

Mucus hyperconcentration,
mucostasis, and mucus plugging are key
pathophysiologic events in many airway
diseases, including chronic obstructive
pulmonary disease and cystic fibrosis.
Although persistent microbial infection
in static mucus can produce chronic
inflammation, the potential proinflammatory
effects of static, but sterile, mucus are poorly
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understood. Resident MFs are key sentinel
cells for both airway and alveolar surfaces,
and their responses to failed mucus clearance
are likely to contribute to disease pathogenesis.
Upon an encounter with inhaled particles
or organisms, pulmonary MFs assist in
clearance and dampen or promote local
inflammatory responses, depending upon
their activation status and the nature of the
stimulus. Like failed mucus clearance, loss of
normal MF function has been reported to
produce important pulmonary consequences,
including pneumonia (1–3). We hypothesize
that pulmonary MFs are key pulmonary
defense cells that respond to mucus
obstruction, becoming activated in response to
failed clearance by sensing and responding to
hyperconcentrated mucus itself, and/or
exogenous and endogenous inflammatory
stimuli trapped and concentrated within
adherent mucus.

To investigate the interplay between
reduced mucociliary clearance and the MF
components of host defense, we used the
well characterized, epithelial sodium
channel b subunit (Scnn1b) transgenic
mouse (Scnn1b-Tg). In this model, the
overexpression of Scnn1b transgene is
controlled by the rat club cell secretory
protein (CCSP) promoter (2.25-Kb 59
flanking region of CCSP gene, also known
as Scgb1a1), which targets expression to
airway club cells (previously referred to as
Clara cells) with sporadic expression in
alveolar type II cells (4, 5). Previously
published studies have characterized the
cell-specific expression of Scnn1b transgene
and the resulting airway surface liquid
dehydration (5, 6). The neonatal and adult
muco-obstructive airways disease (5, 6)
produced by airway surface liquid
dehydration is characterized by
inflammation that includes increased MF
size, persistent airway neutrophilia, and
bronchial-associated lymphoid tissues
(5–7). Morphologic (6, 7), functional (8),
and recent gene array (9) studies indicate
that pulmonary MFs are robustly activated
soon after birth in Scnn1b-Tg mice,
suggesting that they contribute significantly
to the development of lung inflammation.

To characterize the contribution of
MFs to neonatal Scnn1b-Tg mouse lung
disease, mice with MF depletion were
generated using lysozyme M (LysM)
cyclization recombinase (Cre)–mediated
expression of gene encoding diphtheria
toxin A (DTA) subunit. The LysM
promoter was selected for these studies

because of its high level of expression in
pulmonary MFs (10). The functional
consequences of DTA expression on
pulmonary MF populations were evaluated
during the neonatal period in wild-type
(WT) mice and with Scnn1b-Tg expression.
Putative “positive” compensatory
consequences of MF depletion on the
neonatal Scnn1b-Tg lung phenotype (e.g.,
reduced inflammation) were sought in
parallel with potential “negative” effects of
compromising these key protective cells
(e.g., increased on bacterial infection).

Materials and Methods

Transgenic Mice and Animal
Husbandry
All animal protocols were approved by
the Institutional Animal Care and Use
Committee at the University of North
Carolina (Chapel Hill, NC). The four
distinct transgenic lines used are detailed
subsequently here, and include: (1)
LysM-Cre mice expressing Cre from the
myeloid-specific LysM promoter; (2)
membrane-targeted Tomato (mTOM)/
membrane-targeted enhanced green
fluorescent protein (mEGFP)-floxed
reporter mice where the Gt(ROSA)26Sor
(a gene locus controlling constitutive
expression of transgenes/constructs,
abbreviated ROSA promoter for this article)
locus expresses reporter gene mTOM
(red) in the absence of Cre and mEGFP
(green) upon Cre activation; (3) DTA-
floxed mice with DTA expression induced
by Cre activation; and (4) Scnn1b-Tg mice,
which develop mucus obstruction. Studies
were performed on neonates (5–7 days
old), as indicated in figures and text.

Generation of Transgenic Mice
All mice used in the study were maintained
in hot-washed, individually ventilated
micro-isolator cages on a 12-hour dark/
light cycle, and were fed a regular diet
and water ad libitum. LysM-Cre mice
(B6.129P2-Lyz2tm1(cre)Ifo/J), mTOM/
mEGFP reporter mice (B6.129(Cg)Gt
(ROSA) 26Sortm4(ACTB-tdTomato,-
EGFP)Luo/J) and DTA-floxed
(B6.129P2Gt(ROSA) 26Sortm1(DTA)Lky/J)
were procured from Jackson Laboratory
(Bar Harbor, ME). At the time of
procurement, LysM-Cre mice were
on mixed C57Bl/6N and C57Bl/6J
background, whereas mTOM/mEGFP

reporter mice and DTA-floxed mice were on
C57Bl/6J background. Scnn1b-Tg mice used
in the study were C57Bl/6N congenic.

Generation of mouse models of
fluorescent marker-labeled macrophages,
macrophage depletion and crosses with
Scnn1b-Tg mice. The myeloid cell–specific
LysM promoter was used to drive expression
of Cre in the myeloid lineage. The LysM-Cre
mice used in this work have a targeted
insertion of the Cre transgene in the exon 1
region of the LysM locus (11). To minimize
the negative effect of Cre toxicity, we only
generated and analyzed animals with a single
copy of the Cre transgene, a strategy that
also assured functionality of at least one
allele of the LysM gene.

Generation and use of macrophage-
reporter mice. LysM-Cre mice were crossed
with the Gt(ROSA)26Sor-mTOM/mEGFP
dual-reporter mouse strain. This strain
contains an engineered transgene that is
controlled by the ROSA promoter. In mice
without Cre, the locus of crossover in phage
1 (LoxP)-flanked mTOM transgene/polyA
stop cassette (red fluorescence at the
membrane) is expressed from the ROSA
promoter, and the mEGFP transgene (green
fluorescence at the membrane) is silent due
to the presence of LoxP-flanked poly(A)
stop cassette (12). The presence of Cre
results in recombination-mediated removal
of flanked mTOM transgene/polyA stop
cassette and induction of mEGFP transgene
expression. Using this dual reporter
transgene crossed to LysM-Cre mice, a
mouse model was generated where LysM-
Cre–positive cells would express the mEGFP.

Generation and use of LysM1

MF-depleted mice. Similar to the Gt(ROSA)
26Sor–mTOM/mEGFP dual-reporter strain,
the Gt(ROSA)26Sor-DTA mouse strain
contains an engineered transgene (i.e., a
loxP-flanked neomycin/PolyA stop cassette)
proximal to the DTA transgene that is
controlled by the ROSA promoter (13). To
achieve depletion of MFs, LysM-Cre mice
were mated with the Gt(ROSA)26Sor-DTA
mice. The presence of Cre in the Gt(ROSA)
26Sor-DTA mouse cells results in
recombination-mediated removal of the
neomycin/polyA stop cassette and, thus,
induction of DTA transgene expression (13).
LysM1 MF-depleted mice were generated
by mating LysM-Cre1/1 mTOM/mEGFP1/1

mice with DTA1/2 mice, producing triple
transgenic mice with a reporter transgene in
which Cre expressing cells expressed mEGFP
and DTA, simultaneously.
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LysM1 MF-depleted Scnn1b-Tg mice.
LysM-Cre1/1 Scnn1b-Tg1/2 mice were
generated and mated with DTA1/2 mice to
generate LysM1 MF-depleted Scnn1b-Tg
animals. LysM1 MF-depleted Scnn1b-Tg
mice with a MF-specific reporter transgene
were generated by mating LysM-Cre1/1

mTOM/mEGFP1/1 mice with DTA1/2

Scnn1b-Tg1/2 mice.

PCR Genotyping
Genomic DNA extraction from tail tissue
was performed using the Direct-PCR
extraction reagent (Viagen Biotech,
Los Angeles, CA), according to the
manufacturer’s instructions. Genotyping
was performed by PCR for all the loci as
previously published (5, 11–13). PCR
conditions for all the alleles were:
denaturation at 948C for 5 minutes, 38
cycles of amplification (948C for 45
seconds, 608C for 45 seconds, and 728C for
1 minute and 10 seconds, followed by a
7-minute extension at 728C). The amplified
products were electrophoresed in 2%
agarose in Tris borate EDTA for 30 minutes
at 200 V. The ethidium bromide–stained
gels were imaged in FluorChemQ imaging
system (Alpha Innotech, San Jose, CA).

Bronchoalveolar Lavage Collection
and Lung Tissue Processing
Bronchoalveolar lavage fluid (BALF) was
harvested for differential cell counts and
microbiological analyses as previously
described (14).

Fluorescence Microscopy
To harvest lung tissues for fluorescent
imaging, mice were anesthetized with
Avertin (2,2,2-tribromoethanol), and, after
exsanguination, lungs and tracheas were
exposed through a midline thoracotomy.
Lungs were inflated in situ with 50% OCT
in PBS. Whole lungs were embedded in
OCT in tissue molds and frozen on dry ice.
The lungs in the OCT frozen blocks were
positioned to optimize longitudinal
sectioning of primary bronchi. OCT-
embedded frozen lung tissues were
sectioned to a thickness of 5 mm on
a cryostat. For fluorescent imaging, frozen
sections were fixed in ice-cold acetone for
10 minutes. Fixed sections were washed
twice in PBS and mounted with
VECTASHIELD HardSet mounting
medium with 49,6-diamidino-2-
phenylindole (Vector Labs, Burlingame,
CA). Sections were observed under
Olympus FV1000 MPE SIM laser scanning
confocal microscope (Olympus, Pittsburgh,
PA) at the University of North Carolina
Michael Hooker Microscopy Facility. For
the determination of mTOM1 and mEGFP1

cells, cytospin preparations were prepared
and fixed in 10% neutral buffered formalin
for 15 minutes. The fixed Cytospin slides
were washed with PBS and mounted with
VECTASHIELD HardSet mounting medium
with 49,6-diamidino-2-phenylindole (Vector
Labs). Cytospin slides were observed
under Olympus FV1000 MPE SIM laser
scanning confocal microscope. mTOM1

(no mEGFP label) and mEGFP1 (with or
without mTOM label) MFs were counted
based on morphology, as determined by
differential interference contrast microscopy.
A total of approximately 200 cells were
counted to estimate the percentage of
mTOM1 and mEGFP1 MFs.

Flow Cytometry
BAL cells were collected as described
previously here. Cells were fixed in a one-step
fix/lyse solution (eBiosciences, San Diego,
CA), washed twice in PBS, and the pellets
were suspended in staining buffer. BAL cells
were analyzed for the mEGFP and mTOM
fluorescence with Dako CyAn (Beckman
Coulter, Inc., Pasadena, CA). Flow cytometric
data were analyzed using Summit software
Version 4.3 (Dako, Carpinteria, CA).

Cytokine Assay on BAL
Mouse TNF-a, keratinocyte chemoattractant
(KC), macrophage inflammatory protein 2
(MIP-2), MIP-1a, MIP-1b, macrophage
colony–stimulating factor (M-CSF), IL-10,
IL-12, IL1a, IL-17, IL-4, IL-5, IL-6, IP-10,
monocyte chemotactic protein-1 (MCP-1)
and LPS-induced CXC chemokine (LIX)
levels were measured in cell-free BAL using
a Luminex-based assay (MCYTOMAG-70K;
EMD Millipore Corp., Billerica, MA),
according to the manufacturer instructions.

Histopathological Slide Preparation
The 10% neutral buffered formalin–fixed
lungs were paraffin embedded, and 4- to

mTom

mEGFP

100

80

60

40

P
E

R
C

E
N

T

20

0
+– – – –

– –– –

+ + +

*** ***
**

*

+ +

– –

– –

+ +

+ ++ +

100

80

60

40

P
E

R
C

E
N

T

20

0

100

80

60

40

P
E

R
C

E
N

T

20

0

Figure 1. Lysozyme M (LysM) promoter expression activity in neonates. Flow cytometry analysis of neonatal bronchoalveolar lavage (BAL) cells harvested from
LysM-cyclization recombinase (Cre)1 single-transgenic mice (left panel), membrane-targeted Tomato (mTOM)/membrane-targeted enhanced green fluorescent
protein (mEGFP)1 single-transgenic mice (middle panel), and LysM-Cre1\mTOM/mEGFP1 mice (right panel). The results reflect the distribution of BAL cells in the
four quadrants from the flow analyses (Figure E2). Gt(ROSA)26Sor (a gene locus controlling constitutive expression of transgenes/constructs, abbreviated ROSA
promoter for this article) locus drives mTOM (red) or mEGFP (green) expression in the absence or presence of Cre activity, respectively. White bars represent
percentage of cells negative for mTOM and mEGFP signal; red bars represent percentage of cells positive for mTOM, but negative for mEGFP signal; yellow bars

represents percentage of cells positive for mTOM and mEGFP signal; green bars represents percentage of cells negative for mTOM, but positive for mEGFP signal.
Data are expressed as means (6SEM). n=3/group. ANOVA: *P,0.05, **P,0.01, ***P,0.001.
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6-mm-thick sections were cut. The lung
tissues from 5- to 7-day-old mice were
oriented to obtain longitudinal sections of
primary bronchi. Sections were mounted
on glass slides and stained with
hematoxylin and eosin for lung
morphological assessments and Alcian
blue/periodic acid–Schiff for
mucopolysaccharide assessment of
intracellular and extracellular mucus.

Lung Histopathology
A previously reported semiquantitative
grading system was used to score airway
obstruction, mucus secretory cell
abundance, airspace enlargement, and
airway inflammation phenotypes (graded
on a 0–3 scale) (14). The alveolar space
consolidation phenotype was scored on the
scale of 0–3: 0, no evidence of alveolar space
consolidation; 1, less than 25% of left
lung lobe with alveolar space consolidation;
2, >25–50% of the lobe with alveolar space
consolidation; and 3, >50% of the lobe
with alveolar space consolidation.

Statistical Analyses
Statistical analyses were performed using
GraphPad Prism 5.0 (GraphPad Software,
Inc., La Jolla, CA). One-way ANOVA
followed by Tukey’s post hoc test for
multiple comparisons was used to
determine significant differences among
groups. P less than 0.05 was considered
statistically significant. All data are
expressed as means (6SEM).

Results

Characterization of LysM Promoter
Activity in Pulmonary MFs
Before evaluating LysM-mediated DTA
depletion of pulmonary MFs, a dual
reporter LysM- Cre1\mTOM/mEGFP1

bitransgenic line was generated to
characterize the cell specificity of LysM-Cre
in our mice. Flow cytometric evaluations of
mTOM- and mEGFP-expressing cells
were conducted on BAL cells collected from
neonatal (5–7 days old) mice expressing
LysM-Cre (to target Cre expression to
myeloid cells under the LysM promoter)
(11), ROSA-mTOM/mEGFP (reporter
construct ROSA-mTOM/mEGFP
containing floxed mTOM) (12), or both
transgenes (see Figure E1 in the online
supplement). In the absence of Cre activity,
owing to the polyadenylation sequence

downstream of the loxP-flanked mTOM
transgene, mEGFP expression did not occur
in ROSA-mTOM/mEGFP mice. However,
in the presence of Cre activity,
recombination-mediated excision of the
mTOM region within the floxed ROSA-
reporter construct simultaneously
eliminated mTOM expression and thus
induced mEGFP expression (Figure E1).

In the absence of LysM-Cre, ROSA-
mTOM/mEGFP reporter mice exhibited
robust ROSA locus expression activity in
BAL cells (96% of which were MFs [data
not shown]), as indicated by mTOM1

expression in approximately 98% of
harvested cells (Figure 1, middle panel, and
Figure E2). In contrast, robust LysM
promoter–driven Cre activity in MFs was
evident by the presence of mEGFP1 MFs

in bitransgenic, Cre-expressing reporter
mice (Figure 1, right panel). In our mice,
LysM-Cre activity–induced mEGFP
expression was detected in approximately
87% of neonatal pulmonary MFs harvested
by BAL.

LysM-Cre–Driven DTA Expression
Alters Pulmonary MF Populations
The above studies indicated that
approximately 87% of BALMF populations
could be targeted for depletion using
LysM-Cre–induced recombination in
a floxed ROSA-DTA allele. Therefore,
a bitransgenic (LysM-Cre1/1 ROSA-
mTOM/mEGFP1/1) line was bred to an
available transgenic line with a DTA-floxed
allele targeted to the ROSA locus (13) to
produce triple-transgenic mice (Figure E1).
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Figure 2. Diphtheria toxin A (DTA) expression targeted to pulmonary macrophages (MFs) alters the
pulmonary MF phenotype. BAL cytospins and histological lung sections (A) were evaluated for mTOM
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Selective breeding (see SUPPLEMENTAL

MATERIALS AND METHODS) generated LysM-
Cre–positive, ROSA-mTOM/mEGFP–
positive, ROSA-floxed DTA–positive mice,
in which both mTOM/mEGFP and DTA
transcription were under the control of
LysM promoter–driven Cre recombination.
This feature facilitated tracking of DTA-
expressing cells via the simultaneous
expression of mEGFP1, providing the
ability to monitor DTA-induced cell death
using, as a readout, the proportion of
mEGFP1 cells in DTA1 compared with
DTA2 lines. Triple-transgenic mice were
obtained in the expected Mendelian ratios
(data not shown).

Expression of the DTA transgene had
clear effects on pulmonary MF populations.
As predicted, DTA1 mice exhibited
a significant depletion of BAL mEGFP1

MFs compared with their DTA2

counterparts (Figure 2A). However, we
observed an unexpected shift in BAL cell
populations with DTA expression.
Compared with DTA2 mice (Figure 2B),
the absolute numbers and the percentage of
mTOM1 MFs (defined as MFs based on
their morphology) from the DTA1 mice
were increased (Figure 2B). Because of the
increased numbers of mTOM1, the
absolute MF numbers were not reduced in
DTA1 neonates (Figure 2B). Of note, BAL
neutrophils were consistently raised in
neonatal DTA1 mice (Figure E3).

Phenotype of WT and Scnn1b-Tg
Neonates in Presence or Absence of
DTA Transgene Expression
Additional breeding was conducted to
introduce the Scnn1b-Tg into the LysM1

MF-depleted (DTA1) line. The mice
obtained from these crosses were
phenotyped in the neonatal period.

Altered MF phenotypes in Scnn1b-Tg
neonates with and without MF depletion.
We first noted that the total MF number
was increased in Scnn1b-Tg compared with
WT mice (Figure 3A). Interestingly, the
increase in MF numbers in Scnn1b-Tg
mice reflected an increase in mTOM1

MFs. The total numbers of MFs collected
from LysM-Cre1/mTOM/mEGFP1/
Scnn1b-Tg neonates with and without DTA
expression were comparable (Figure 3).
However, there were major differences in
the distribution of MF phenotypes. DTA
expression reduced the absolute number
and percentage of MFs with an active
LysM promoter, as indicated by the

reduction in BAL mEGFP1 MFs, and an
increase mTOM1 BAL MFs in DTA1/
Scnn1b-Tg neonates. Thus, in agreement
with our data in DTA1 WTmice (Figure 2B),
DTA expression led to an absolute increase
in LysM-inactive MFs (Figure 3).

DTA1 neonates were susceptible to
emaciation, lung inflammation, bacterial
pneumonia, and death. There were no visible
phenotypic abnormalities at birth in any line.
However, by 2–3 days after birth, 24% of
DTA1/WT neonates exhibited an emaciation
phenotype defined by reduced weight gain,
flaky discoloration of skin, lethargy, and
eventual death (Figure 4A). No DTA2/
Scnn1b-Tg neonates exhibited emaciation, but

the prevalence of emaciation increased to 51%
in DTA1/Scnn1b-Tg neonates (Figure 4B).
The severity of weight loss due to emaciation
was similar between DTA1/Scnn1b-Tg and
DTA1/WT neonates (Figure 4C).

DTA1 neonates exhibited histologic
evidence of pulmonary pathology.
Histologically, there was no evidence of
pathology in major nonrespiratory organs
(liver, heart, intestine, spleen, and pancreas)
in neonates (data not shown). In contrast,
the lungs exhibited significant pathology.

Alveolar space consolidation was the
key histologic finding associated with
LysM1 MF depletion in neonates (Figures
5A and 5B). Nonemaciated DTA1/WT
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neonates exhibited mild, heterogeneous
alveolar space consolidation, whereas
emaciated DTA1/WT neonates exhibited
severe and more uniform alveolar

consolidation (Figures 5A and 5B).
Consolidated alveoli were characterized by
infiltrating neutrophils and enlarged,
primarily apoptotic, MFs (as determined

by in situ terminal deoxynucleotidyl
transferase dUTP nick end labeling assay;
Figure E4) that were more prominent in
emaciated than in nonemaciated DTA1/WT
neonates. No differences in the degree
of alveolar space consolidation were noted
in DTA1/Scnn1b-Tg compared with
DTA1/WT neonates (Figures 5A and 5B).

Airway inflammation, as assessed
histologically, was significant in all neonatal
DTA1/WT mice compared with DTA2/WT
(Figure 5B). The defective mucus
clearance that is a feature of Scnn1b-Tg
mice was associated with more pronounced
airway inflammation in nonemaciated and
emaciated DTA1/Scnn1b-Tg neonates
compared with nonemaciated DTA1/WT
littermates (Figures 5A and 5B). The
emaciation phenotype was strikingly
associated with increased alveolar and
airway inflammation in both WT and
Scnn1b-Tg mice (Figures 5A and 5B).

Mucus obstructive phenotypes were
not prominent in the airways of DTA1/WT
neonatal mice. Mucus plugs and increased
bronchial mucus cell numbers were
observed in Scnn1b-Tg neonates, consistent
with the reported pathophysiology (5, 6).
However, the extent of the mucus
phenotype produced in Scnn1b-Tg mice
was dependent upon emaciation and MF
depletion status. Interestingly, although the
degree of mucus plugging was comparable
in nonemaciated DTA1/Scnn1b-Tg and
DTA2/Scnn1b-Tg neonates, the mucus
retention phenotype was markedly reduced
in emaciated DTA1/Scnn1b-Tg mice
(Figures 5A and 5B).

An increase in the size of alveolar units
was evident in all Scnn1b-Tg lines, as
previously described (Figures 5A and 5B).
Previous studies have demonstrated that
this histological feature reflects the failed
development of alveolar septa and/or the
loss of alveolar walls per acinar unit (i.e., an
emphysema-like phenotype) (6, 15).
Visually similar alveolar space enlargement
was a consistent feature in the
nonconsolidated regions of emaciated
DTA1/WT. In DTA1/Scnn1b-Tg mice,
these lesions were observed irrespective of
emaciation status (Figure 5B).

Total and differential BAL cell counts
and BAL cytokine levels reflected
differential responses among the
experimental groups to LysM1 MF
depletion, emaciation status, and the
presence or absence of Scnn1b-Tg
expression (Figure 5; Table 1). In DTA1/WT
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neonates, DTA expression produced
no change in total macrophage numbers
compared with DTA2/WT neonates
(Figure 6, in agreement with Figure 2B).
However, total BAL cells were significantly
increased in DTA1/WT neonates
compared with DTA2/WT neonates due to
increased neutrophil recruitment (Figures
6A–6C), consistent with cytological
observations (Figure 2B and Figure E3).

Emaciated DTA1/WT neonates exhibited
three to six times higher total cell numbers
as compared with genotype-matched
nonemaciated littermates, attributable not
only to a large increase in neutrophil
counts, but also to a small, but significant,
increase in lymphocytes (Figures 6A–6C).
Total BAL cells and macrophage numbers
were increased in neonatal Scnn1b-Tg mice
compared with WT mice, but total counts

were not affected by DTA expression or
as a function of emaciation status
compared with their WT counterparts
(Figures 6A–6C). Similar to nonemaciated
DTA1/WT or DTA1/Scnn1b-Tg
neonates, BAL MFs recovered from
the emaciated counterparts were
predominantly mTOM1 (data not shown).

The BAL inflammatory mediators
tested were either below the detection limit
or were present at minimal concentrations
in DTA2/WT neonates (Table 1). LysM1

MF depletion in WT neonates without
emaciation resulted in a significant increase
in the level of the neutrophil chemokine,
KC (Table 1), consistent with the BAL
neutrophilia (Figures 2B and 4C, Figure
E3). Consistent with our previous reports
(7, 14), BAL levels of KC, MIP2, MIP1a,
MIP1b, and TNF-a were elevated in
DTA2/Scnn1b-Tg neonates compared with
DTA2/WT mice. Nonemaciated DTA1/
Scnn1b-Tg neonates exhibited a further
elevation in the levels of these cytokines.
Strikingly, the emaciation phenotype in
DTA1/WT as well as DTA1/Scnn1b-Tg
neonates was associated with a “cytokine
storm,” as indicated by dramatic increases
in 13 of 16 measured inflammatory
mediators. Interestingly, only IL-5 was
significantly reduced in emaciated
compared with “normal” counterparts
(Table 1).

MF depletion leads to neonatal
bacterial pneumonia. The histological,
cytokine, and BAL findings in emaciated
neonates suggested bacterial infection, and
studies were performed to test this
hypothesis. Spleen cultures were negative for
all genotypes, and no culturable bacteria
were isolated from BAL of DTA2/WT
neonates. However, a sporadic (3/16), small
bacterial burden was observed in the BAL
from nonemaciated DTA1/WT neonates
(Figure 7A). In striking contrast, CFU
counts were consistently approximately 5
logs higher (mean CFU = 2.33 107) in BAL
harvested from emaciated DTA1/WT
neonates. Sequence analyses revealed that
Pasturella pneumotropica, a common
inhabitant of the mouse oropharynx (7),
was the sole bacterial species culturable in
emaciated DTA1/WT BAL (Figure 7B).

Total bacterial burden in Scnn1b-Tg
and nonemaciated DTA1/Scnn1b-Tg
neonates were comparable and represented
an admixture of bacterial pathogens
previously reported in Scnn1b-Tg mice (7).
Streptococcus spp., Actinobacillus spp., and
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P. pneumotropica, routine colonizers in
Scnn1b-Tg neonates, were the predominant
organisms in nonemaciated DTA1/Scnn1b-
Tg mice. P. pneumotropica predominated,
but was not the sole bacterial species in the
emaciated DTA1/Scnn1b-Tg mice
(Figure 7B). The CFU counts in emaciated
DTA1/WT and DTA1/Scnn1b-Tg
neonates were similar.

Discussion

Mucus stasis has been associated with robust
MF activation in Scnn1b-Tg mice (7–9)
and human lung disease (16). MF
activation is likely critical for both the
protection of the lung as a compensatory
mechanism and as a significant contributor
to the development of the chronic
inflammatory pathology in this model.
Evaluation of muco-obstructive disease
development in the presence and absence of
MFs is one way to investigate the complex
interrelationships between mucus stasis and
MF function. This approach is challenging,
however, as the pathophysiology associated
with both MF depletion and mucostasis
are superimposed on normal lung
developmental processes in both of our

models (9). Furthermore, MF activation is
known to be highly pleiotropic and
sensitive to local environmental stimuli
(17). The interpretation of in vivo findings
to address these interrelationships is
critically dependent upon the specific
features of the model.

For this study, due to the early onset of
lung disease in Scnn1b-Tg mice (5), it was
necessary to develop a model that would
exhibit chronic MF depletion starting at
birth. This requirement ruled out the use of
chemical-/drug-induced approaches of MF
depletion (18–20) and necessitated
genetically induced depletion of MFs. One
of the most widely used myeloid cell–
restricted promoters, LysM, was selected to
drive cell type–specific expression of Cre (11).
The LysM promoter has been reported to be
active in all myeloid cells (21), with one report
indicating LysM promoter activity also in
occasional alveolar epithelial type II cells (22).

In our study, LysM promoter activity in
cells harvested by BAL, as indexed by Cre-
mediated expression of mEGFP was age and
disease dependent. Importantly, our studies
identified a previously unappreciated age
dependency in LysM promoter activity in
BAL MFs. Whereas a vast majority of
alveolar MFs harvested from normal adult

mice was positive for LysM promoter
activity (data not shown), a significant
percentage of MFs harvested from
neonatal lavages exhibited a delay in the
LysM-Cre–mediated recombination in the
reporter transgene (Figure 2). Furthermore,
in DTA1 neonates, a significant LysM-
Cre–negative alveolar MF population was
recruited into the pulmonary airspaces.
Interestingly, these newly recruited MFs
were not competent to routinely prevent
the occurrence of bacterial infections in the
emaciated subset of DTA1 mice (Figure 4).

The genetic model we have generated is
best described as a model of LysM1 MF
depletion coupled to variable recruitment of
LysM2, functionally defective MFs or
monocytes, rather than a model of
complete MF depletion. Overall, the
patterns observed with this model are
consistent with a recent report that
identified a large subset of MF resistant to
LysM-Cre–mediated gene deletion in the
peritoneum and liver after inflammatory
stimulation (23), and complement other
findings showing that mature tissue
MFs and MFs derived from monocytes
are phenotypically distinct (3, 24).
Interestingly, in the study of Vannella and
colleagues (23), the LysM-Cre–resistant

Table 1. Cytokine Responses in Neonatal Mice across Designated Groups

Cytokine WT
MF-Depleted
WT “Normal”

MF-Depleted
WT “Emaciated” Scnn1b-Tg

MF-Depleted
Scnn1b-Tg
“Normal”

MF-Depleted
Scnn1b-Tg
“Emaciated”

Lower Limits
of Detection

KC 2.36 0.9*† 45.86 28.5†‡ 1,204.06 303.5 85.46 21.9* 154.86 38.1‡ 1,522.06 269.4 3.0
MIP2 14.76 1.4* 19.96 3.6‡ 7,463.06 1,365.0 273.56 64.8* 540.16 137.8‡ 5,898.06 1,436.0 16.0
Mip1a 1.46 0.0 1.46 0.0 9,180.06 272.5* 32.46 8.8 123.56 56.4 4,768.06 1,576.0* 18.0
LIX 18.76 0.0 18.76 0.0 799.06 238.8 20.66 1.9* 200.56 55.8* 1,236.06 254.2 18.7
TNFa 0.66 0.0 1.76 1.1* 355.96 68.3 11.16 4.2 21.26 8.4* 502.46 138.3 3.1
IL-5 12.36 5.9 26.76 9.5 0.16 0.0 6.76 2.9 5.86 3.0 0.126 0.0 2.9
IL10 1.76 0.2 1.16 0.2 466.96 243.4 1.56 0.3 1.66 0.3 388.86 168.2 3.1
M-CSF 0.06 0.0* 2.26 1.3 11.86 3.3 13.96 1.9 15.36 2.8 15.66 4.5* 2.8
IL-17 0.06 0.0 0.06 0.0 933.06 31.4* 0.06 0.0 8.86 4.7 13.56 4.3* 3.1
IL-6 1.46 0.3* 13.96 7.2 1,620.06 324.3 10.26 2.4* 17.46 5.4 1,355.06 412.6 3.2
IP10 14.26 1.8 18.56 7.4 362.06 37.0* 15.16 2.0 34.46 14.6 189.56 49.6* 3.1
MCP1 5.96 0.0 5.96 0.0 426.26 64.6 5.96 0.0 29.46 14.5 296.16 68.9 17.0
IL-4 1.26 0.2 3.86 1.2 18.86 6.1* 1.66 0.3 3.436 0.8 6.76 1.8* 3.2
MIP1b 15.46 0.0 18.86 3.3 9,189.06 925.8 32.06 9.7 204.96 108.3 6,195.06 1,507.0 18.9
IL-1a 24.96 9.0 118.96 78.5 1,810.06 881.3 32.96 9.6 135.96 42.6 677.76 354.0 18.8
IL-12 0.06 0.0 0.56 0.3 1.36 0.9 1.86 1.2 0.76 0.4 0.46 0.1 3.1

Definition of abbreviations: IP-10, interferon-g-inducible protein 10; KC, keratinocyte chemoattractant; LIX, LPS-induced CXC chemokine; MF,
macrophage; MCP, monocyte chemotactic protein; M-CSF, macrophage colony–stimulating factor; MIP, macrophage inflammatory protein; Scnn1b-Tg,
sodium channel b subunit transgenic; WT, wild-type.
Cytokine levels (pg/ml) in bronchoalveolar lavage. Bold text indicates significantly higher values comparing “Normal” with “Emaciated” within the
“MF-Depleted WT” and “MF-Depleted Scnn1b-Tg” groups. The SEM values for some cytokines were 0.0 because these cytokine levels were below
detection limits and were assigned the values equal to the lowest assay detection limit. Values less than the lower limit of detections were obtained by
extrapolation. n = 5–6, P, 0.05.
*,†,‡Two values carrying identical designations (for example, “*” or “†” or “‡”) in same row represent significant difference.
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MFs were not characteristic of mature
tissue MFs, and were thought to be more
immature with reduced function, consistent
with our findings. LysM-Cre–resistant MFs
were also a prominent feature in the
pulmonary macrophage population after
allergic inflammatory challenge (25). The
presence of these Cre-inactive cells is
important with respect to the interpretation
of results using LysM-Cre technology to
delete cells of the myeloid lineage. The
breeding strategy applied in our study,
using Cre-dependent reporter gene
expression coupled to DTA expression (or
other lox-flanked alleles), was necessary
to interpret the efficiency of LysM Cre–
mediated MF depletion.

Another feature of our model was the
presence of BAL neutrophils associated with

LysM-mediated DTA1 expression during
the neonatal period. This feature is similar
to the neutrophilia reported in MAFIA
mice, a different model of macrophage
depletion (18), and clodronate
liposome–induced MF depletion (19).
Increased neutrophil counts in BAL were
also found in a model specifically designed
to reduce M2 MFs using CD206-
dependent Cre recombination (26).
Kambara and colleagues (26) speculated
that the neutrophilia reflected the
disruption of the normal antiinflammatory
role of M2 macrophage populations. In
parallel, proinflammatory mediators
derived from DTA1, apoptotic MFs also
could contribute to this phenomenon (27).
MFs are also critical for clearing apoptotic
cells generated during normal lung

development (28), and neutrophil
recruitment may be a compensatory
mechanism after MF depletion in neonatal
lungs with LysM-mediated DTA
expression. The functional consequences of
LysM-mediated DTA expression in the
neutrophil populations in our model will
require further study.

Spontaneous bacterial infection is one
of the consistent features of Scnn1b-Tg
neonates, with infection due to both gram-
positive and gram-negative species (7).
These bacteria appear to originate from
aspiration from the oral cavity, and are
seemingly maintained in the neonatal
Scnn1b-Tg mice at nonlethal densities due
to the poor mucus clearance characteristic
of this model. Interestingly, 24% of WT
(non–Scnn1b-Tg) mice that expressed
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LysM-mediated DTA expression
(i.e., disrupted MF function) exhibited
lethal emaciation by 2–3 days after birth,
associated with alveolar airspace
consolidation, neutrophil-dominated
inflammation, and a cytokine storm. The
frequency of this occurrence increased to
51% in DTA1/Scnn1b-Tg mice. Strikingly,
the only bacterial species identified in the
DTA1/WT emaciated mice was Pasteurella
pneumotropica, an opportunistic pathogen
of the oropharynx of mice (29), whereas the
Scnn1b-Tg line exhibited pneumonias with
a broader species distribution typical of
the species that normally colonize the
Scnn1b-Tg line. These data support a model
whereby mucus clearance (normal in WT
mice) is sufficient for clearance of most

aspirated bacteria, but that specific bacteria
(e.g., P. pneumotropica) escape mucus
clearance and require a second component
of airways defense (i.e., MF function) for
clearance. Although the mechanism by
which P. pneuomotropica alone escapes
mucus clearance in MF-deficient WT mice
is not clear, the overall notion of the
importance of MFs in P. pneuomotropica
clearance is consistent with previous studies
reporting that MF-specific Toll-like
receptor 4 protects against intranasally
administered P. pneumotropica (30).

Although it is possible that altered
neutrophil function due to LysM-
Cre–mediated DTA1 expression in these
cells contributed to pneumonia, no
evidence of LysM-Cre driven EGFP was

observed in BAL neutrophils. Furthermore,
in previous studies, near-complete absence
of airway neutrophils in Scnn1b-Tg
neonates, driven by Myd88 deletion,
resulted in only approximately 1 log higher
bacterial counts and no evidence of
emaciation (7), compared with the
approximately 5 log increment in bacterial
load accompanied by emaciation in this
study. Consequently, the bulk of evidence
supports a direct effect of MF depletion on
the prevalence and severity of the bacterial
pneumonias in DTA1/WT and DTA1/
Scnn1b-Tg mice, consistent with the known
role of MFs during pulmonary bacterial
infections (31, 32).

We had predicted that the reduced MF
function in DTA1/Scnn1b-Tg mice would
reduce the severity of airspace enlargement,
given the reported role of MF-derived matrix
metalloproteinase 12 to the development of
this phenotype in the Scnn1b-Tg model (33).
We speculate that the persistent airspace
enlargement may reflect at least two different
scenarios. First, raised neutrophil elastase
levels mediated by increased neutrophil
numbers may have dominated emphysema
pathophysiology, producing the observed
worsening rather than amelioration of
airspace enlargement (34, 35). Second,
immature macrophage populations may
exhibit protease:antiprotease imbalance with
increased protease release (matrix
metalloproteinases) or/and decreased
antiprotease release (tissue inhibitors of
metalloproteinases [TIMPs]) (35, 36).

Mucus plugging typical of WT Scnn1b-
Tg neonates was almost completely absent
in emaciated DTA1/Scnn1b-Tg mice.
Because the mucus plugging in neonatal
Scnn1b-Tg mice is at least partially related
to Th2-type gene responses, the absence
of mucus plugging likely reflects the
observed shift in cytokine profile due to
a high bacterial burden (14). Indeed, both
eosinophil numbers and levels of BAL IL-5,
a Th2 cytokine known to induce mucus
cell metaplasia (37), were significantly
reduced in emaciated DTA1/Scnn1b-Tg
mice. The cytokine and cell quantitation
data also suggest that emaciated neonates
exhibited a neutrophil-dominated Th17
profile, with increased levels of Th17 cytokines
(e.g., TNF-a, IL-6, and IL-17). Cross-talk
between neutrophils, MF apoptosis–induced
neutrophilia (27), and Th17 responses (38)
enhanced in the presence of bacterial infection
likely produced the Th17-dominated
inflammation in this scenario.
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Our findings that the nonemaciated
DTA1/Scnn1b-Tg mice exhibit increased
inflammation and equivalent mucus plugging
as compared with DTA2/Scnn1b-Tg mice
contrasts with recent findings in models of
Th2-type allergic lung inflammation. In the
allergic models, MF depletion attenuated,
rather than enhanced, goblet cell metaplasia
and other Th2 inflammatory responses in the
absence of bacterial pneumonia (25, 39, 40).

The contrast in results highlights the
importance of considering the role of MFs
within the context of the specific disease
model being studied. These data also
predict that development of therapies
directed at MF function with indication for
multiple pulmonary diseases will not be
straightforward.

In conclusion, our genetic approaches
to explore the interactions between defects
in mucus clearance and macrophage
function on pulmonary host defense in mice
produced several important observations.
First, MF depletion led to reduced
pulmonary bacterial clearance and alveolar
infection in a fraction of WT mice, which
became more prevalent in the context of the
impaired mucus clearance. Second, the
model identified populations of LysM-
Cre–inactive alveolar MFs in multiple
contexts, including WT neonatal mice and
mucus-obstructed Scnn1b-Tg mice, which
provides an opportunity to explore the
mechanisms leading to monocyte/
macrophage recruitment from the blood to
the lung across developmental ages and

during disease. Third, the failure of
macrophage depletion to ameliorate the
phenotype in Scnn1b-Tg mice demonstrates
the complexity of the interplay between
defective mucus clearance and macrophage
function in muco-obstructive lung diseases. n
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