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ABSTRACT (ENGLISH)  
Primary ciliary dyskinesia (PCD) is a genetically and phenotypically heterogeneous disease caused by mutations in

over 40 different genes. Individuals with PCD caused by mutations in RSPH1 (radial spoke head 1 homolog) have

been reported to have a milder phenotype than other individuals with PCD, as evidenced by a lower incidence of

neonatal respiratory distress, higher nasal nitric oxide concentrations, and better lung function. To better

understand genotype–phenotype relationships in PCD, we have characterized a mutant mouse model with a

deletion of Rsph1. Approximately 50% of cilia from Rsph1/ cells appeared normal by transmission EM, whereas the

remaining cilia revealed a range of defects, primarily transpositions or a missing central pair. Ciliary beat frequency

in Rsph1/ cells was significantly lower than in control cells (20.2 ± 0.8 vs. 25.0 ± 0.9 Hz), and the cilia exhibited an

aberrant rotational waveform. Young Rsph1/ animals demonstrated a low rate of mucociliary clearance in the

nasopharynx that was reduced to zero by about 1 month of age. Rsph1/ animals accumulated mucus in the nasal

cavity but had a lower bacterial burden than animals with a deletion of dynein axonemal intermediate chain 1

(Dnaic1/). Thus, Rsph1/ mice display a PCD phenotype similar to but less severe than that observed in Dnaic1/

mice, similar to what has been observed in humans. The results suggest that some individuals with PCD may not

have a complete loss of mucociliary clearance and further suggest that early diagnosis and intervention may be

important to maintain this low amount of clearance.  

FULL TEXT 
Primary ciliary dyskinesia (PCD) is a rare genetic disease that occurs with an estimated incidence of approximately

1:10,000–1:16,000 (1). The disease is usually inherited in an autosomal recessive pattern and is caused by

mutations that disrupt the function of motile cilia, in particular those of the respiratory tract. Motile cilia possess

the same basic axonemal structure that is conserved among cilia and flagella from a wide variety of organisms

and consists of a central pair of microtubules surrounded by nine uniformly spaced microtubule doublets. Each

outer doublet is connected to the adjacent doublet by a series of inner dynein arms and outer dynein arms (ODAs)

that provide the force for ciliary motion, and each outer doublet is connected to the central pair by radial spokes.

Although the basic “9 + 2” structure appears relatively simple, each different type of cilium is specialized for its

particular function, and each is composed of more than 250 different proteins (2–5). It is not surprising, therefore,

that PCD is genetically heterogeneous, because mutations in many of these proteins have been shown to disrupt

ciliary function. PCD-causing mutations have been identified in over 40 different genes to date, and these do not

account for all cases of PCD, indicating that additional PCD-causing mutations are yet to be found. Many of the

genes identified are structural components of the ciliary axoneme. For example, DNAI1 (dynein axonemal

intermediate chain 1) and DNAH5 are components of the ODA, and mutations in these genes typically result in the

loss of the ODA and reduced or absent ciliary beat frequency (CBF) (6–10). However, mutations in nonaxonemal

proteins, including those involved in dynein arm assembly (e.g., DNAAF1 [dynein, axonemal, assembly factor 1],

http://libproxy.lib.unc.edu/login?url=https://search.proquest.com/docview/2289670601?accountid=14244


HEATR2 [heat repeat-containing protein 2], SPAG1 [sperm-associated antigen 1]) have also been identified as

causes of PCD (11–13). 

The disruption of motile cilia function results in a broad spectrum of disease symptoms in individuals with PCD

(14–17). The lack of effective mucociliary clearance (MCC) in the respiratory tract is responsible for much of the

associated morbidity, including recurrent lower respiratory infections, chronic cough, chronic rhinosinusitis, and

otitis media. A delayed onset of neonatal respiratory distress has been reported to occur in many infants with PCD,

although the mechanism is currently unknown (18). Bronchiectasis occurs at an early age in patients with PCD,

and, in severe cases, the frequent and recurring pulmonary infections can result in respiratory failure, with a lung

transplant as the only remaining treatment option. Male individuals with PCD are typically infertile, and there is

some evidence that females may exhibit reduced fertility. In addition, a subset of patients with mutations that

affect the nodal cilia exhibit a spectrum of laterality defects (19, 20). 

Although most individuals with PCD exhibit a similar clinical phenotype that can be explained by defective ciliary

motility, individuals vary in both the spectrum and severity of disease. For example, we have previously reported

that individuals with mutations in RSPH1 (radial spoke head homolog 1) have a milder course of disease than

individuals with PCD with mutations in other genes (21). Individuals with RSPH1 mutations had fewer incidences

of neonatal respiratory distress, higher concentrations of nasal nitric oxide, and better lung function, as measured

by forced expiratory volume in 1 second. A significant percentage of ciliary axonemes from individuals with PCD

with RSPH1 mutations appear normal by transmission EM and maintain an almost normal CBF, but these

axonemes have been observed to beat in a circular pattern (21–23). Together, these results suggest that the ciliary

activity observed in individuals with RSPH1 mutations may provide a reduced, but significant, amount of MCC.

This contrasts with PCD cases in which the cilia are immotile or dyskinetic and are incapable of providing any

effective MCC. Alternatively, the difference in clinical phenotype may be a result of other causes, including genetic

modifiers or environmental factors. 

To further test the hypothesis that RSPH1 mutations result in some amount of MCC and a less severe PCD

phenotype, as well as to gain insights into the mechanisms that may be responsible, we have characterized the

pathogenesis of disease in a mouse model with a deletion of Rsph1 (24). We also compared the Rsph1/ mice with

animals with a deletion of dynein axonemal intermediate chain 1 (Dnaic1/) that causes ciliary immotility and a

complete lack of effective MCC (25). Our results show that Rsph1/ mice demonstrate significant ciliary activity and

a low amount of mucociliary transport at young ages (Days 3–11), but mucociliary transport ceases by Day 30. In

addition, the Rsph1/ mice also showed a reduced amount of nasal bacterial colonization at early time points

compared with the Dnaic1/ mice. These data support the hypothesis that although mutations in RSPH1 disrupt

ciliary function and cause PCD in humans, the residual ciliary activity results in a less severe clinical phenotype. 

Methods  

Generation, Breeding, Maintenance of Mice  

Rsph1/ mice were obtained from the Riken BioResource Center. These animals carry a neomycin insertion that

replaces exons 1–3 of the Rsph1 gene (24) and were maintained on a mixed C57BL6/129 background. Dnaic1/

animals were also maintained on a mixed C57BL6/129 background as previously described (25). Heterozygous

animals were mated to produce wild-type (WT), heterozygous, and homozygous null (Rsph1/) animals for study. No

differences between WT and heterozygous animals were observed, and both were used as controls. Animals were

genotyped using standard PCR protocols with primers listed in Table E1 in the data supplement. All studies were

conducted under protocols approved by the University of North Carolina Institutional Animal Care and Use

Committee. 

Cell Culture and Analysis of Expression  

Mouse tracheal epithelial cells (MTECs) were isolated and cultured at the air–liquid interface on collagen-coated

Millicells (12 mm, 0.4 m; MilliporeSigma) as described previously (26). Total RNA was isolated from differentiated

cultures of MTECs isolated from WT or Rsph1 / animals. RT-PCR was performed using Rsph1-specific primers, and

primers specific for Dnaic1 were used as a positive control for RNA quality (Table E1). 



Ciliary Structure Analysis  

Tracheas from adult (6.5 mo old) WT (n = 2), heterozygous (n = 2), and Rsph1/ (n = 3) animals were fixed in an

excess of 2% paraformaldehyde, 2% glutaraldehyde with 1% tannic acid for at least 24 hours. Tissue was

processed according to published protocols, and high-quality images of axonemal cross-sections were obtained

(27). Images from 398 control and 228 Rsph1/ ciliary cross-sections were evaluated for structural aberrations.

Relative alignment of cilia was determined in the same micrographs by drawing a line connecting the two central

pair microtubules and calculating the mean vector. Additional details are provided in the data supplement. 

Measurement of CBF  

MTECs were isolated and cultured as above, and ciliary activity was visualized with a Nikon Eclipse TE2000

inverted microscope (Nikon Instruments Inc.) using phase optics and a 20× objective. A Redlake ES-310T camera

driven by SAVA software (28) (Ammons Engineering) was used to record and measure CBF as previously described

(29). Briefly, 10–12 alternating microscopic fields were recorded from each culture and analyzed using the whole-

field analysis option in SAVA. Cultures analyzed for CBF exhibited high amounts of ciliary activity (>40% active

area as measured by SAVA). 

Analysis of Ciliary Waveform  

To examine ciliary waveform, the nasal septum was dissected from adult littermate control and Rsph1 / animals.

The ciliated epithelium was peeled from the nasal cartilage and placed in a culture dish containing F12 media. A

chamber was constructed around the sample using three No. 1 coverglasses (18 × 18 mm) held together with

silicone grease. The chamber channel had a cross-section of 16 mm × 200 m and had open ends to flush the

sample with fresh F12. The chamber was placed on a Nikon Eclipse inverted microscope and imaged with a 60× oil

objective (plan achromat; numerical aperture, 1.4), a high–numerical aperture (0.85) air condenser, and differential

interference contrast optics. A postobjective optical magnification of 1.5× was also applied. The transmitted light

was recorded using a Basler acA1300-200um camera under the control of SAVA software. Videos of 1,024 frames

were taken at 300 frames/s. Post-processing of the images was used to increase the contrast. Videos were then

replayed in slow motion and analyzed by an investigator blinded to the genotype of the animals (30). Cilia were

tracked by manually marking x, y coordinates of cilia while visually inspecting video frames. Three cilia from one

video were tracked for each mouse, and the direction of the ciliary beat was noted. From these data, the end-

recovery position and central beat axis were calculated. The maximal distance (d) from a ciliary position to the

central axis was calculated and used to compare genotypes. 

Measurement of MCC  

MCC in the nasal cavity was measured as previously described (31). Briefly, animals were anesthetized with 2.5%

isoflurane and then killed by aortic exsanguination. The lower jaw was removed; a small incision was made in the

lateral wall of the anterior nasopharynx; and a silica cannula was used to introduce a small amount of dry

fluorescent 7-m beads (Thermo Fisher Scientific). The preparation was placed under a dissecting microscope with

a fluorescent lamp outfitted with a video camera (MTI), and the rate of MCC was determined by measuring the time

it took fluorescent particles to traverse a calibrated distance in the anterior nasopharynx. Usually, 10–30 particles

were tracked per mouse over a 10-minute period. The analysis was performed by an investigator blinded to the

animals’ genotype. 

Nasal Bacterial Counts  

The nasal septum was dissected starting approximately 3 mm from the tip of the mouse nose up to the ethmoid

bone under sterile conditions, transferred to a centrifuge tube containing 0.2 ml of sterile PBS, and vigorously

vortexed for 30 seconds. Serial dilutions (1:1, 1:10, 1:100) were plated on Columbia anaerobic sheep blood agar

plates (BD Biosciences) and incubated in microaerophilic conditions at 37°C, as described previously (32). Colony-

forming units were counted after 18–24 hours of incubation. 

Quantification of Bronchus-Associated Lymphoid Tissue  

Lungs from control and Rsph1/ animals were fixed with 10% neutral-buffered formalin, and paraffin sections were

prepared. Each lobe was sectioned longitudinally to maximize airways, and hematoxylin and eosin–stained



sections were examined by light microscopy to identify foci of bronchus-associated lymphoid tissue (31). 

Results  

To investigate the consequences of Rsph1 deletion on ciliary structure and function in a mammalian model, we

obtained transgenic mice carrying a deletion of exons 1–3 in the Rsph1 gene (1). The mice were maintained on a

mixed C57BL6/129 background, and heterozygote animals were bred to generate WT, heterozygote, and

homozygous Rsph1/ animals. Although not noted in the original report, we observed that Rsph1/ animals

developed various degrees of hydrocephalus, similar to other mouse models of PCD, although many animals

survived into adulthood (33). Of 155 Rsph1/ animals that were not used for experimental studies or killed for

humane reasons, 48 animals survived longer than 30 days. This is a much higher percentage (30%) than what we

have observed in the Dnaic1/ mouse line (25). Animals that are Dnaic1 / at birth seldom survive past 1 week (W. Yin

and L. Ostrowski, unpublished results). To confirm that the deletion resulted in the complete loss of Rsph1

expression in the airways, we performed RT-PCR on differentiated cultures of MTECs using primers specific for

Rsph1. Although cells from control animals exhibited a strong positive signal, cells from the Rsph1/ mice produced

no detectable signal, confirming that the deletion eliminated the expression of Rsph1 (Figure E1). We also

performed Western blotting of tracheal extracts with a rabbit polyclonal anti-RSPH1 antibody (Figure E2). As

expected, no protein was detected in the Rsph1 / samples, whereas samples from WT animals produced a clear

signal. 

To examine the effect of Rsph1 deletion on the structure of the motile cilia in the airways, tracheas from control

and mutant animals were examined by transmission EM. Ninety-eight percent (390 of 398) of ciliary cross-sections

examined from control animals showed a normal, 9 + 2 axonemal structure (Figures 1A and 1B). In contrast, only

50% (113 of 228) of the cilia from the Rsph1/ animals were scored as normal. The most common abnormality

observed, occurring in 52% of the abnormal axonemes (60 of 115), was a transposition defect, in which the central

pair is missing and one of the outer doublets has migrated into the central region of the axoneme (Figures 1A and

1B). Other ciliary abnormalities observed included a missing central pair (28 of 115 [24%]) and translocations (7 of

115 [6%]) (Figures 1A and 1B). These results are similar to observations in human patients with PCD with

mutations in RSPH1 (34). 



Enlarge this image. 

To examine the orientation of the Rsph1/ cilia, we measured the alignment of the central pair between cilia in the

same micrographs and calculated the mean vector length. Cilia from the control animals appeared well aligned,
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with an overall mean vector length of 0.86 (weighted average of 502 cilia) (Figure 2A). Cilia from the Rsph1/

animals appeared less well aligned (Figure 2B), although some images showed high local alignment (Figure 2C).

The mean vector length of the Rsph1/ cilia was 0.74, measured from the cilia with a normal central pair (weighted

average of 179 cilia). We also observed a similar pattern of ultrastructural defects in cilia from MTECs cultured at

the air–liquid interface. Cilia from WT cultures showed a normal 9 + 2 axoneme (113 of 113 [100%]), whereas

approximately 30% (42 of 135) of cilia from Rsph1 / cultures were abnormal. The abnormal cilia showed the same

defects as cilia from the intact trachea, with 17 of 42 abnormal axonemes (40%) showing a transposition defect

and 23 of 42 abnormal axonemes (55%) missing the central pair. These data confirm that the defects observed are

genetic in nature and are not secondary to the PCD phenotype. 



Enlarge this image. 

Airway epithelial cells from individuals with PCD caused by mutations in RSPH1 have been reported to exhibit

normal or reduced CBF (21, 23, 35). To determine the effect of Rsph1 deletion on ciliary activity in the mouse
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model, MTECs were cultured at the air–liquid interface until ciliated cell differentiation occurred. Measurement of

CBF by high-speed video microscopy and whole-field analysis using the SAVA software system (28) showed that

Rsph1 deletion resulted in a significantly reduced CBF. At 37°C, CBF was reduced from 25.0 ± 0.9 Hz in the control

cultures to 20.2 ± 0.8 Hz in the Rsph1/ cultures (P < 0.003; average ± SD; n = 3). Although the reduction in CBF was

significant, cilia from the Rsph1/ mice exhibited abundant ciliary activity, especially when compared with cilia from

mouse models with mutations in other PCD-causing genes that result in essentially immotile cilia (e.g., Dnah5,

Dnaic1 [25, 36]). 

To determine the effect of Rsph1 deletion on ciliary waveform, we isolated sheets of ciliated epithelium from the

nasal septum and recorded high-speed videos at high magnification using differential interference contrast (37).

When analyzed in a slow-motion replay, cilia from the Rsph1 / animals were observed to exhibit a slightly circular

(counterclockwise) waveform that was distinct from that of the control samples (Figure 3 and Videos E1 and E2).

Measuring the distance that the ciliary beat deviated from planar revealed a clear difference between the control

and Rsph1 / animals (control vs. Rsph1 /, 0.43 m vs. 1.05 m; P < 0.004; n = 36). This circular waveform has previously

been observed in samples from human subjects with mutations in radial spoke proteins (e.g., 21, 23, 34, 38). Thus,

the deletion of Rsph1 has an effect on ciliary activity in the mouse similar to that in humans. 



Enlarge this image. 

As noted above, individuals with PCD caused by mutations in RSPH1 have been observed to have a less severe

course of disease than that observed in individuals with other mutations. To test the hypothesis that mutations in
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RSPH1 may reduce but not eliminate MCC, we measured the rate of MCC in the nasopharynx of control and Rsph1/

animals. The rate of MCC was measured in mice of different ages by recording the movement of fluorescent beads

in the anterior nasopharynx, as described previously (31). In control animals, the rate of MCC increased between

Days 1 and 30 (Figure 4). Similar observations have been reported in the trachea, where both the extent of ciliation

and the speed of cilia-generated flow were reported to increase from Days 1 to 9 after birth (39). Although the rate

of MCC also increased in the Rsph1 / group during the first 2 weeks after birth, at each age examined, the rate of

MCC in the Rsph1/ mice was significantly less than that in the control mice, being barely detectable at Day 1 and

only approximately 20% of control at age 3–4 days and age 10–11 days. Furthermore, in older animals (30 d old),

Rsph1/ animals had no measurable MCC, whereas control animals of the same age had a rate of MCC of 8.7 ± 1.1

mm/min (average ± SEM) (Figure 4). As an additional control, we measured MCC in Dnaic1 / animals at similar ages

(3–4 d, n = 3; 7–11 d, n = 6; and 30 d, n = 1). As expected, none of these animals exhibited any MCC. These data

demonstrate that the deletion of Rsph1 reduces but does not completely prevent MCC in early postnatal life. The

results further suggest that as disease pathogenesis progresses, the accumulated mucus (see below) and its

sequelae eventually result in the complete cessation of transport. 



Enlarge this image. 

Histological examination of Rsph1/ animals revealed an accumulation of mucus throughout the nasal cavity,

including the regions of the dorsal meatus and ethmoturbinates, as well as the maxillary sinus (Figure 5). The
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mucus accumulation appeared to be milder in the younger animals (Figures 5B and 5D), with only small areas

affected. In the older animals, the areas of mucus accumulation were larger, and more areas of the nasal cavity

were involved (Figures 5F and 5H). Tissue remodeling was also apparent in the older animals, with degeneration of

the ethmoturbinates frequently observed (Figure 5H). Therefore, even though young Rsph1/ mice have a

measurable rate of MCC, it is not sufficient to prevent the accumulation of mucus and initiation of pathogenesis.

Histological examination of lung sections collected from age-matched control and Rsph1/ animals revealed no

obvious mucus accumulation or other pathology in the PCD animals. Although a preliminary report suggested a

higher incidence of bronchus-associated lymphoid tissue in the Rsph1/ mice (40), examination of a larger group of

animals (32 control, 29 Rsph1/) did not show a significant difference (Figure E3). 

Enlarge this image. 

To further examine the pathogenesis of PCD in the Rsph1/ mice, we quantified the bacterial load in the nasal cavity

of control and PCD mice in two different age groups: Days 4–10 (when the Rsph1/ animals showed some MCC)

and at an older age, Days 21–46 (Figure 6). To compare the phenotype of the Rsph1/ mice with that of animals

with immotile cilia, we also quantified the bacterial load in Dnaic1/ animals. The number of Dnaic1/ animals studied
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was limited because the majority of these animals die shortly after birth. Although the Rsph1 / animals showed a

trend toward an increased number of bacteria, the average number of bacterial colonies was not significantly

different from that seen in the control WT animals in either group (Rsph1/ vs. control, 641 ± 267 vs. 181 ± 107 at

Days 4–10; and Rsph1/ vs. control, 296 ± 181 vs. 47 ± 42 at Days 21–46 [average ± SEM]). In contrast, all Dnaic1/

animals had many culturable bacteria at both time points (5.6 × 105 ± 1.3 × 105 at Days 4–10 and 1.2 × 104 ± 2.8 × 10
3 at Days 21–46 [average ± SEM]), and the difference in colony-forming units was highly significant versus the

control and Rsph1/ animals at both times (P < 0.002 for each). 
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Discussion  

PCD is a genetically heterogeneous disease, with causative mutations identified in more than 40 genes to date.
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This is not surprising when one considers that motile cilia of the respiratory tract consist of more than 250 unique

proteins, many of them expressed only in ciliated cells. In general, a mutation that causes a defect in ciliary

function would be expected to cause the same or a very similar phenotype, and this is in fact what is observed,

with most individuals with PCD exhibiting common symptoms, including chronic rhinosinusitis, otitis media,

chronic cough, pneumonia, and bronchiectasis. However, PCD is also phenotypically heterogeneous, with some

individuals having severe life-shortening airway disease and others experiencing less severe symptoms. Because

PCD is a rare disease, the number of individuals with mutations in the same gene is small, and the number of

individuals with the same pair of causative mutations is even smaller. Thus, investigations into the relationships

between genotype and phenotype have been limited. However, with the increasing availability of genetic testing to

diagnose PCD, some genotype–phenotype associations have become apparent. For example, individuals with PCD

caused by mutations in CCDC39 or CCDC40 (coiled-coil domain-containing 39 or 40, respectively) have worse lung

disease than those with ODA or ODA and inner dynein arm defects (14). We previously reported that individuals

with mutations in RSPH1 had a less severe phenotype than a group of individuals with “classic” PCD caused by

mutations in genes other than RSPH1 (21). Individuals with RSPH1 mutations had fewer incidences of neonatal

respiratory distress, higher concentrations of nasal nitric oxide, and statistically higher lung function, as measured

by forced expiratory volume in 1 second. We demonstrated that RSPH1-mutant cilia had significant ciliary activity,

appearing to beat in a circular pattern, similar to nodal cilia. An average of 80% of ciliary cross-sections obtained

by transmission EM from individuals with mutations in RSPH1 had a normal 9 + 2 axonemal structure, whereas

only 50% of individuals with mutations in RSPH4A (radial spoke head 4, Chlamydomonas, homolog of, A) appeared

as normal (34). These results suggested that the residual ciliary activity was sufficient to modify the severity of

disease pathogenesis in patients with RSPH1 mutations. To increase understanding of ciliary structure–function

and genotype–phenotype relationships in PCD, we characterized a mouse model with a deletion of the mouse

homolog of RSPH1. 

Analysis of tracheal cilia from Rsph1/ mice by transmission EM revealed a spectrum of abnormalities.

Approximately 50% of the ciliary cross-sections examined appeared normal, whereas approximately 25% showed

an 8 + 1 structure, with a transposition of one of the outer doublets into the central regions. Other ciliary defects

observed included axonemes with a missing central pair (10%) or the translocation of an outer doublet into the

midregion of the axoneme (3%). This spectrum of abnormalities is similar to that observed in human patients with

PCD with RSPH1 mutations. For example, in our cohort of 15 subjects with PCD with RSPH1 mutations, 62–93% of

ciliary cross-sections had a normal 9 + 2 structure (21). Kott and colleagues identified 11 subjects with PCD with

RSPH1 mutations and observed a range of 30–81% normal axonemal structure (35). Onoufriadis and colleagues

reported similar results for a small number of patients (23). It is now clear from a number of studies that disruption

of the radial spoke complex results in an apparent destabilization of the 9 + 2 axonemal structure, resulting in the

loss of the central pair and the transposition or translocation of the outer doublets (34, 35, 38, 41). It is also clear

that cross-sections of cilia with radial spoke defects obtained by standard transmission EM can appear normal or

disrupted, depending on the level of the section in the cilium (23, 42, 43). 

Radial spokes are multiprotein complexes consisting of at least 23 proteins and at least three nonidentical

structures. The structure of the radial spoke complex cannot be visualized clearly by standard transmission EM,

and therefore the specific structural defect caused by the absence of Rsph1 is also not clear. In an

immunofluorescence study, Frommer and colleagues (22) reported that subjects with mutations in RSPH1 also

failed to incorporate RSPH9 into their cilia, whereas Jeanson and colleagues reported that a subject with

mutations in RSPH3 (a stalk protein) exhibited positive staining for RSPH1 (41). Our cryo-EM tomography study

revealed that cilia isolated from nasal cultures of an RSPH1-mutant individual were missing two of the three radial

spoke heads present in human ciliary axonemes (44). Additional studies are needed to fully delineate the structure

of the radial spokes and the effect of different PCD-causing mutations. 

Examination of cultured tracheal epithelial cells from the Rsph1/ animals showed robust ciliary activity, although

CBF was consistently lower than in the control animals. This is also consistent with results from human studies, in



which patients with RSPH1 mutations had, on average, a reduced CBF compared with control subjects (21, 23, 35).

In cultured nasal epithelial cells from a subject with PCD with RSPH1 mutations, we reported that the ciliated cells

exhibited a circular clockwise beat pattern (21). Several other studies have also reported that cilia with defects in

radial spokes exhibit a circular rotation pattern (23, 34, 38, 42, 45). Examination of ciliary waveform in the nasal

epithelia revealed that cilia from the Rsph1 / animals also beat with an aberrant circular pattern. This circular

rotation pattern of ciliary axonemes in the absence of radial spokes resembles what is observed in nodal cilia.

Shinohara and colleagues (46) reported that cilia from Rsph4a / mice also beat in a circular clockwise pattern.

Furthermore, they showed that in the absence of radial spokes, the axoneme is less stable and more likely to

become structurally disorganized when challenged with taxol. Although the mechanism is unclear, these data are

consistent with the concept that the presence of radial spokes is required to maintain proper 9 + 2 organization of

the ciliary axoneme and the planar beating of airway cilia. 

Similar to other murine models of PCD (33, 36), some of the Rsph1/ mice developed hydrocephalus at an early age,

and they were killed for humane reasons. However, some of the Rsph1 / animals survived long term (48 of 155

[31%]) and were available for additional studies. Histological analysis revealed mucus accumulation in the nasal

cavity of all Rsph1/ animals examined, and the amount of mucus appeared to increase with age. No overt signs of

lung disease were observed in the PCD animals, which is consistent with our observations in the Dnaic1/ model

(25), and no bacteria were recovered from BAL. This is clearly different from the human condition and likely

reflects anatomical differences between mice and humans. None of the animals exhibited situs inversus, which is

consistent with the observation that defects in radial spokes do not cause situs abnormalities, because the nodal

cilia do not incorporate radial spokes into their 9 + 0 structure. 

Interestingly, although older Rsph1/ mice showed no evidence of MCC, analysis of younger animals showed a slow

but significant rate of MCC in the nasopharynx. We measured MCC by tracking the distance traveled by fluorescent

beads deposited at the anterior tip of the nasopharynx. We have previously reported that in this anatomical

location in mice, MCC is particularly robust, even in very young animals (31). Our results demonstrate that in the

control animals, the rate of MCC increases with age, possibly due to a progressive increase in the number of

ciliated cells, as has been observed in the trachea (39). In the Rsph1/ animals, the rate of MCC also appeared to

increase over the first 10 days but was markedly reduced compared with the control animals. Between 10 and 11

days of age, the rate of MCC in the PCD animals was approximately 20% of that in the control animals. Thus,

although the absence of Rsph1 clearly results in defective ciliary structure, a reduced CBF, and an aberrant circular

waveform, young Rsph1/ mice maintain a low but significant amount of MCC, at least in the nasopharynx. This

residual amount of MCC was lost over time, suggesting that it was not sufficient to prevent mucus accumulation

and further disease progression in the nasal cavity. Because MCC in the Rsph1/ mice is inefficient, it is possible

that mucus simply accumulates until the defective Rsph1/ cilia can no longer provide enough force to maintain

MCC. It is also possible that the properties of the mucus itself may be different in older animals, owing to

developmental changes or in response to environmental challenges. For example, we have observed that the

abundance of mucous secretory cells in the trachea and bronchi of neonatal mice is altered in a reproducible

developmental pattern between Days 5 and 10 (47). Alternatively, the presence of accumulated mucus may itself

trigger a response that alters the composition and properties of airway secretions in the older Rsph1/ animals.

Although it is not clear why MCC ceases in the Rsph1/ mouse model, the initial low amount of MCC may explain

the less severe phenotype of PCD in patients with RSPH1 mutations. Although mutations in RSPH1 disrupt the

axonemal structure of respiratory cilia and alter the beat pattern from planar to circular, it is possible that, similarly

to the 9 + 0 cilia of the node, the RSPH1-mutant cilia may still be able to generate directional flow. This is in fact

what we have observed in the mouse model, where a low amount of MCC was present in the nasopharynx of young

mice. However, other mechanisms may also be involved. The near-normal CBF of RSPH1-mutant cilia may

stimulate the production of NO, which may then act as an antimicrobial or bronchodilator (48, 49). Alternatively,

the RSPH1-mutant cilia may retain other sensing or signaling functions that might mitigate disease symptoms. For

example, Button and colleagues reported that ciliated cells sense the hydration state of the overlying mucus layer



(50), and Shah and colleagues reported that human ciliated cells express sensory bitter taste receptors (51). It

would be interesting to perform studies of MCC in subjects with RSPH1 and other radial spoke mutations,

especially in younger individuals, to determine directly if they exhibit a significant amount of MCC. It will also be of

interest to determine if treatment of young Rsph1/ mice with therapies to clear mucus (e.g., mucolytics or nasal

lavage with normal or hypertonic saline) might improve the rate and/or prolong the duration of MCC. Finally,

although there are many benefits to early diagnosis and treatment of PCD, the development of treatments to

improve or maintain low amounts of MCC, if present, in patients with RSPH1 mutations may provide an even

greater therapeutic benefit. 
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