153 research outputs found

    The role of contactin-associated protein-like 2 in neurodevelopmental disease and human cerebral cortex evolution

    Get PDF
    The contactin-associated protein-like 2 (CNTNAP2) gene is associated with multiple neurodevelopmental disorders, including autism spectrum disorder (ASD), intellectual disability (ID), and specific language impairment (SLI). Experimental work has shown that CNTNAP2 is important for neuronal development and synapse formation. There is also accumulating evidence for the differential use of CNTNAP2 in the human cerebral cortex compared with other primates. Here, we review the current literature on CNTNAP2, including what is known about its expression, disease associations, and molecular/cellular functions. We also review the evidence for its role in human brain evolution, such as the presence of eight human accelerated regions (HARs) within the introns of the gene. While progress has been made in understanding the function(s) of CNTNAP2, more work is needed to clarify the precise mechanisms through which CNTNAP2 acts. Such information will be crucial for developing effective treatments for CNTNAP2 patients. It may also shed light on the longstanding question of what makes us human

    Altered γ-Secretase Processing of APP Disrupts Lysosome and Autophagosome Function in Monogenic Alzheimer's Disease

    Get PDF
    Abnormalities of the endolysosomal and autophagy systems are found in Alzheimer's disease, but it is not clear whether defects in these systems are a cause or consequence of degenerative processes in the disease. In human neuronal models of monogenic Alzheimer's disease, APP and PSEN1 mutations disrupt lysosome function and autophagy, leading to impaired lysosomal proteolysis and defective autophagosome clearance. Processing of APP by γ-secretase is central to the pathogenic changes in the lysosome-autophagy system caused by PSEN1 and APP mutations: reducing production of C-terminal APP by inhibition of BACE1 rescued these phenotypes in both APP and PSEN1 mutant neurons, whereas inhibition of γ-secretase induced lysosomal and autophagic pathology in healthy neurons. Defects in lysosomes and autophagy due to PSEN1 mutations are rescued by CRISPR-knockout of APP. These data demonstrate a key role for proteolysis of the C-terminal of APP by γ-secretase in neuronal dysfunction in monogenic Alzheimer's disease

    Tumour necrosis factor induces increased production of extracellular amyloid-β- and α-synuclein-containing aggregates by human Alzheimer's disease neurons

    Get PDF
    In addition to increased aberrant protein aggregation, inflammation has been proposed as a key element in the pathogenesis and progression of Alzheimer’s disease. How inflammation interacts with other disease pathways and how protein aggregation increases during disease are not clear. We used single-molecule imaging approaches and membrane permeabilization assays to determine the effect of chronic exposure to tumour necrosis factor, a master proinflammatory cytokine, on protein aggregation in human-induced pluripotent stem cell-derived neurons harbouring monogenic Alzheimer’s disease mutations. We report that exposure of Alzheimer’s disease neurons, but not control neurons, to tumour necrosis factor induces substantial production of extracellular protein aggregates. Aggregates from Alzheimer’s disease neurons are composed of amyloid-β and α-synuclein and induce significant permeabilization of lipid membranes in an assay of pathogenicity. These findings provide support for a causal relationship between two crucial processes in Alzheimer’s disease pathogenesis and suggest that targeting inflammation, particularly tumour necrosis factor, may have beneficial downstream effects on ameliorating aberrant protein aggregation and accumulation

    Microtubules Deform the Nuclear Membrane and Disrupt Nucleocytoplasmic Transport in Tau-Mediated Frontotemporal Dementia

    Get PDF
    The neuronal microtubule-associated protein tau, MAPT, is central to the pathogenesis of many dementias. Autosomal-dominant mutations in MAPT cause inherited frontotemporal dementia (FTD), but the underlying pathogenic mechanisms are unclear. Using human stem cell models of FTD due to MAPT mutations, we find that tau becomes hyperphosphorylated and mislocalizes to cell bodies and dendrites in cortical neurons, recapitulating a key early event in FTD. Mislocalized tau in the cell body leads to abnormal microtubule movements in FTD-MAPT neurons that grossly deform the nuclear membrane. This results in defective nucleocytoplasmic transport, which is corrected by microtubule depolymerization. Neurons in the post-mortem human FTD-MAPT cortex have a high incidence of nuclear invaginations, indicating that tau-mediated nuclear membrane dysfunction is an important pathogenic process in FTD. Defects in nucleocytoplasmic transport in FTD point to important commonalities in the pathogenic mechanisms of tau-mediated dementias and ALS-FTD due to TDP-43 and C9orf72 mutations

    Phenotypic Screening Identifies Modulators of Amyloid Precursor Protein Processing in Human Stem Cell Models of Alzheimer's Disease

    Get PDF
    Human stem cell models have the potential to provide platforms for phenotypic screens to identify candidate treatments and cellular pathways involved in the pathogenesis of neurodegenerative disorders. Amyloid precursor protein (APP) processing and the accumulation of APP-derived amyloid β (Aβ) peptides are key processes in Alzheimer's disease (AD). We designed a phenotypic small-molecule screen to identify modulators of APP processing in trisomy 21/Down syndrome neurons, a complex genetic model of AD. We identified the avermectins, commonly used as anthelmintics, as compounds that increase the relative production of short Aβ peptides at the expense of longer, potentially more toxic peptides. Further studies demonstrated that this effect is not due to an interaction with the core γ-secretase responsible for Aβ production. This study demonstrates the feasibility of phenotypic drug screening in human stem cell models of Alzheimer-type dementia, and points to possibilities for indirectly modulating APP processing, independently of γ-secretase modulation.P.W.B. received funding through the Alborada Trust's support of the Alzheimer's Research UK Stem Cell Research Centre. J.S. was supported by the Innovative Medicines Initiative Consortium, StemBANCC (grant no, 115439 ). H.Z. was supported by the Swedish Research Council (grant no: 2013-2546 ) and the European Research Council (grant no: 681712 ). F.J.L. is a Wellcome Trust Senior Investigator (grant no. 101052/2/13/2 ) and gratefully acknowledges the support of the Alborada Trust and Alzheimer's Research UK (grant no. ARUK-SCRC 2014-1 ). Research in the Gurdon Institute benefits from core support from the Wellcome Trust and Cancer Research UK

    Mutations in thyroid hormone receptor α1 cause premature neurogenesis and progenitor cell depletion in human cortical development

    Get PDF
    Mutations in the thyroid hormone receptor α 1 gene (THRA) have recently been identified as a cause of intellectual deficit in humans. Patients present with structural abnormalities including microencephaly, reduced cerebellar volume and decreased axonal density. Here, we show that directed differentiation of THRA mutant patient-derived induced pluripotent stem cells to forebrain neural progenitors is markedly reduced, but mutant progenitor cells can generate deep and upper cortical layer neurons and form functional neuronal networks. Quantitative lineage tracing shows that THRA mutation-containing progenitor cells exit the cell cycle prematurely, resulting in reduced clonal output. Using a micropatterned chip assay, we find that spatial self-organization of mutation-containing progenitor cells in vitro is impaired, consistent with down-regulated expression of cell–cell adhesion genes. These results reveal that thyroid hormone receptor α1 is required for normal neural progenitor cell proliferation in human cerebral cortical development. They also exemplify quantitative approaches for studying neurodevelopmental disorders using patient-derived cells in vitro

    Retinal tissue engineering using mouse retinal progenitor cells and a novel biodegradable, thin-film poly(e-caprolactone) nanowire scaffold

    Get PDF
    Retinal progenitor cells (RPCs) can be combined with nanostructured polymer scaffolds to generate composite grafts in culture. One strategy for repair of diseased retinal tissue involves implantation of composite grafts of this type in the subretinal space. In the present study, mouse retinal progenitor cells (RPCs) were cultured on laminin-coated novel nanowire poly(e-caprolactone)(PCL) scaffolds, and the survival, differentiation, and migration of these cells into the retina of C57bl/6 and rhodospsin −/− mouse retinal explants and transplant recipients were analyzed. RPCs were cultured on smooth PCL and both short (2.5 μm) and long (27 μm) nanowire PCL scaffolds. Scaffolds with adherent mRPCs were then either co-cultured with, or transplanted to, wild-type and rhodopsin −/− mouse retina. Robust RPC proliferation on each type of PCL scaffold was observed. Immunohistochemistry revealed that RPCs cultured on nanowire scaffolds increased expression of mature bipolar and photoreceptor markers. Reverse transcription polymerase chain reaction revealed down-regulation of several early progenitor markers. PCL-delivered RPCs migrated into the retina of both wild-type and rhodopsin knockout mice. The results provide evidence that RPCs proliferate and express mature retinal proteins in response to interactions with nanowire scaffolds. These composite grafts allow for the migration and differentiation of new cells into normal and degenerated retina

    Computational prediction of neural progenitor cell fates

    Full text link
    Understanding how stem and progenitor cells choose between alternative cell fates is a major challenge in developmental biology. Efforts to tackle this problem have been hampered by the scarcity of markers that can be used to predict cell division outcomes. Here we present a computational method, based on algorithmic information theory, to analyze dynamic features of living cells over time. Using this method, we asked whether rat retinal progenitor cells (RPCs) display characteristic phenotypes before undergoing mitosis that could foretell their fate. We predicted whether RPCs will undergo a self-renewing or terminal division with 99% accuracy, or whether they will produce two photoreceptors or another combination of offspring with 87% accuracy. Our implementation can segment, track and generate predictions for 40 cells simultaneously on a standard computer at 5 min per frame. This method could be used to isolate cell populations with specific developmental potential, enabling previously impossible investigations.The computational aspects of this work were supported by the Center for Subsurface Sensing and Imaging Systems (NSF Grant EEC-9986821), by the Rensselaer Polytechnic Institute and by the University of Wisconsin-Milwaukee. This work was supported by grants from the Canadian Institutes of Health Research and the Foundation Fighting Blindness – Canada (to M.C). M.C. is a CIHR New Investigator and a W.K. Stell Scholar of the Foundation Fighting Blindness – Canada
    • …
    corecore