82 research outputs found

    Testing Quantum Electrodynamics in the Lowest Singlet State of Neutral Beryllium-9

    Get PDF
    We report spectroscopic results on the 2s2p1P1 state in neutral atomic beryllium-9. The absolute frequency for the center of gravity is determined to be 42 565.4501(13)  cm−1, a factor of 130 more precise than the previous experimental measurement. The result is in agreement with and a factor of 8 more precise than the current best theoretical estimate of 42 565.441(11)  cm−1, which was calculated including the effects of quantum electrodynamics. Because of the large natural linewidth of the transition, the hyperfine constants were not able to be extracted to high precision

    Immunofluorescent staining reveals hypermethylation of microchromosomes in the central bearded dragon, Pogona vitticeps

    Get PDF
    BACKGROUND: Studies of model organisms have demonstrated that DNA cytosine methylation and histone modifications are key regulators of gene expression in biological processes. Comparatively little is known about the presence and distribution of epigenetic marks in non-model amniotes such as non-avian reptiles whose genomes are typically packaged into chromosomes of distinct size classes. Studies of chicken karyotypes have associated the gene-richness and high GC content of microchromosomes with a distinct epigenetic landscape. To determine whether this is likely to be a common feature of amniote microchromosomes, we have analysed the distribution of epigenetic marks using immunofluorescence on metaphase chromosomes of the central bearded dragon (Pogona vitticeps). This study is the first to study the distribution of epigenetic marks on non-avian reptile chromosomes. RESULTS: We observed an enrichment of DNA cytosine methylation, active modifications H3K4me2 and H3K4me3, as well as the repressive mark H3K27me3 in telomeric regions on macro and microchromosomes. Microchromosomes were hypermethylated compared to macrochromosomes, as they are in chicken. However, differences between macro- and microchromosomes for histone modifications associated with actively transcribed or repressed DNA were either less distinct or not detectable. CONCLUSIONS: Hypermethylation of microchromosomes compared to macrochromosomes is a shared feature between P. vitticeps and avian species. The lack of the clear distinction between macro- and microchromosome staining patterns for active and repressive histone modifications makes it difficult to determine at this stage whether microchrosome hypermethylation is correlated with greater gene density as it is in aves, or associated with the greater GC content of P. vitticeps microchromosomes compared to macrochromosomes.This work was supported by a University of Canberra postdoctoral fellowship (awarded to TE, SR, Stephen Sarre, JED, Kris Hardy and Arthur Georges, and supporting RD and AL). TE is supported by an Australian Research Council Future Fellowship (FT110100733)

    First observational evidence of a relation between globular clusters' internal rotation and stellar masses

    Full text link
    Several observational studies have shown that many Galactic globular clusters (GCs) are characterised by internal rotation. Theoretical studies of the dynamical evolution of rotating clusters have predicted that, during their long-term evolution, these stellar systems should develop a dependence of the rotational velocity around the cluster's centre on the mass of stars, with the internal rotation increasing for more massive stars. In this paper we present the first observational evidence of the predicted rotation-mass trend. In our investigation, we exploited the Gaia\mathit{Gaia} Data Release 3 catalogue of three GCs: NGC 104 (47 Tuc), NGC 5139 (ω\omega Cen) and NGC 5904 (M 5). We found clear evidence of a cluster rotation-mass relation in 47 Tuc and M 5, while in ω\omega Cen, the dynamically youngest system among the three clusters studied here, no such trend was detected.Comment: 6 pages, 4 figures, 1 table. Accepted for publication in MNRAS Letter

    Independent Evolution of Transcriptional Inactivation on Sex Chromosomes in Birds and Mammals

    No full text
    X chromosome inactivation in eutherian mammals has been thought to be tightly controlled, as expected from a mechanism that compensates for the different dosage of X-borne genes in XX females and XY males. However, many X genes escape inactivation in humans, inactivation of the X in marsupials is partial, and the unrelated sex chromosomes of monotreme mammals have incomplete and gene-specific inactivation of X-linked genes. The bird ZW sex chromosome system represents a third independently evolved amniote sex chromosome system with dosage compensation, albeit partial and gene-specific, via an unknown mechanism (i.e. upregulation of the single Z in females, down regulation of one or both Zs in males, or a combination). We used RNA-fluorescent in situ hybridization (RNA-FISH) to demonstrate, on individual fibroblast cells, inactivation of 11 genes on the chicken Z and 28 genes on the X chromosomes of platypus. Each gene displayed a reproducible frequency of 1Z/1X-active and 2Z/2X-active cells in the homogametic sex. Our results indicate that the probability of inactivation is controlled on a gene-by-gene basis (or small domains) on the chicken Z and platypus X chromosomes. This regulatory mechanism must have been exapted independently to the non-homologous sex chromosomes in birds and mammals in response to an over-expressed Z or X in the homogametic sex, highlighting the universal importance that (at least partial) silencing plays in the evolution on amniote dosage compensation and, therefore, the differentiation of sex chromosomes.This project was supported by an Australian Research Fellowship to PDW (DP0987091) and an Australian Research Council discovery project grant to PDW, JED and JAMG (DP1094868) (http://www.arc.gov.au/). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Ongoing hierarchical massive cluster assembly: the LISCA II structure in the Perseus complex

    Full text link
    We report on the identification of a massive (105\sim10^5 M_\odot) sub-structured stellar system in the Galactic Perseus complex likely undergoing hierarchical cluster assembly. Such a system comprises nine star clusters (including the well-known clusters NGC 654 and NGC 663) and an extended and low-density stellar halo. Gaia-DR3 and available spectroscopic data show that all its components are physically consistent in the 6D phase-space (position, parallax, and 3D motion), homogeneous in age (14 - 44 Myr), and chemical content (half-solar metallicity). In addition, the system's global stellar density distribution is that of typical star clusters and shows clear evidence of mass segregation. We find that the hierarchical structure is mostly contracting towards the center with a speed of up to 45\simeq4-5 km s1^{-1}, while the innermost regions expand at a lower rate (about 1\simeq1 km s1^{-1}) and are dominated by random motions. Interestingly, this pattern is dominated by the kinematics of massive stars, while low-mass stars (M<2M<2 M_\odot) are characterized by contraction across the entire cluster. Finally, the nine star clusters in the system are all characterized by a relatively flat velocity dispersion profile possibly resulting from ongoing interactions and tidal heating. We show that the observational results are generally consistent with those found in NN-body simulations following the cluster violent relaxation phase strongly suggesting that the system is a massive cluster in the early assembly stages. This is the second structure with these properties identified in our Galaxy and, following the nomenclature of our previous work, we named it LISCA II.Comment: 21 pages, 24 figures, 1 table; accepted for publication in A&

    First Phase Space Portrait of a Hierarchical Stellar Structure in the Milky Way

    Get PDF
    We present the first detailed observational picture of a possible ongoing massive cluster hierarchical assembly in the Galactic disk as revealed by the analysis of the stellar full phase-space (3D positions and kinematics and spectro-photometric properties) of an extended area (66^{\circ} diameter) surrounding the well-known h\it h and χ\chi Persei double stellar cluster in the Perseus Arm. Gaia-EDR3 shows that the area is populated by seven co-moving clusters, three of which were previously unknown, and by an extended and quite massive (M105MM\sim10^5 M_{\odot}) halo. All stars and clusters define a complex structure with evidence of possible mutual interactions in the form of intra-cluster over-densities and/or bridges. They share the same chemical abundances (half-solar metallicity) and age (t20t\sim20 Myr) within a small confidence interval and the stellar density distribution of the surrounding diffuse stellar halo resembles that of a cluster-like stellar system. The combination of these evidences suggests that stars distributed within a few degrees from h\it h and χ\chi Persei are part of a common, sub-structured stellar complex that we named LISCA I. Comparison with results obtained through direct NN-body simulations suggest that LISCA I may be at an intermediate stage of an ongoing cluster assembly that can eventually evolve in a relatively massive (a few 105M10^5 M_{\odot}) stellar system. We argue that such cluster formation mechanism may be quite efficient in the Milky Way and disk-like galaxies and, as a consequence, it has a relevant impact on our understanding of cluster formation efficiency as a function of the environment and redshift.Comment: 19 pages, 8 figures, 1 table; accepted for publication in Ap

    Anchoring genome sequence to chromosomes of the central bearded dragon (Pogona vitticeps) enables reconstruction of ancestral squamate macrochromosomes and identifies sequence content of the Z chromosome

    Get PDF
    We report here the first genome assembly and annotation of the human-pathogenic fungus Scedosporium aurantiacum, with a predicted 10,525 genes, and 11,661 transcripts. The strain WM 09.24 was isolated from the environment at Circular Quay, Sydney, New South Wales, Australi

    First Phase Space Portrait of a Hierarchical Stellar Structure in the Milky Way

    Get PDF
    We present the first detailed observational picture of a possible ongoing massive cluster hierarchical assembly in the Galactic disk as revealed by the analysis of the stellar full phase space (3D positions and kinematics and spectro-photometric properties) of an extended area (6° diameter) surrounding the well-known h and χ Persei double stellar cluster in the Perseus Arm. Gaia-EDR3 shows that the area is populated by seven comoving clusters, three of which were previously unknown, and by an extended and quite massive (M ∼ 105 M⊙) halo. All stars and clusters define a complex structure with evidence of possible mutual interactions in the form of intra-cluster overdensities and/or bridges. They share the same chemical abundances (half-solar metallicity) and age (t ∼ 20 Myr) within a small confidence interval and the stellar density distribution of the surrounding diffuse stellar halo resembles that of a cluster-like stellar system. The combination of these pieces of evidence suggests that stars distributed within a few degrees from h and χ Persei are part of a common, substructured stellar complex that we named LISCA I. Comparison with results obtained through direct N-body simulations suggest that LISCA I may be at an intermediate stage of an ongoing cluster assembly that can eventually evolve in a relatively massive (a few times 105 M⊙) stellar system. We argue that such a cluster formation mechanism may be quite efficient in the Milky Way and disk-like galaxies and, as a consequence, it has a relevant impact on our understanding of cluster formation efficiency as a function of the environment and redshift

    4.脳腫瘍患者における頭蓋内圧の日内変動に関する研究 : とくにA波について(昭和55年度猪之鼻奨学会研究補助金報告)

    Get PDF
    BACKGROUND Squamates (lizards and snakes) are a speciose lineage of reptiles displaying considerable karyotypic diversity, particularly among lizards. Understanding the evolution of this diversity requires comparison of genome organisation between species. Although the genomes of several squamate species have now been sequenced, only the green anole lizard has any sequence anchored to chromosomes. There is only limited gene mapping data available for five other squamates. This makes it difficult to reconstruct the events that have led to extant squamate karyotypic diversity. The purpose of this study was to anchor the recently sequenced central bearded dragon (Pogona vitticeps) genome to chromosomes to trace the evolution of squamate chromosomes. Assigning sequence to sex chromosomes was of particular interest for identifying candidate sex determining genes. RESULTS By using two different approaches to map conserved blocks of genes, we were able to anchor approximately 42 % of the dragon genome sequence to chromosomes. We constructed detailed comparative maps between dragon, anole and chicken genomes, and where possible, made broader comparisons across Squamata using cytogenetic mapping information for five other species. We show that squamate macrochromosomes are relatively well conserved between species, supporting findings from previous molecular cytogenetic studies. Macrochromosome diversity between members of the Toxicofera clade has been generated by intrachromosomal, and a small number of interchromosomal, rearrangements. We reconstructed the ancestral squamate macrochromosomes by drawing upon comparative cytogenetic mapping data from seven squamate species and propose the events leading to the arrangements observed in representative species. In addition, we assigned over 8 Mbp of sequence containing 219 genes to the Z chromosome, providing a list of genes to begin testing as candidate sex determining genes. CONCLUSIONS Anchoring of the dragon genome has provided substantial insight into the evolution of squamate genomes, enabling us to reconstruct ancestral macrochromosome arrangements at key positions in the squamate phylogeny, demonstrating that fusions between macrochromosomes or fusions of macrochromosomes and microchromosomes, have played an important role during the evolution of squamate genomes. Assigning sequence to the sex chromosomes has identified NR5A1 as a promising candidate sex determining gene in the dragon.This project was funded by ARC DP110104377, a Faculty of Applied Science postdoctoral fellowship to DO’M and University of Canberra strategic funds awarded to AG and JED

    Nonrenewable Resources, Strategic Behavior and the Hotelling Rule: An Experiment

    Get PDF
    This study uses the methods of experimental economics to investigate possible causes for the failure of the Hotelling rule for nonrenewable resources. We argue that as long as resource stocks are large enough, producers may choose to (partially) ignore the dynamic component of their production decision, shifting production to the present and focusing more on strategic behavior. We experimentally vary stock size in a nonrenewable resource duopoly setting and find that producers with large stocks indeed pay significantly less attention to variables related to dynamic optimization,leading to a failure of the Hotelling rule
    corecore