78 research outputs found

    Two Distinct Mechanisms Govern RpoS-mediated Repression of Tick-phase Genes During Mammalian Host Adaptation by Borrelia burgdorferi, the Lyme Disease Spirochete

    Get PDF
    The alternative sigma factor RpoS plays a key role modulating gene expression in Borrelia burgdorferi, the Lyme disease spirochete, by transcribing mammalian host-phase genes and repressing sigma(70)-dependent genes required within the arthropod vector. To identify cis regulatory elements involved in RpoS-dependent repression, we analyzed green fluorescent protein (GFP) transcriptional reporters containing portions of the upstream regions of the prototypical tick-phase genes ospAB, the glp operon, and bba74 As RpoS-mediated repression occurs only following mammalian host adaptation, strains containing the reporters were grown in dialysis membrane chambers (DMCs) implanted into the peritoneal cavities of rats. Wild-type spirochetes harboring ospAB- and glp-gfp constructs containing only the minimal (-35/-10) sigma(70) promoter elements had significantly lower expression in DMCs relative to growth in vitro at 37 degrees C; no reduction in expression occurred in a DMC-cultivated RpoS mutant harboring these constructs. In contrast, RpoS-mediated repression of bba74 required a stretch of DNA located between -165 and -82 relative to its transcriptional start site. Electrophoretic mobility shift assays employing extracts of DMC-cultivated B. burgdorferi produced a gel shift, whereas extracts from RpoS mutant spirochetes did not. Collectively, these data demonstrate that RpoS-mediated repression of tick-phase borrelial genes occurs by at least two distinct mechanisms. One (e.g., ospAB and the glp operon) involves primarily sequence elements near the core promoter, while the other (e.g., bba74) involves an RpoS-induced transacting repressor. Our results provide a genetic framework for further dissection of the essential gatekeeper role of RpoS throughout the B. burgdorferi enzootic cycle.IMPORTANCEBorrelia burgdorferi, the Lyme disease spirochete, modulates gene expression to adapt to the distinctive environments of its mammalian host and arthropod vector during its enzootic cycle. The alternative sigma factor RpoS has been referred to as a gatekeeper due to its central role in regulating the reciprocal expression of mammalian host- and tick-phase genes. While RpoS-dependent transcription has been studied extensively, little is known regarding the mechanism(s) of RpoS-mediated repression. We employed a combination of green fluorescent protein transcriptional reporters along with an in vivo model to define cis regulatory sequences responsible for RpoS-mediated repression of prototypical tick-phase genes. Repression of ospAB and the glp operon requires only sequences near their core promoters, whereas modulation of bba74 expression involves a putative RpoS-dependent repressor that binds upstream of the core promoter. Thus, Lyme disease spirochetes employ at least two different RpoS-dependent mechanisms to repress tick-phase genes within the mammal

    Biodiversity of Borrelia burgdorferi Strains in Tissues of Lyme Disease Patients

    Get PDF
    Plant and animal biodiversity are essential to ecosystem health and can provide benefits to humans ranging from aesthetics to maintaining air quality. Although the importance of biodiversity to ecology and conservation biology is obvious, such measures have not been applied to strains of an invasive bacterium found in human tissues during infection. In this study, we compared the strain biodiversity of Borrelia burgdorferi found in tick populations with that found in skin, blood, synovial fluid or cerebrospinal fluid of Lyme disease patients. The biodiversity of B. burgdorferi strains is significantly greater in tick populations than in the skin of patients with erythema migrans. In turn, strains from skin are significantly more diverse than strains at any of the disseminated sites. The cerebrospinal fluid of patients with neurologic Lyme disease harbored the least pathogen biodiversity. These results suggest that human tissues act as niches that can allow entry to or maintain only a subset of the total pathogen population. These data help to explain prior clinical observations on the natural history of B. burgdorferi infection and raise several questions that may help to direct future research to better understand the pathogenesis of this infection

    Central Role of the Holliday Junction Helicase RuvAB in vlsE Recombination and Infectivity of Borrelia burgdorferi

    Get PDF
    Antigenic variation plays a vital role in the pathogenesis of many infectious bacteria and protozoa including Borrelia burgdorferi, the causative agent of Lyme disease. VlsE, a 35 kDa surface-exposed lipoprotein, undergoes antigenic variation during B. burgdorferi infection of mammalian hosts, and is believed to be a critical mechanism by which the spirochetes evade immune clearance. Random, segmental recombination between the expressed vlsE gene and adjacent vls silent cassettes generates a large number of different VlsE variants within the infected host. Although the occurrence and importance of vlsE sequence variation is well established, little is known about the biological mechanism of vlsE recombination. To identify factors important in antigenic variation and vlsE recombination, we screened transposon mutants of genes known to be involved in DNA recombination and repair for their effects on infectivity and vlsE recombination. Several mutants, including those in BB0023 (ruvA), BB0022 (ruvB), BB0797 (mutS), and BB0098 (mutS-II), showed reduced infectivity in immunocompetent C3H/HeN mice. Mutants in ruvA and ruvB exhibited greatly reduced rates of vlsE recombination in C3H/HeN mice, as determined by restriction fragment polymorphism (RFLP) screening and DNA sequence analysis. In severe combined immunodeficiency (C3H/scid) mice, the ruvA mutant retained full infectivity; however, all recovered clones retained the ‘parental’ vlsE sequence, consistent with low rates of vlsE recombination. These results suggest that the reduced infectivity of ruvA and ruvB mutants is the result of ineffective vlsE recombination and underscores the important role that vlsE recombination plays in immune evasion. Based on functional studies in other organisms, the RuvAB complex of B. burgdorferi may promote branch migration of Holliday junctions during vlsE recombination. Our findings are consistent with those in the accompanying article by Dresser et al., and together these studies provide the first examples of trans-acting factors involved in vlsE recombination

    \u3ci\u3eBorrelia lonestari\u3c/i\u3e Infection after a Bite by an \u3ci\u3eAmblyomma americanum\u3c/i\u3e Tick

    Get PDF
    Erythematous rashes that are suggestive of early Lyme disease have been associated with the bite of Amblyomma americanum ticks, particularly in the southern United States. However, Borrelia burgdorferi, the causative agent of Lyme disease, has not been cultured from skin biopsy specimens from these patients, and diagnostic serum antibodies usually have not been found. Borrelia lonestari sp nov, an uncultured spirochete, has been detected in A. americanum ticks by DNA amplification techniques, but its role in human illness is unknown. We observed erythema migrans in a patient with an attached A. americanum tick. DNA amplification of the flagellin gene flaB produced B. lonestari sequences from the skin of the patient that were identical to those found in the attached tick. B. lonestari is a probable cause of erythema migrans in humans

    Borrelia burgdorferi Sensu Stricto Is Clonal in Patients with Early Lyme Borreliosis ▿

    No full text
    Lyme borreliosis, the most commonly reported vector-borne disease in North America, is caused by the spirochete Borrelia burgdorferi. Given the extensive genetic polymorphism of B. burgdorferi, elucidation of the population genetic structure of the bacterium in clinical samples may be relevant for understanding disease pathogenesis and may have applicability for the development of diagnostic tests and vaccine preparations. In this investigation, the genetic polymorphism of the 16S-23S rRNA (rrs-rrlA) intergenic spacer and ospC was investigated at the sequence level in 127 clinical isolates obtained from patients with early Lyme borreliosis evaluated in suburban New York City. Sixteen distinct rrs-rrlA and 16 distinct ospC alleles were identified, representing virtually all of the genotypes previously found in questing Ixodes scapularis nymphs in this region. In addition, a new ospC group was identified in a single patient. The strong linkage observed between the chromosome-located rrs-rrlA and plasmid-borne ospC genes suggests a clonal structure of B. burgdorferi in these isolates, despite evidence of recombination at ospC

    Borrelia Burgdorferi Outer Surface Protein C Is Not the Sole Determinant of Dissemination in Mammals

    No full text
    Lyme disease in the United States is most often caused by Borrelia burgdorferi sensu stricto. After a tick bite, the patient may develop erythema migrans at that site. If hematogenous dissemination occurs, the patient may then develop neurologic manifestations, carditis, or arthritis. Host-pathogen interactions include factors that contribute to hematogenous dissemination to other body sites. Outer surface protein C (OspC), a surface-exposed lipoprotein of B. burgdorferi, is essential during the early stages of mammalian infection. There is a high degree of genetic variation at the locus, and certain types are more frequently associated with hematogenous dissemination in patients, suggesting that OspC may be a major contributing factor to the clinical outcome of B. burgdorferi infection. In order to evaluate the role of OspC in B. burgdorferi dissemination, was exchanged between B. burgdorferi isolates with different capacities to disseminate in laboratory mice, and these strains were then tested for their ability to disseminate in mice. The results indicated that the ability of B. burgdorferi to disseminate in mammalian hosts does not depend on OspC alone. The complete genome sequences of two closely related strains of B. burgdorferi with differing dissemination phenotypes were determined, but a specific genetic locus that could explain the differences in the phenotypes could not be definitively identified. The animal studies performed clearly demonstrated that OspC is not the sole determinant of dissemination. Future studies of the type described here with additional borrelial strains will hopefully clarify the genetic elements associated with hematogenous dissemination
    corecore