37 research outputs found

    Identities in Nonlinear Realizations of Supersymmetry

    Full text link
    In this paper, we emphasize that a UV SUSY-breaking theory can be realized either linearly or nonlinearly. Both realizations form the dual descriptions of the UV SUSY-breaking theory. Guided by this observation, we find subtle identities involving the Goldstino field and matter fields in the standard nonlinear realization from trivial ones in the linear realization. Rather complicated integrands in the standard nonlinear realization are identified as total-divergences. Especially, identities only involving the Goldstino field reveal the self-consistency of the Grassmann algebra. As an application of these identities, we prove that the nonlinear Kahler potential without or with gauge interactions is unique, if the corresponding linear one is fixed. Our identities pick out the total-divergence terms and guarantee this uniqueness.Comment: 15 pages, more discussions added, accepted by Nucl Phys

    Agile gesture recognition for capacitive sensing devices: adapting on-the-job

    Get PDF
    Automated hand gesture recognition has been a focus of the AI community for decades. Traditionally, work in this domain revolved largely around scenarios assuming the availability of the flow of images of the user hands. This has partly been due to the prevalence of camera-based devices and the wide availability of image data. However, there is growing demand for gesture recognition technology that can be implemented on low-power devices using limited sensor data instead of high-dimensional inputs like hand images. In this work, we demonstrate a hand gesture recognition system and method that uses signals from capacitive sensors embedded into the etee hand controller. The controller generates real-time signals from each of the wearer five fingers. We use a machine learning technique to analyse the time series signals and identify three features that can represent 5 fingers within 500 ms. The analysis is composed of a two stage training strategy, including dimension reduction through principal component analysis and classification with K nearest neighbour. Remarkably, we found that this combination showed a level of performance which was comparable to more advanced methods such as supervised variational autoencoder. The base system can also be equipped with the capability to learn from occasional errors by providing it with an additional adaptive error correction mechanism. The results showed that the error corrector improve the classification performance in the base system without compromising its performance. The system requires no more than 1 ms of computing time per input sample, and is smaller than deep neural networks, demonstrating the feasibility of agile gesture recognition systems based on this technology.Depto. de Análisis Matemático y Matemática AplicadaFac. de Ciencias MatemáticasFALSEunpu

    Leading-Order Actions of Goldstino Fields

    Full text link
    This paper starts with a self-contained discussion of the so-called Akulov-Volkov action S_AV, which is traditionally taken to be the leading-order action of Goldstino field. Explicit expressions for S_AV and its chiral version S_AV^ch are presented. We then turn to the issue on how these actions are related to the leading-order action S_NL proposed in the newly proposed constrained superfield formalism. We show that S_NL may yield S_AV/S_AV^ch or a totally different action S_KS, depending on how the auxiliary field in the former is integrated out. However, S_KS and S_AV/S_AV^ch always yield the same S-matrix elements, as one would have expected from general considerations in quantum field theory.Comment: Minor changes, version to appear in European Physical Journal

    Liposomal Curcumin Targeting Endometrial Cancer Through the NF-κB Pathway

    No full text
    Background/Aims: Emerging evidence suggests that curcumin possesses chemopreventive properties against various cancers. However, its poor bioavailability limits its clinical application. In this study, we aimed to utilize encapsulation in liposomes (Lipo) as a strategy for the clinical administration of curcumin for endometrial carcinoma (EC). Methods: Curcumin was encapsulated in a liposomal delivery system to prepare a formulation of liposomal curcumin (LC). EC cell lines Ishikawa and HEC-1 were treated with the compound and cell proliferation was measured using MTT assay. Hoechst 33258 staining assay and flow cytometry were used to detect apoptosis of the cells. Wound healing and cell invasion assays were employed to monitor cell motility. Underlying target signaling, such as NF-κB, caspases, and MMPs, were further studied via qRT-PCR and western blot. Thereafter, a zebrafish model was used to assess the toxicity of LC. Finally, a zebrafish transplantation tumor model of EC was grown and treated with LC. Tumors were monitored and harvested to study the expression of NF-κB. Results: The formation of LC was successfully developed with excellent purity and physical properties. In vitro, LC resulted in dose-dependent inhibition of proliferation, induction of apoptosis, and suppression of Ishikawa and HEC-1 cell motility. LC treatment also suppressed the activation and/or expression of NF-κB, caspase-3, and MMP-9. No demonstrable toxicity was found in the zebrafish model and tumors were suppressed after treatment with LC. PCR analysis also showed down-regulated expression of NF-κB. Conclusions: LC was successfully prepared and played biological roles against EC probably through negative regulation of the NF-κB pathway in vitro and in vivo, which demonstrates its potential therapeutic effects in EC

    Effect of Laser Shock Peening on High-Cycle Fatigue Performance of 1Cr18Ni9Ti/GH1140 Weld

    No full text
    The welded joints of 1Cr18Ni9Ti austenitic stainless steel and GH1140 nickel-based superalloy dissimilar materials used in certain types of aero-engine combustion liner components are prone to crack initiation during service, seriously affecting the service life of the combustion liner. In this study, laser shock peening (LSP) was applied to the dissimilar metal weld of 1Cr18Ni9Ti and GH1140, which are used in the combustion liner parts of aero engines. The effects of LSP on the residual stress, microhardness, microstructure and high-cycle fatigue performance of the weld were analyzed. The results show that the residual stress in the weld and heat-affected zones was converted from tensile residual stress to high amplitude compressive residual stress via LSP. Furthermore, the surface hardness of every region of the combustion liner weld was increased, especially in the weld zone, where an increase of 41.4% from 162 HV to 229 HV was observed. Simultaneously, with the introduction of grain refinement, gradient plastic deformation in the depth direction and the dislocation structure of the surface material, the high-cycle fatigue limit of the weld specimen was significantly increased and the fatigue limit of the 1Cr18Ni9Ti/GH1140 welded joint was improved by 65.39%, from 289 to 478 MPa

    Effect of Laser Shock Peening on High-Cycle Fatigue Performance of 1Cr18Ni9Ti/GH1140 Weld

    No full text
    The welded joints of 1Cr18Ni9Ti austenitic stainless steel and GH1140 nickel-based superalloy dissimilar materials used in certain types of aero-engine combustion liner components are prone to crack initiation during service, seriously affecting the service life of the combustion liner. In this study, laser shock peening (LSP) was applied to the dissimilar metal weld of 1Cr18Ni9Ti and GH1140, which are used in the combustion liner parts of aero engines. The effects of LSP on the residual stress, microhardness, microstructure and high-cycle fatigue performance of the weld were analyzed. The results show that the residual stress in the weld and heat-affected zones was converted from tensile residual stress to high amplitude compressive residual stress via LSP. Furthermore, the surface hardness of every region of the combustion liner weld was increased, especially in the weld zone, where an increase of 41.4% from 162 HV to 229 HV was observed. Simultaneously, with the introduction of grain refinement, gradient plastic deformation in the depth direction and the dislocation structure of the surface material, the high-cycle fatigue limit of the weld specimen was significantly increased and the fatigue limit of the 1Cr18Ni9Ti/GH1140 welded joint was improved by 65.39%, from 289 to 478 MPa

    Research on Wear Resistance of AISI 9310 Steel with Micro-Laser Shock Peening

    No full text
    Improving the wear resistance of turbine engine drive components is crucial. This study presented a new Laser Shock Peening (LSP) technique: Micro-Laser Shock Peening (Micro-LSP) technology for surface modification and strengthening of AISI 9310 steel. The effects of different pulse energies (50 mJ, 150 mJ, 200 mJ) on surface morphology, mechanical properties, and wear behavior were investigated. The results showed that the Micro-LSP treatment reduced the wear rate by 56% to 74%. The dimpled structure induced during the strengthening process increased the surface roughness and reduced the contact area; moreover, the coefficient of friction (COF) was reduced. The treatment also had the effect of reducing the wear rate by collecting abrasive debris and changing some of the sliding wear into rolling wear. The reduced wear rate was a result of the combined effect of the dimpled structure and the hardened layer. In addition, a deeper hardened layer also slows down the onset of wear behavior. Micro-LSP technology offers completely new methods and possibilities for wear reduction

    Programmable immune activating electrospun fibers for skin regeneration

    Get PDF
    Immune cells play a crucial regulatory role in inflammatory phase and proliferative phase during skin healing. How to programmatically activate sequential immune responses is the key for scarless skin regeneration. In this study, an “Inner-Outer” IL-10-loaded electrospun fiber with cascade release behavior was constructed. During the inflammatory phase, the electrospun fiber released a lower concentration of IL-10 within the wound, inhibiting excessive recruitment of inflammatory cells and polarizing macrophages into anti-inflammatory phenotype “M2c” to suppress excessive inflammation response. During the proliferative phase, a higher concentration of IL-10 released by the fiber and the anti-fibrotic cytokines secreted by polarized “M2c” directly acted on dermal fibroblasts to simultaneously inhibit extracellular matrix overdeposition and promote fibroblast migration. The “Inner-Outer” IL-10-loaded electrospun fiber programmatically activated the sequential immune responses during wound healing and led to scarless skin regeneration, which is a promising immunomodulatory biomaterial with great potential for promoting complete tissue regeneration.Peer reviewe
    corecore