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Abstract—Automated hand gesture recognition has been a
focus of the AI community for decades. Traditionally, work
in this domain revolved largely around scenarios assuming the
availability of the flow of images of the operator’s/user’s hands.
This has partly been due to the prevalence of camera-based
devices and the wide availability of image data. However, there
is growing demand for gesture recognition technology that can
be implemented on low-power devices using limited sensor data
instead of high-dimensional inputs like hand images.

In this work, we demonstrate a hand gesture recognition
system and method that uses signals from capacitive sensors
embedded into the etee hand controller. The controller generates
real-time signals from each of the wearer’s five fingers. We use a
machine learning technique to analyse the time-series signals and
identify three features that can represent 5 fingers within 500 ms.
The analysis is composed of a two-stage training strategy, includ-
ing dimension reduction through principal component analysis
and classification with K-nearest neighbour. Remarkably, we
found that this combination showed a level of performance which
was comparable to more advanced methods such as supervised
variational autoencoder. The base system can also be equipped
with the capability to learn from occasional errors by providing
it with an additional adaptive error correction mechanism. The
results showed that the error corrector improve the classification
performance in the base system without compromising its per-
formance. The system requires no more than 1 ms of computing
time per input sample, and is smaller than deep neural networks,
demonstrating the feasibility of agile gesture recognition systems
based on this technology.

Index Terms—gesture recognition, error corrector, adaptive
error correction mechanism, kernel trick, etee

I. INTRODUCTION

Hand gesture recognition algorithms have developed inten-
sively in recent years due to the advancements in technology
and the increased availability of personal camera devices [1].
There are two main approaches for recognising hand ges-
tures: 1) computer vision-based systems, which use advanced
algorithms to detect hand gestures from image data; or 2)
hardware-based embedded systems, which measure signals
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from muscle movement and classify them using software.
Hardware-based embedded systems have the potential to
quickly measure signals induced by movements of limbs or
muscles directly. This has an advantage over the alternatives
that rely upon the interpretation of high dimensional image
data. The speed is important for a broad range of relevant
scenarios including human-computer interaction, human be-
haviour analysis, and accessibility solutions for people with
movement disorders [2]–[5]. On top of that, they vastly reduce
the risks of accidental or adversarial leakage of identifiable
personal information. This is achieved by avoiding the need
to capture video and/or photographic imagery as a part of
the gesture acquisition process. These hardware-based systems
rely on various types of signals for the gesture recognition,
including a combination of wire and spring to measure joint
angle [6], [7], hetero-core flexion sensors [8], inertial mea-
surement unit [9], piezoresistive sensor [10], capacitive sensor
and electromyography [2].

Regardless, however, of how the gesture signals are mea-
sured, the second major task is to recognise or classify
the information contained in the physical signals. Currently,
the most common hand gesture recognition algorithms use
neural networks (NNs). This is because NNs are effective for
classifying high dimensional data, e.g. image, which are the
primary analysis method for computer-vision based gesture
recognition [1]. While NNs have proven effective for gesture
recognition thus far, state-of-the-art models typically require
very large datasets [11] of pre-labelled data. In addition, real-
time inference with NN models may require levels of comput-
ing resources which are not available or feasible for low-power
embedded systems (less than 1 W). The majority of NN model
can only be implemented on edge devices which requires
the power consumption exceeded 5 W [12]. These power
requirements present a challenge limiting and hindering the
scope of applications of hardware-based embedded systems
and systems with cheap capacitive sensors in particular. Our
goal is to create an agile gesture recognition system that
can operate on a low-power edge device for live prediction.



Additionally, we aim to incorporate a feature that allows the
system to adapt to a user’s customised gesture patterns and
correct itself accordingly.

In this work, we propose an approach which can be used
to address these purposes. The approach is based on a combi-
nation of agile and fast classical recognition model equipped
with an ”adaptation add-on” capable to fine-tune the model to
the end-user. To demonstrate the capability, we used the hand
controller etee for hand movement signal recording through
Bluetooth [13]. We collected over 20,000 tactile frames for 15
individuals performing 4 types of dynamic hand gestures. Util-
ising this tactile information, we designed and implemented a
gesture classifier equipped with an adaptive error correction
mechanism. The gesture recognition system is characterised
by its compact size (< 5 MB), rapid speed (< 1 ms), and
minimal power requirements, making it appropriate for use in
the majority of embedded systems including the one in etee
with the power consumption of 0.85 W.

The rest of the paper is organised as follows. In Section II
we introduce our hardware and its architecture and describe
hand gestures used in the dataset. Section III outlines the
data collection and preprocessing protocols and methods,
Section IV explains two base multi-classification models used
to distinguish dynamic gestures in the dataset: K-nearest
neighbour (KNN) and Variational Autoencoder (VAE). Section
V presents our adaptive error corrector designed for the task.
Section VI summarises results and their brief discussions, and
Section VII concludes the paper.

II. HARDWARE

The controller hardware comprises of a capacitive touch
sensor fusion unit, a printed circuit board (PCB) designed for
a micro-controller unit (ESP32) and the support components
like LED, battery and etc. The detailed hardware specifications
can be found in the etee website [13]. As shown in Fig. 1
(top), the black sensors capture the finger proximity, touch,
pressure signals across the hand-holding area. Each sensor
covers a finger area and reflects the capacitive signal change
triggered by the finger movement. The silicon shell works as
an insulation layer to stabilise the sensor’s signal from the skin
touch and regulate the signal strength for finger press.

III. DATASET

A. Data acquisition

This section explains the data collection and preprocess-
ing methods used in this article for the gesture recognition
classification tasks. Fifteen individuals were recruited for the
data collection, with 4 categories of hand gestures as shown
in (see Fig. 1, bottom), namely ”index bend”, ”shoot”, ”flick
index”, and ”flick middle”. These gestures are a sequence of
movements depicted in the figure. Each recording consisted
of 5 time-series signals from 5 sensors, with each sensor re-
sponsive to the movement of the corresponding finger position.
Fig. 2 shows the signal change during one hand gesture, ”index
bend”, where the index finger starts to bend and then releases
back to a straight position, resulting in an obvious variation

Fig. 1. Top: The wearable etee hand controllers used for collecting gesture
recognition data in this work. The controller contains a trackpad, 5 finger
sensors, LED and etc. Bottom: The names and movements of the 4 dynamic
gestures collected for this study.

in the signal at channel 2 (index finger position). The other
sensors remain relatively constant. The dataset was extracted
from the recordings in two ways: one is the exact dataset,
with each sample marking a full gesture signal from start to
end (as shown in Fig. 2), and the other is the sliding dataset,
where a continuous 500 ms segment of the signal was extracted
from 2/3 of the gesture until its end (indicated by the dashed
box in Fig. 2). There are signals recorded from 4 dynamic
gestures during the data collection, along with a ”none” label
to indicate when a user is not performing these gestures. The
”none” gesture could be a random hand movement, resulting
in a signal that does not fit a gesture pattern. On the bottom,
the original signals on the left were normalised between 0
and 1, with the normalisation range defined by each user and
sensor. Zero indicates that the fingers are fully open, while one
indicates that the sensor is applied with full pressure from the
hand.

The dataset was transformed into a 2D format by con-
catenating the 5 spectra from 5 sensors at each time step,
resulting in a sample matrix with 5 channels and x time
stamps. Following a thorough analysis, it was determined that
the average duration of a full gesture was approximately 500
ms. Based on this information, we then set x to 20 when
the transmitting frequency of the hardware was about 40
Hz. To align with the identified gesture duration, the time
window in the sliding dataset was also established at 500 ms,
ensuring consistent time stamps in each sample. The dataset
was then normalised to the range [0,1] based on the maximum
and minimum signals triggered by each user. Finally, the
dataset was flattened to 100 features, with the first 20 features
representing the thumb signal and the second 20 features
representing the index signal.

The signal patterns of all gestures vary from individual to
individual due to different hand sizes and movement habits.
As a result, the dataset is grouped by user and contains signals
from different individuals. It is divided into four sets: training
set, validation set, test set, and hold set, with the distribution
of 8 users for training, 3 for validation, 2 for testing, and 2
for hold. The training set contains approximately 65% of the



Fig. 2. Top: During data collection, gesture start and end were marked. A 500
ms time window, represented by the dashed box, was applied to the signal
to extract segments, sliding from the black box to the grey box with each
signal frame. Bottom: Original signals on the left are normalised between 0
and 1. The normalisation range is defined by each user and sensor, with zero
meaning that the fingers are fully open and one indicating that the sensor is
being applied with full pressure by the hand.

samples, while the validation set contains about 15%. The test
set and hold set each contain 10%. The hold set consists of
samples that remain unchanged across the different sets.

B. Dimension Reduction

Here, we employed principal component analysis (PCA)
as a dimension reduction method. PCA is a commonly used
technique in data mining and machine learning that identifies
the directions in data that capture the most variance, and
projects the data onto these directions [14]. This results in a set
of orthogonal dimensions, called principal components (PCs),
ranked by the variance they capture. The process is achieved
via eigen-decomposition of the covariance matrix, and we used
the built-in single value decomposition in Scikit-learn [15]
without centring the data as it has already been normalised,
see Fig. 2. We selected the PCs based on the percentage
of explained variance and a decision tree, confirming the
importance of PC choices for classification. The first three
PCs captured over 95% of the explained variance of the
original 100 features (as seen in Fig. 3). A decision tree-based
classification of the 100 transformed PCs also chose the first
three PCs as the best splitters. Hence, these three features
were selected as the reduced features for further classification
analysis.

IV. BASE MODEL

Based on the three PC distribution of the dataset (Fig.
3), we noted a clear separation between gesture labels, with
”none” labelled data enveloping other gestures. Given the
limited number of training data to memorise on an edge
device, we selected KNN as one of the base models due to its
compatibility with the distribution pattern. To further evaluate

Fig. 3. Top left: The solid line is the accumulated percentage of explained
variance and the bar is the individual percentage. The first three PCs cover
over 95% of the explained variance. Top right: All 100 principle components
were fed to a decision tree for classification of 4 main dynamic gestures. Only
three, PC1, PC2 and PC3 were required for the decision making. Bottom left:
Three features - the top three PCs - were used to visualise the dataset and
show great sparsity among four gesture labels (colour represents the gesture
here). Bottom right: An extra ”none” label (black) were added in the dataset.

model performance, we also employed a supervised VAE as a
benchmark.

A. K-Nearest Neighbour

KNN is a simple and effective method for classification and
regression [16]. It is based on the idea that the input data can
be classified or predicted based on the class or label of the
nearest data points. The label of the output variable for a given
input is determined by the K nearest data points, with K being
a user-defined parameter. KNN has been successfully applied
in several domains, including medical health classification and
fall prediction using foot sensors [17], [18].

However, KNN can be computationally expensive because
all the distances between data points need to be computed and
stored in order to find the nearest neighbours. Additionally, the
accuracy of KNN predictions can decrease with an increasing
number of features, due to the curse of dimensionality. This
occurs when the number of dimensions increases, causing data
points to become closer in the high-dimensional space, making
it difficult for the KNN algorithm to separate them based on
distance and make accurate predictions.

The mathematical expression for KNN can be expressed as
follows: let xi ∈ Rd represent the i-th input data point and
yi ∈ R be the corresponding output variable. The goal of KNN
is to predict the value of ŷ for a new input x based on the
values of y for the K nearest neighbours of x:

ŷ =
1

K

∑
i∈NK(x)

yi

where NK(x) is the set of indices of the K nearest neigh-
bours of x.



B. Variational Autoencoder

This paragraph describes the VAE, a deep learning model
used for representation learning and unsupervised learning
[19]. VAE comprises an encoder and a decoder, which map
the input data to a lower-dimensional latent space and back to
the original data space, respectively. A NN is used to learn the
latent representation, where a prior distribution over the latent
space is assumed and the encoder is trained to approximate
the posterior distribution of the latent variables given the
input data. This results in a flexible, scalable and interpretable
representation of the data. Three latent representations are
defined with likelihood functions in the form of Gaussian
distributions.

We define the latent feature z and the observed data x.
The posterior distribution is approximated in the encoder as
qφ(z|x). New samples are generated from the latent sample
through a likelihood function, pθ(x|z) in the decoder. The goal
of VAE is to learn the parameters, φ and θ, of the generative
model that capture the underlying structure of the data. Hence
we maximise the log-likelihood of the data coming out the
decoder, which is bounded as:

log pθ(x) ≥ −KL(qφ(z|x)||p(z)) + Eqφ(z|x) [log pθ(x|z)]

where KL(·|·) is the Kullback-Leibler divergence and the
right hand side of the above equation is called the Evidence
Lower Bound (ELBO). Since maximising the pθ(x) is typi-
cally computationally intractable, the object of VAE becomes
maximising the ELBO instead, resulting a loss function as:

L(θ, φ) = KL(qφ(z|x)||p(z))− Eqφ(z|x) [log pθ(x|z)]

VAE is trained by minimising the loss function with respect
to the parameters θ and φ, resulting in a compact, continuous
and interpretable latent representation that can be used for
downstream tasks such as generation and reconstruction. The
latent features are then fed to a two-layer neural network to
predict the result. They were also used as reduced features for
other classification models.

V. DATA ADAPTIVE TUNER

The base models, the combination of PCA + KNN, the
encoder + KNN and the supervised VAE, have an average
accuracy of around 80% (in Section VI). However, they
still make mistakes during the classification, leading to an
unpleasant user experience. While increasing the amount of
data from more users would alleviate some errors, it would
also introduce others. To address this, we have introduced an
error corrector into our legacy system, which corrects these
errors without compromising the performance of the base
model.

The error corrector is based on the concentration of measure
and the stochastic separation theorem in high dimensions [20].
According to the classical concentration of measure theory,
i.i.d. random points in high dimensions are distributed in

Fig. 4. Top: The structure of supervised VAE. Bottom left: the mean value
of 3 latent features in the VAE. Bottom right: The randomly picked features
from the Gaussian distribution of the three latent features.

a thin layer of the sphere’s surface. Strikingly, with high
probability, these points are also Fisher-separable from one
another [21], [22]. This means that errors are linearly separable
from the rest of the samples when the dimension is high, as has
been demonstrated in various applications such as performance
monitoring of computer numerical control milling processes
and edge-based object detection [23].

We evaluated two corrector algorithms to compare their per-
formance combined with data from different high-dimension
projections. These algorithms are the linear discriminant clas-
sifier [24] and the centroid classifier.

A. Feature Analysis

For the classification of errors in high-dimensional space,
the dataset is first projected into a high-dimensional feature
space. There are several kernel functions that can perform this
task, including the polynomial kernel, radial basis function
(RBF) kernel, and nearest neighbour kernel through KNN.

In our experiments, we used PCA, polynomial, and KNN
kernels to transform the original 100 features of the normalised
signal into a high dimension. The RBF kernel was not used,
as the number of features generated by this kernel is much
larger than the number of samples in the dataset, making it
computationally expensive and difficult to predict.
• PCA kernel: We normalised the data in the selected

feature space. After that, the dataset went through another
PCA transformation and a whitening coordinate transfor-
mation to ensure the covariance matrix of the transformed
data is an identity matrix. The features were then ranked
from high to low by the percentage of explained variance.



The first few PCs were extracted as features, with the
number of features Npc being a parameter. We tested this
kernel with Npc from 3 to 100.

• Polynomial kernel: All data was processed firstly using
the PCA kernel with Npc. We then added nonlinear
features through polynomial transformation with degree
Npoly. After that, we normalised the dataset and trans-
form it through PCA and whitening process. In this
kernel, the Npc were tested from 2 to 20 and Npoly from
2 to 7.

• KNN kernel: All data were first processed using the PCA
kernel with Npc. Next, we trained a KNN classifier based
on the PCs. The Knn nearest neighbours of each sample
were extracted as the new features. They were then
normalised and transformed through PCA and whitening
process again. In this kernel, The Knn was tested from
2 to 300 with a step of 10.
a) Intrinsic Dimension: The intrinsic dimension is a

significant concept in modern machine learning and has been
widely discussed. Despite the number of features in a dataset,
it does not always reflect its dimensionality [22]. For example,
a dataset with three features distributed on a 2D plane has a
dimension of 2 instead of 3. Various definitions of intrinsic
dimension have been proposed, and here we use the Fisher
separability statistic-based dimensionality proposed by Gorban
and Tyukin [20]. This definition is consistent with PCA-based
intrinsic dimension measurement and enables capturing low-
dimensional fractal and fine-grain structures in data.

When the number of features in our dataset exceeds a
certain limit, the intrinsic dimension cannot be accurately
calculated due to the limited number of samples. However, as
shown in Fig. 5, the trend of the intrinsic dimension can still
be observed as we increase the value of certain parameters.
The highest measurable intrinsic dimension observed does not
exceed 12, which is roughly equal to the intrinsic dimension
of the original inputs. To increase the dimensionality of the
dataset, we combined features from two different kernels as a
new feature space. These sets of features were applied to the
following classifiers for error group classification and error
correction.

B. Error Correction

As five gesture labels were used in the base model (four
dynamic gestures plus one ”none” gesture), there are twenty
possible error combinations, e.g. ”shoot” predicted as ”index
bend”. As depicted in Fig. 3, some of the samples from
different dynamic gesture labels in the training dataset have
large enough gaps in the three PC spaces, making them
easily separable from each other, while others are difficult to
distinguish from one another. In SectionVI-B, we identify and
discuss ten types of errors that occur after the base model
prediction. These errors are predicted using an error group
classifier. For each error group, we assign a new binary label
that indicates whether a sample falls into a specific error
pattern. For example, if the ground truth is ”index bend” but
the base model predicts it as ”flick index,” then the sample

is assigned a positive label of 1. Conversely, if the sample
does not fit this pattern, it is assigned a negative label of 0.
The dataset was first separated into different error groups and
then assigned new binary labels based on these patterns. These
new subsets of the dataset were then used to train the error
correctors, which are binary classifiers.

1) Binary Classifier: To perform binary classification from
high-dimensional feature space, we tested two classifiers:
linear discriminant analysis and centroid classifier.

a) Linear Discriminant Analysis : Linear Discriminant
Analysis (LDA) is a dimensionality reduction technique,
commonly used in pattern recognition and machine learning
[25]. It aims to find a linear combination of features that
maximises the separation between classes. This is formalised
as an optimisation problem that seeks a projection matrix W ,
maximising the ratio of between-class variance to within-class
variance:

J(W ) =
tr(SBW

TW )

tr(SWWTW )

where SB and SW are the between-class and within-class
scatter matrices, respectively. The solution of this optimization
problem is the projection matrix W , which gives the projected
data by multiplying the original data matrix by W . LDA is
particularly useful when the number of features is larger than
the number of samples, as it can reduce the dimensionality
while preserving class separability.

b) Centroid Classifier: The paragraph describes the
centroid-based classification method for supervised learning,
which is a simple and effective approach. It is based on
assigning a new data point to the class with the closest
centroid, calculated as the average of the data points in the
class. This instance-based learning algorithm uses the training
data directly to make predictions, making it fast and easy
to implement [26]. It can handle high-dimensional data and
a large dataset. The mathematical formulation is presented,
including the definition of the centroid and the Euclidean
distance between a data point, and the classification procedure
of a new data point.

Let X = x1, . . . , xn ∈ Rn×d be a dataset containing n
samples and d features, and let y ∈ 0, 1, . . . , C be the vector
of class labels, where C is the number of classes. The centroid
of a class c is defined as the average of the data points in the
class:

µc =
1

nc

∑
i:yi=c

xi

where nc is the number of data points in the class. The
distance between a data point x and a centroid µ is typically
measured using the Euclidean distance:

d(x, µ) =

√√√√ d∑
j=1

(xj − µj)2

To classify a new data point x, the centroid-based classifier
finds the class with the closest centroid:
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Fig. 5. Intrinsic dimension of features from PCA kernel, Polynomial kernel and KNN kernel.

ŷ = argmin
c
d(x, µc)

2) Receiver Operating Characteristic Curve: The Receiver
Operating Characteristic (ROC) curve is a tool for evaluating
binary classification models [27]. It plots the True Positive
Rate (TPR) against the False Positive Rate (FPR) at varying
decision thresholds. This provides a visualisation of the trade-
off between sensitivity and specificity in a binary classifier. In
our case, the dataset can be imbalanced, causing TPR and
FPR to be misleading. Therefore, we used the number of
True Positive (TP) samples and False Positive (FP) samples to
visualise the performance of binary classification models.

VI. RESULTS AND DISCUSSION

A. Base Model Performance

As data from the four gesture labels show clearer separation
among each other, and the ”none” gesture data is close to
all the other four labels, we first analysed base models on
the dataset consisting of the four gesture labels. Then, the
chosen model structure was applied to the exact dataset with
five labels, including the ”none”. Errors were observed in the
3D plots shown in Fig. 5, and these errors will be analysed in
the next section.

In this study, three base model systems were evaluated.
Each system is a combination of dimension reduction and
classification. The first system is a supervised VAE with three
latent features, as depicted in Fig. 4. This system employed
the losses: a loss from ELBO, and a categorical cross entropy
between the latent features and transformed labels. The second
base model IS dimension reduction using encoder part from
VAE and classification using KNN. The third option is PCA
+ KNN.

To fairly estimate the accuracy of these models, k-fold cross
validation was used. This technique assesses how the results
of a machine learning algorithm generalise to an independent
dataset. In this k-fold cross-validation, the ratio of users in the
training, validation, test, and hold datasets remained 8:3:2:2,
with users randomly allocated to different sets. Nearly 400
different combinations of users in the train, validation, and test
datasets were performed. The hold dataset contained data from
the same users across all combinations. In the supervised VAE
model, only the training dataset was used for training. In the
next two models, the training dataset was used for dimension

TABLE I
COMPUTING TIME (MS) ON INTEL I9 PROCESSOR

Supervised VAE Encoder + KNN PCA + KNN
> 20 > 20 < 1

Fig. 6. The accuracy of k-fold cross-validation for three base models. The
supervised VAE model, the encoder and PCA were trained on the train set.
The KNN was trained on the validation set.

reduction, and the validation set was used to train the KNN
model.

Fig. 6 displays the accuracy calculated via k-fold cross-
validation and three base model options. Each dot represents
an accuracy computed from each dataset. In the test dataset,
the PCA + KNN option exhibits the highest accuracy mean
and the smallest variation among all three base models. The
encoder + KNN option comes in second. In the hold dataset,
where every dot has the same data, the accuracy means are
similar across all options, but the smallest variation is observed
in the PCA + KNN option.

We calculated the computing time of each model on a
laptop with Intel i9 processor (shown in Table I). A NN based
model (supervised VAE and Encoder) takes significant time
compared with PCA + KNN combination. As an embedded
system generally has less computing power than a laptop, we
chose PCA + KNN as the base model for the classification of
5 labels (4 dynamic gestures and 1 ”none”).

B. Error Corrector Performance

In the dataset that contains all 5 labels, we analysed the
types of errors produced by the PCA + KNN base model.
The base model was able to distinguish most of the gestures



from each other, but struggled with differentiating ”Flick In-
dex”/”Index Bend” as well as ”none”/others. After examining
the base model predictions, we identified 10 possible error
groups. To classify these error groups, we used an LDA
classifier. After examining high-dimensional kernels with over
1000 parameter combinations, we selected PCA kernel with
the first 9 PCs for the error group classification.

In each error group, we trained a binary classifier to separate
the errors from the rest of the data in that group. The training
data came from the sliding data’s train part. They were first
projected into the high-dimensional feature space and then
went through the binary classifier. We recorded ROC curves
for the train and test dataset and plotted the number of TPs
against the number of FPs for each group. To accurately
distinguish the errors without compromising the accuracy of
the base model, we chose a high-dimensional kernel, a binary
classifier, and a decision threshold for each group.

By picking the right decision threshold, the classifier was
able to achieve the maximum TPs with 0 FP. This allowed us
to develop a corrector that only corrected the errors without
affecting the base model’s predictions.

Here, we demonstrated some kernels with the best TPs at 0
FP in two error groups, as shown in Fig. 7. In one error group,
where the ground truth is ”flick middle” but the prediction is
”none” in the base model (top figures in Fig. 7), the ROC
curves were calculated from three different kernels using a
centroid classifier in both the train and test dataset. The three
feature kernels are: 1. The first 10 PCs from the PCA kernel
and features from a polynomial kernel with Npc = 5 and
Npoly = 4; 2. 20 PCs from the PCA kernel plus a polynomial
kernel of 5 PCs and 4 degrees; 3. 20 PCs from the PCA kernel
plus a polynomial kernel of 5 PCs and 4 degrees. The ROC
curves calculated from these three kernels show a reasonable
TP number when the FP number is 0 in both the train and test
datasets. When the decision threshold was defined as 0.955 for
positive prediction, the centroid classifier detected 390 errors
in the train set (1408 errors in 9796 samples from the base
model) and 38 errors in the test set (562 errors in 1427 samples
from the base model), thus ensuring error detection without
damaging the base model prediction in both the train and test
sets. In the bottom figures in Fig. 7, we demonstrate the ROC
curves in an error group where the ground truth is ”none” but
predicted as ”flick index” in the base model. There are ROC
curves from 11 feature kernels in both the train and test sets,
and we labelled 5 of them. In the LDA classifier for this error
group, we were unable to define a threshold that detects errors
without compromising the base model prediction. Hence, this
model was not available in this error corrector system. If
neither of these binary classifiers guarantees a positive TP
number at 0 FP, we skip the implementation of an error
corrector in this error group.

After analysing the feature kernels and classifiers for 10
error groups, we selected the best combination of error cor-
rectors and evaluated their performance on a new dataset,
as shown in Table II. The final prediction made by the
combination of the error corrector and base model involves the

Fig. 7. top: The ROC curve calculated from 3 feature kernels in the centroid
classifier for one error corrector. bottom: The ROC curve calculated from 11
feature kernels in LDA in another error group. Only 5 feature kernels are
labelled here.

following steps: 1) Make a prediction from the base model; 2)
classify the sample into an error group; 3) if the base model’s
prediction fits the pattern of the error group, the sample is fed
to the corresponding error corrector in that group; 4) if the
error corrector identifies an error, the final result is corrected
based on the pattern.

Seven error groups were equipped with error correctors,
as the rest of the groups could not be assigned a functional
corrector. In Table II, we compared the accuracy of the base
model to the accuracy of the base + corrector system across
three datasets. The improvement in overall performance and
performance in each error group suggests that the error correc-
tor is an effective component of the gesture recognition system.
Additionally, the computation time for this error correction
mechanism for a single sample is less than 1 ms, making
it feasible for use in embedded systems. The lightweight
algorithm and short computation time enable this gesture
recognition system to run on low-power devices.

VII. CONCLUSIONS

In this study, we presented a hand gesture recognition
system that combines a simple base model and error cor-
rectors. The system uses low-dimensional capacitive sensor
signals measured on the etee hand controller, rather than high-
dimensional image data, which is computationally expensive.
Through PCA analysis and decision tree analysis, we extracted
three features for base model classification. The performance
of the PCA + KNN combination in the base model was
compared to a benchmark of supervised VAE, and showed
not only comparable accuracy, but also over 20 times faster
computing time. To address occasional errors, we added an
adaptive error correction mechanism to the system, where each
error group is assigned a corresponding corrector. The results
demonstrated an improvement in the overall accuracy, as well
as performance gains with respect to the individual error
groups. Given the small system’s size and fast computation
time, the adaptive error correction mechanism makes the



TABLE II
THE BASE MODEL ACCURACY COMPARED WITH CORRECTOR IMPLANTATION

Accuracy
Dataset 1 Dataset 2 Dataset 3

Model base base + corrector base base + corrector base base + corrector
Full dataset 0.740 0.749 0.672 0.684 0.750 0.759

Error group

group 2 0.618 0.618 0.453 0.459 0.463 0.490
group 14 0.993 0.993 0.951 0.962 0.847 0.857
group 15 0.702 0.702 0.930 0.907 0.913 0.918
group 16 0.202 0.310 0.083 0.333 0.652 0.725
group 17 0.829 0.829 0.913 0.870 0.997 1.000
group 18 0.094 0.336 0 0.483 0.903 0.919
group 19 0.273 0.273 0.430 0.430 0.646 0.646

gesture recognition system ideal for live useage in low-power
(0.85 W) hand controllers like the etee. Although our study
provides a viable solution for customising gesture recognition
systems on edge devices, it is important to acknowledge its
limitations. While the error correction mechanism is capable
of identifying errors in some groups, it may not be able to
distinguish errors in others. Further research is needed to gain
insights into the underlying reasons for this discrepancy and
into determining alternative ways to deal with AI errors.
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