291,137 research outputs found

    Very deep spectroscopy of the bright Saturn Nebula NGC 7009 -- I. Observations and plasma diagnostics

    Full text link
    We present very deep CCD spectrum of the bright, medium-excitation planetary nebula NGC 7009, with a wavelength coverage from 3040 to 11000 A. Traditional emission line identification is carried out to identify all the emission features in the spectra, based on the available laboratory atomic transition data. Since the spectra are of medium resolution, we use multi-Gaussian line profile fitting to deblend faint blended lines, most of which are optical recombination lines (ORLs) emitted by singly ionized ions of abundant second-row elements such as C, N, O and Ne. Computer-aided emission-line identification, using the code EMILI developed by Sharpee et al., is then employed to further identify all the emission lines thus obtained. In total about 1200 emission features are identified, with the faintest ones down to fluxes 10^{-4} of H_beta. The flux errors for all emission lines, estimated from multi-Gaussian fitting, are presented. Plots of the whole optical spectrum, identified emission lines labeled, are presented along with the results of multi-Gaussian fits. Plasma diagnostics using optical forbidden line ratios are carried out. Also derived are electron temperatures and densities from the H I, He I and He II recombination spectrum.Comment: 66 pages, 16 figures, 7 tables, paper accepted by MNRAS in Marc

    Optical recombination lines as probes of conditions in planetary nebulae

    Get PDF
    Since the last IAU symposium on planetary nebulae (PNe), several deep spectroscopic surveys of the relatively faint optical recombination lines (ORLs) emitted by heavy element ions in PNe and H II regions have been completed. New diagnostic tools have been developed thanks to progress in the calculations of basic atomic data. Together, they have led to a better understanding of the physical conditions under which the various types of emission lines arise. The studies have strengthened the previous conjecture that nebulae contain another component of cold, high metallicity gas, which is too cool to excite any significant optical or UV CELs and is thus invisible via such lines. The existence of such a plasma component in PNe and possibly also in H II regions provides a natural solution to the long-standing problem in nebular astrophysics, i.e. the dichotomy of nebular plasma diagnostics and abundance determinations using ORLs and continua on the one hand and collisionally excited lines (CELs) on the other.Comment: 8 pages, 3 figures, review talk presented to the IAU Symposium #234, ``Planetary nebulae in our Galaxy and beyond'', held in Hawaii, USA, April 3-7 200

    Inner product computation for sparse iterative solvers on\ud distributed supercomputer

    Get PDF
    Recent years have witnessed that iterative Krylov methods without re-designing are not suitable for distribute supercomputers because of intensive global communications. It is well accepted that re-engineering Krylov methods for prescribed computer architecture is necessary and important to achieve higher performance and scalability. The paper focuses on simple and practical ways to re-organize Krylov methods and improve their performance for current heterogeneous distributed supercomputers. In construct with most of current software development of Krylov methods which usually focuses on efficient matrix vector multiplications, the paper focuses on the way to compute inner products on supercomputers and explains why inner product computation on current heterogeneous distributed supercomputers is crucial for scalable Krylov methods. Communication complexity analysis shows that how the inner product computation can be the bottleneck of performance of (inner) product-type iterative solvers on distributed supercomputers due to global communications. Principles of reducing such global communications are discussed. The importance of minimizing communications is demonstrated by experiments using up to 900 processors. The experiments were carried on a Dawning 5000A, one of the fastest and earliest heterogeneous supercomputers in the world. Both the analysis and experiments indicates that inner product computation is very likely to be the most challenging kernel for inner product-based iterative solvers to achieve exascale

    Is Optimal Monetary and Fiscal Policy in a Small Open Economy Time Consistent?

    Get PDF
    This paper studies optimal monetary and fiscal policy in a small open economy. Two forces in the economy impose orthogonal restrictions on financing costs across governments. The first force requires constant financing costs across governments to have time consistent optimal policy of hours. The second force always asks for time-varying financing costs across governments in order to have time consistency optimal policy of consumption and real money balances. Thus, optimal monetary and fiscal policy is time inconsistent. However, if preferences (and/or productivity) satisfy certain conditions, the former force disappears and optimal monetary and fiscal policy becomes time consistent. The results hold with both flexible exchange rate regimes and fixed exchange rate regimes. The latter indicates that a credible fixed exchange rate regime does not help render optimal policy time consistent.Time consistency; Optimal monetary and fiscal policy; Small open economy.

    Exponential stabilization of a class of stochastic system with Markovian jump parameters and mode-dependent mixed time-delays

    Get PDF
    Copyright [2010] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this technical note, the globally exponential stabilization problem is investigated for a general class of stochastic systems with both Markovian jumping parameters and mixed time-delays. The mixed mode-dependent time-delays consist of both discrete and distributed delays. We aim to design a memoryless state feedback controller such that the closed-loop system is stochastically exponentially stable in the mean square sense. First, by introducing a new Lyapunov-Krasovskii functional that accounts for the mode-dependent mixed delays, stochastic analysis is conducted in order to derive a criterion for the exponential stabilizability problem. Then, a variation of such a criterion is developed to facilitate the controller design by using the linear matrix inequality (LMI) approach. Finally, it is shown that the desired state feedback controller can be characterized explicitly in terms of the solution to a set of LMIs. Numerical simulation is carried out to demonstrate the effectiveness of the proposed methods.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the U.K. under Grant GR/S27658/01, the Royal Society of the U.K., the National 973 Program of China under Grant 2009CB320600, and the Alexander von Humboldt Foundation of Germany. Recommended by Associate Editor G. Chesi

    Multiple Heat Exchangers Simulation Within the Newton-Raphson Framework

    Get PDF
    A general framework is proposed for simulating complex heat exchanger geometries in a manner suitable for sequential solution of the refrigerant- and air-side equations for mass, momentum and energy. The sequential solution enables the algorithm to be applied to a single module of a complex heat exchanger, and then integrated with other modules within a simultaneous equation solver employing a Newton-Raphson approach. This report also describes the integration of component subroutines into system simulation models for air conditioners and refrigerators. The modular approach is illustrated by describing its application to a dual-evaporator refrigerator simulation.Air Conditioning and Refrigeration Project 6

    Precise BER Formulas for Asynchronous QPSK-Modulated DS-CDMA Systems Using Random Quaternary Spreading Over Rayleigh Channels

    No full text
    Precise bit-error-ratio (BER) analysis of an asynchronous QPSK-modulated direct-sequence code-division multiple-access system using random quaternary spreading sequences for transmission over Rayleigh channels is performed based on the characteristic-function approach. Its accuracy is verified by our numerical simulation results and also compared with those of the Gaussian approximation. Index Terms—Asynchronous direct-sequence code-division multiple-access (DS-CDMA), bit-error-ratio (BER), precise, QPSK, quarternary spreading, Rayleigh

    Accurate BER Analysis of QPSK Modulated Asynchronous DS-CDMA Systems Communicating over Rayleigh Channels

    No full text
    The accurate average BER calculation of an asynchronous DS-CDMA system using random spreading sequences is studied in Rayleigh fading channels. An accurate closed-form expression is derived for the conditional characteristic function of the multiple access interference. An accurate BER expression is provided, which only requires a single numerical integration. Our numerical simulation results verify its accuracy, and also demonstrate the relative inaccuracy of the Gaussian approximation
    corecore