

University of Illinois at Urbana-Champaign

Air Conditioning and Refrigeration Center A National Science Foundation/University Cooperative Research Center

Multiple Heat Exchangers Simulation
Within the Newton-Raphson Framework

X. Liu and C. W. Bullard

 ACRC TR-194 March 2002

For additional information:

Air Conditioning and Refrigeration Center
University of Illinois
Mechanical & Industrial Engineering Dept.
1206 West Green Street
Urbana, IL 61801 Prepared as part of ACRC Project #69
 Development of Modular A/C and Refrigerator Simulation Program
(217) 333-3115 C. W. Bullard, Principal Investigator

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/4821262?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Air Conditioning and Refrigeration Center was
founded in 1988 with a grant from the estate of
Richard W. Kritzer, the founder of Peerless of
America Inc. A State of Illinois Technology Challenge
Grant helped build the laboratory facilities. The
ACRC receives continuing support from the Richard
W. Kritzer Endowment and the National Science
Foundation. The following organizations have also
become sponsors of the Center.

Alcan Aluminum Corporation
Amana Refrigeration, Inc.
Arçelik A. S.
Brazeway, Inc.
Carrier Corporation
Copeland Corporation
Dacor
Daikin Industries, Ltd.
Delphi Harrison Thermal Systems
General Motors Corporation
Hill PHOENIX
Honeywell, Inc.
Hydro Aluminum Adrian, Inc.
Ingersoll-Rand Company
Kelon Electrical Holdings Co., Ltd.
Lennox International, Inc.
LG Electronics, Inc.
Modine Manufacturing Co.
Parker Hannifin Corporation
Peerless of America, Inc.
Samsung Electronics Co., Ltd.
Tecumseh Products Company
The Trane Company
Valeo, Inc.
Visteon Automotive Systems
Wolverine Tube, Inc.
York International, Inc.

For additional information:

Air Conditioning & Refrigeration Center
Mechanical & Industrial Engineering Dept.
University of Illinois
1206 West Green Street
Urbana, IL 61801

217 333 3115

 iii

Abstract

A general framework is proposed for simulating complex heat exchanger geometries in a manner suitable

for sequential solution of the refrigerant- and air-side equations for mass, momentum and energy. The sequential

solution enables the algorithm to be applied to a single module of a complex heat exchanger, and then integrated

with other modules within a simultaneous equation solver employing a Newton-Raphson approach. This report also

describes the integration of component subroutines into system simulation models for air conditioners and

refrigerators. The modular approach is illustrated by describing its application to a dual-evaporator refrigerator

simulation.

 iv

Table of Contents

Page

Abstract ..iii

List of Figures .. vi

List of Tables .. viii

Chapter 1: Introduction .. 1

1.1 Background...1

Chapter 2: General Model Description ... 3

2.1 Model structure ...4

2.1.1 Main program..6
2.1.2 Sequential subroutines ...7

2.2 Communications... 10

2.2.1 Communication between main program and sequential subroutine..10
2.2.2 Communication between main program and supportive files...13
2.2.3 Communication between sequential components ...14

Chapter 3: Heat Exchanger Algorithms ...16

3.1 Description.. 16

3.2 Heat exchanger configurations... 17

3.2.1 Parallel refrigerant flow...18
3.2.2 Serial refrigerant flow..21

3.3 Complex component analysis and simulation... 24

3.3.1 Division ..24
3.3.2 Conquer..25
3.3.3 Combination ..27

Chapter 4: Dual Evaporator System Modeling...32

4.1 Introduction... 32

4.2 Sequential simulation.. 33

4.2.1 Compressor..33
4.2.2 Condenser...34
4.2.3 Captube-suction line heat exchanger...36
4.2.4 Evaporator..37

References...39

Appendix A: Capillary Tube Suction-Line Heat Exchanger Design Model...............40

 v

A.1 Design operating condition .. 40

A.1.1 Effect of low condensing pressure..41
A.2 Capillary Tube-Suction Line Heat Exchanger Model user’s reference 42

A.2.1 Definition description for variables and parameters ..42
A.2.2 XK file, variables and parameters definition ..44
A.2.3 Sample instruction file ..46
A.2.4 Solver setting file ...46

Appendix B: Dual Evaporator Simultaneous System Modeling..................................48

B.1 Introduction .. 48

B.2 Simultaneous system ... 48

Appendix C: Residential A/C System Modeling...53

C.1 Introduction .. 53

C.2 Model description ... 53

C.2.1 Condenser..53
C.2.2 Expansion device ...60
C.2.3 Compressor...60
C.2.4 Evaporator...60

C.3 Residual equations... 69

 vi

List of Figures

Page

Figure 2.1 General model structure ...4
Figure 2.2 New general model structure...6
Figure 2.3 Evaporator subroutine structure..8
Figure 2.4 Condenser parallel flow configurations...9
Figure 2.4 main program/sequential subroutine communications..11
Figure 2.5 Jacobian matrix..12
Figure 2.6 Subroutine Subsets Description..13
Figure 2.7 Components connection configuration..14
Figure 2.8 System residual equations for component connection..15
Figure 3.1 Evaporator component configurations...17
Figure 3.2 Parallel heat exchanger configuration..18
Figure 3.3 Serial heat exchanger configuration...18
Figure 3.4 Cross/parallel flow configuration ...19
Figure 3.5 Parallel/parallel flow configuration..19
Figure 3.6 Counter/parallel flow configuration ...19
Figure 3.7 Residual equations of cross/parallel configuration..20
Figure 3.8 Equations of counter/parallel and parallel/parallel configurations ...21
Figure 3.9 Residual equations describing connection..21
Figure 3.10 Cross/serial flow configuration...22
Figure 3.11 Parallel/serial flow configuration ...22
Figure 3.12 Counter/serial flow configuration...22
Figure 3.13 Residual equations describing cross/serial configuration...23
Figure 3.14 Residual equations describing parallel/serial configuration ..23
Figure 3.15 Second level elements ..24
Figure 3.16 Third level modules ..25
Figure 3.17 Overall structures of heat exchangers subroutines ..26
Figure 3.18 Downstreaming and upstreaming equations interface ..27
Figure 3.19 Residual equations groups simulating P1 ...28
Figure 3.20 Residual equations simulating P2 ...29
Figure 3.21 Residual equations simulating P3 ...30
Figure 3.22 Combination equations for parallel modules..31
Figure 3.23 Airside connection equations for cross flow configuration ...31
Figure 4.1 New model structure of dual evaporator system..33
Figure 4.2 interface of residual equations and condenser sequential subroutine...35
Figure 4.3 condenser sequential subroutine variable categories...35
Figure 4.4 interface of sequential subroutine, residual equations and variables..37
Figure 4.5 residual equations associated with evaporator component...38
Figure A.1 Divisions of capillary-tube suction line heat exchanger..42

 vii

Figure B.1 Freezer component simulation: no air flows into fresh food compartment..49
Figure B.2 Fresh food compartment simulation..51
Figure B.3 stable refrigerant states of dual evaporator system...51
Figure B.4 Refrigerant states of single fresh food evaporator case..52
Figure B.5 Refrigerant states at connection points of freezer simulation ...52
Figure C.1 Condenser geometry...54
Figure C.2 Condenser module structure ...54
Figure C.3 Flow chart for condenser subroutine...56
Figure C.4 Process of determining surface condition...62
Figure C.5 Evaporator subroutine flow chart ...65
Figure C.6 System residual equations...71

 viii

List of Tables

Page

Table A.1 Calculated results for several different cases..40
Table A.2 Calculated length for different diameters to meet design mass flow..41
Table A.3 Effectiveness of low condensing pressure...41
Table.A.4 Sample XK initialization file ...44
Table A.5 Instruction file Sample ..46

 1

Chapter 1: Introduction

1.1 Background
Earlier versions of the ACRC refrigerator and a/c simulation models consisted of an equation solver and a

set of governing equations that simulated the components. The ACRC solver utilized a Newton-Raphson algorithm

to simultaneously solve the system governing equations. The biggest advantage of the solver is that it allows the

input parameters and output variables to be interchangeable without the need to reprogram the model. The room air

conditioning simulation model developed by Bridges and Bullard (1995), was summarized by Mullen et al. (1998),

and its development and validation are described in Mullen, Bridges and Bullard (1998), Kirkwood and Bullard

(1999). Woodall and Bullard (1996) developed the RFSIM simulation model. Kirkwood and Bullard (1999)

developed the split system model with microchannel heat exchangers, and Stott and Bullard (1999) validated it.

Recently, Stein, Bullard and Newell (2000) began to develop the dual evaporator simulation model and Gerlach and

Newell (2000) finalized it.

Although the system simulation model was proved an accurate and sophisticated design tool, the program

had two prominent limitations. The NR algorithm requires the user to provide accurate initial guesses for all output

variables in order to ensure convergence. For many obscure output variables, this proved difficult and frustrating.

Reducing the number of required initial guesses was therefore identified as an important goal in the development of

the next generation of simulation programs. That approach was described by Harshbarger and Bullard (2000) and

included another desirable feature: the ability to simulate modern heat exchanger designs, particularly exchangers

having complex circuiting, or consisting of multiple slabs in the airflow direction. The geometry of each heat

exchanger module may be the same or different from others.

Another limitation of the original version was that it could only simulate one system with specified

geometry. To simulate different systems, it was necessary to rewrite the governing equations. This led to a

proliferation of distinct models, with the need to keep updating all of them. This report describes the implementation

of the modular system simulation models, which also accommodates systems having multiple evaporators or

multiple condensers systems (e.g. dual evaporator refrigerator and minivan system).

A new model structure was created to implement the modular simulation approach. Finite element solutions

of the heat exchangers were developed for the condenser and evaporator, allowing simulation of complex

geometries that were not possible with conventional methods. The finite element solutions were integrated into the

system model in a manner that reduced the number of required initial guesses and therefore, the burden on the user.

In this modular structure, each component in the system simulated by a stand-alone subroutine, solved sequentially

in a self-contained manner. Therefore, each component simulation can easily be isolated and/or integrated into a

simultaneous set of system-level equations.

This kind of modeling technique allows the simulation of complex heat exchanger designs while

maintaining the interchangeability of the inputs and outputs; and also reduces the burden on the user to provide

many initial guesses. A further advantage of this algorithm is that the initial guesses are restricted to readily known

quantities. The enhanced algorithm uses a novel approach by simultaneously employing a NR solver for the system

 2

and a sequential simulation for each component. This kind of modeling technique also gives us a easier way to build

general structured framework for simulating multi-evaporator or multi-condenser systems.

Chapter 2 of this report details the general framework of the modular simulation model. The mathematics

of the new algorithm is discussed in general terms, along with the process of interfacing a sequential simulation

within a Newton-Raphson solution. Chapter 3 explains the mechanics and implementation of the new algorithm for

multiple heat exchangers. Chapter 4 describes the modular structure of the dual evaporator simulation model.

Appendix A explains the captube-suction line heat exchanger model design. Appendix B explains how one could

use the single evaporator simulation model to simulate a dual evaporator refrigerator. Appendix C concisely

describes the a/c modular simulation model, and provides details of component subroutines and algorithms to

simulate the complex heat exchangers.

 3

Chapter 2: General Model Description

The structure of the ACRC refrigerator and air-conditioner models is versatile and the models are accurate

for simulating various types of systems and components. The principal advantage is that the structure is

independent of the user’s selection of dependent and independent variables. This is unlike conventional models

employing the method of successive substitution in which the model structure is tied uniquely to an a priori selection

of input and output variables.

At the same time, the limitations of this kind of structure are obvious and frustrating. The biggest

disadvantage is that user and programmer need to provide a set of internally consistent and reasonably accurate

initial guess values for all unknown variables. Otherwise, the system model and its Newton-Raphson solution

algorithm will not converge to a solution. Practically, it has proved to be very difficult and a big burden to

programmers and users, for example when switching refrigerants and therefore needing to alter the initial guess

values of enthalpies, subcooled areas, etc. Now, reducing the number of system initial guess values is an important

goal, because heat exchanger geometries are becoming more complex. A single heat exchanger can have very

complex circuiting or many slabs, or each component can have multi-exchangers. A good design model structure is

needed to simulate the more complicated heat exchangers and systems.

Harshbarger and Bullard (2000) have suggested a new model structure to simulate the a/c systems. In order

to address the limitations described above, finite element solutions of the heat exchangers were developed for the

condenser and evaporator. The finite element structure allows the simulation of complex geometries that were very

hard within the conventional N-R framework. The finite element solutions were integrated into the system model in

a manner that reduced the number of required initial guesses and therefore, the burden on the user. To further the

capabilities of the model, a modular structure was adopted. Using a structure similar as TRNSYS (Klein et al.,

1976), each component in the system is solved in a self-contained subroutine. Therefore, each component

simulation can easily be isolated and/or integrated into a simultaneous set of system-level equations.

This kind of modeling technique allows the simulation of complex heat exchanger designs while

maintaining the interchangeability of the inputs and outputs, because the core part of original model, NR solver, is

still used in the new model simulation. It also reduces the burden on the user to provide many initial guesses; the

user can restrict initial guesses to a subset of variables that can be easily known or measured.

The new model structure uses a novel approach by simultaneously employing a NR solver and a series of

sequential simulations. Newton-Raphson solver is still the core in the main program, which simultaneously solves

all the residual equations simulating the system. NR solver also provides new updated guess values of unknown (X)

variables for the next iteration until the system converges to the final solution. A finite-element approach is used in

sequential component to simulate the complex heat exchangers.

All the component-specific sequential subroutines can stand alone, providing more flexibility for

programmers to integrate different stand-alone subroutines into the mo del. They also facilitate simulation of multi-

heat exchanger systems, which are becoming more common. The corresponding subroutines can be integrated into

the system without rewriting any code. A detailed discussion of mechanics, structures and implementations will be

introduced in the following sections.

 4

2.1 Model structure
In the original Newton-Raphson simulation model developed by Mullen et al. (1998), all the residual

equations are stored in a single file. The new model uses sequential subroutines to simulate each system component.

In the hx subroutines, a finite-element approach is introduced to simulate more complicated geometries. This

technique greatly reduces the number of residual equations in the main program, which connects the components

together to define the system. The sequential subroutine transmits the calculated output variables back to the main

program, so the Newton-Raphson solver can solve the residual equations simultaneously. From the user

perspective, only the component models are visible. The NR equations and solver operate in the background,

returning after each iteration a set of updated inputs to each of the component subroutines.

The user initiates the simulation after selecting and providing values for the known independent variables

(K’s), unknown output variables (X’s), and known parameters (P’s). The internal relationships within the model

complete the simulation. The calculated values of the output variables (X’s), and the informative variables (C’s) are

returned to the user, along with the known parameters (K’s) and the input parameters P that the user supplied to help

specify components.

Different systems may have different condenser or evaporator geometries (e.g. finned tube; microchannel;

wire-on-tube, etc). If we have already built self-contained subroutines for those types of geometries, the main

program can just call the subroutines for components that are used in the simulated system, without necessity to

rewrite the codes. The same compressor subroutine is used in different systems, but different compressor maps

(curve fits) are chosen to calculate the mass flow rate and power consumption. The new model structure is shown

below.

 Main Program

(Newton-Raphson solver)
Expansion Device

Evaporator
Subroutine

Compressor
Subroutine

Condenser
Subroutine Simultaneous

Solutions
Sequential
Solutions

Figure 2.1 General model structure

In the general simulation model structure, which includes main program (NR solver is the core part),

system components are simulated within their sequential subroutine. This new model structure has two kinds of

 5

calculations: simultaneous and sequential. In main program, with the returns of calculated variables from sequential

subroutines, NR solver simultaneously solves all residual equations, and in every iteration submits updated inputs

unknown (X) variables to sequential subroutines.

The internal structure of the subroutines was defined by the need to solve sequentially. To accomplish this,

the programmer pre-selected a subset of variables to be subroutine inputs. This subroutine structure is transparent to

the user, who is free to switch independent and dependent (X’s and K’s) at the overall structure’s user interface.

Whenever one of the subroutine inputs is “unknown” to the user and the main program, the current or initial guess

value for that variable is supplied as the input to the subroutine.

Inside the sequential subroutine, the dependent and independent variable inputs (X’s and K’s) and

parameters (P’s) are provided by main program. A finite-element approach is used to sequentially simulate the heat

exchangers and capillary tube based upon the geometry, running condition and inlet states. The outputs from

subroutine include two parts: 1) calculated variables suffixed with ‘_calc’ and returned to the main program and 2)

calculated variables (Cs) that are not needed by the NR solver, but provide valuable information to the user and to

programmers who wish to know about the system running condition. For example, in HX subroutine, the total heat

transfers are decided by two phase part, therefore the input or output enthalpies. So the calculated heat transfer or

enthalpy variables can not give us too much information, but subcooled or two-phase area ratios can tell us what is

going on inside the subroutines, which is very useful in debugging procedure. So generally, the whole calculation

procedure involves simultaneous and sequential simulation.

Not only the heat exchanger geometries are becoming more and more complicated, so also are a/c and

refrigerator systems, as multiple evaporators are being served by a single condensing unit. We are employing a

finite-element approach to match the needs for individual heat exchangers. For systems having multiple evaporators

or compressors, a more general idea about the model structure is needed. Figure 2.2 shows the more general

structures used in simulating cases where evaporator or condenser component is actually a combination of serial

and parallel heat exchangers. This may include a/c heat exchangers having multiple layers (slabs) or a refrigerator

with freezer and food compartment evaporators in series. We need to pay attention to the mass flow rates and inlet

states of each heat exchanger as well as air flow directions because air flow directions decide which algorithm we

should call to simulate the HX. For serial cases, the outlet states values are equal to the inlet values of the coming

heat exchanger with the equal mass flow rate. But for parallel ones, each heat exchanger has the same inlet state

values, but these mass flow rates are not necessary equal although their sum should be equal to the whole system

mass flow rate. More details about inlet states and mass flow rate distribution will be provided in the later

discussion.

 6

 Main Program
 (Newton-Raphson Solver)

Condenser Subroutines
Sequential
Solutions

Evaporator Subroutines

Expansion Device Compressor
Subroutine

Simultaneous
Solutions

W

W

Figure 2.2 New general model structure

2.1.1 Main program
In main program, the NR solver is the essential part. It operates in the same manner as a traditional NR

algorithm. The solver simultaneously determines the solution to a given set of N equations, the same number as

system variables (Xs in XK file). The algorithm starts with an initial guess value for the ‘X’ variables from the user

interface. By utilizing first order derivative information, the NR solver iteratively improves the guess values until

the solver converges to a solution. During the solution of the simultaneous equations, the solver communicates with

the sequential subroutines, submitting subroutine inputs, receiving calculated variables suffixed with ‘_calc’. This

communication is internal to the model and is transparent to the user.

Firstly, the user initializes the system with providing values for parameters P, independent variables K and

initial guesses for the dependent variables X. The main program transmits these initial guess values and parameters

needed by sequential subroutine. Based on the inputs, subroutine sequentially calculates the output results: the

output-calculated variables marked with “_calc” and the informative variables (Cs). Cs are sent back to the user

interface and ‘_calc’ variables are sent back to system equations that are solved simultaneously by Newton-Raphson

Solver.

The residual equations and the connections equations between major components are listed in the main

program. After the main program calls each sequential subroutine, which return component output “_calc” variables

which are then used by NR solver to simultaneously solve residual governing equations, one associated with each

“_calc” output from the component subroutines.

 7

If there is no X variable in inputs of subroutines, the simulation will be finished just in one iteration.

Because of the interchangeability between Xs and Ks at the user interface, Xs can be inputs to the subroutine in

some cases. Then, NR updates the input X variables with new calculated values in each iteration. Main program

iteratively calls components subroutines with new updates inputs until the NR solver converges to a solution.

2.1.2 Sequential subroutines
The sequential subroutine contains all the information needed to simulate a component, solving all the

governing equations. Without the force of NR solver, the subroutine will only solve a component for a certain set of

specified input variables, parameters and geometry. The inputs and outputs of the sequentially solved subroutine are

not interchangeable.

Harshbarger and Bullard (2000) built a new concept to divide the global set of subroutine inputs and

outputs into four subsets: Set I, Set P, Set C and Set O, which are very helpful for our discussion. Both Set I and Set

P comprise the subroutine inputs, while outputs include Set C and Set O. Set I is a subset of the interchangeable

variables (X’s and K’s) from the main program. Usually the sequential subroutine requires the inlet refrigerant and

air states, mass flow rates for the air and refrigerant, and a set of variables that describe the heat exchanger

geometry. Unless the user happens to specify all these subroutine inputs as independent variables (K’s), the whole

calculation needs more than one iteration. Any Xs contained in the Set I is improved by NR solver in every

iteration. Set P is a subset of Ps needed by this subroutine, which are specified in XK file and not changed during

the whole calculation.

The subroutine outputs include a new category of variable, denoted a ‘calc’ variable. The subroutine does

not output actual value of the interchangeable variables. Instead, the subroutine outputs ‘calc’ variables that

represent the same quantities as interchangeable variables. The ‘calc’ variables are suffixed with ‘calc’ in order to

distinguish them from their corresponding interchangeable variables. All interchangeable variables (X’s and K’s)

not input to the subroutine correspond to subroutine outputs, which are included in set O. The ‘calc’ variables

correspond to the interchangeable variables in Set O. Together sets O and I include all M interchangeable variables

(X’s and K’s), that is I∪O = X∪K = M (Harshbarger and Bullard, 2000). Generally, the sequential structure of the

subroutine involves solving for the heat exchanger outlet refrigerant and air states, performance variables (heat

transfer, pressure drop and mass charge), and the remaining geometry values that simulate and describe the running

conditions.

Each sequential subroutine is called from the main program for simulating the associated component.

Iteratively using new updated inputs from main program, subroutines calculate outputs suffixed with ‘calc’, and

return them to main program. NR solver uses the new calculated outputs from subroutines to simultaneously solve

the governing equations until converging to a solution. If inputs to subroutines are all Ks and include no X

variables, the calculation will be finished in one iteration because the inputs and outputs are specified and not

interchangeable. Otherwise, more iterations may be needed.

 8

Inputs

Set P

Levap, Devap,
AAFE, hevapNum,
NSECTE, RTBEVP,
ertmult, STE, rough,
Etc.

Set I

Pin, hin, m& ref,
m& air, Tairin,

hairevap, alphaevap

Outputs

‘calc’ Variables
(FROM SET O)

Pout_calc, hout_calc,
Qevap_calc, Dpevap_calc
Toutcalc, Mevap_calc,
Taevapout_calc
Xoe_calc/superheat_calc

Set C

Qsup, Q2ph, Asup,
A2ph, dpsup, dp2ph,
Aevap,Caevap, vout,
Evap2phX, etc…

Evaporator subroutine

Pout_calc = ocalc(Pin,hin, m& ref,Tairin,etc.)
hout_calc = ocalc(Pin,hin, m& ref,Tairin,etc.)
Qevap_calc = ocalc(Pin,hin, m& ref,Tairin,etc.)
Dpevap_calc = ocalc (Pin,hin, m& ref,Tairin,etc.)
Taevapout_calc = ocalc (Pin,hin, m& ref,Tairin,etc.)
Mevap_calc = ocalc (Pin,hin, m& ref,Tairin,etc.)
Tout_calc = ocalc (Pin,hin, m& ref,Tairin,etc.)

Figure 2.3 Evaporator subroutine structure

Figure 2.3 shows the structure of a simple dry evaporator sequential subroutine: the inputs (Set I and Set P)

and the outputs (Set C and Set O). All the outputs are functions of the inputs and can be sequentially calculated.

In the subroutine, a finite-element approach is introduced to simulate heat exchangers having different

geometries. Within the family of cross-flow heat exchangers, there are two possible configurations: the cross-

parallel flow case where the bulk refrigerant flow is travelling in the same direction as the air and the cross-counter

flow case where the bulk refrigerant travels in the opposite direction of the airflow. When the air and refrigerant

streams flow in the same direction, the outlet variables for air and refrigerant are calculated for each element. By

marching downstream in the refrigerant flow direction, the states of both refrigerant and air are exactly determined.

The outlet states from former element are the incoming states of the latter element. The algorithm always marches

in the downwind direction, to successively calculate the air temperatures. When the bulk refrigerant and air flow in

opposite directions, the algorithm again marches downwind, but in the upstream direction relative to the refrigerant

flow. In this (cross-counterflow) case, the subroutine inputs must include the refrigerant outlet states.

For all kinds of cross-flow heat exchangers, there are three kinds of regions we need to consider:

superheated, two-phase and subcooled refrigerant states, respectively. Where a phase transition occurs inside a

single finite element, the algorithms are able to handle this situation by solving an implicit equation to break the

element into two parts. Three logic flags variables are defined: supheat, twoph and subcool. When they are true, the

refrigerant is superheated, two-phase or subcooled, respectively. At one time, only one of them can be true. Along

the flow direction of refrigerant, the heat exchanger is divided into the specified number of small elements. Serially,

each element is simulated by a group of sequentially solved governing equations.

Because all elements are solved in numerical order and the outputs of one element are the inputs of the next

element, only a few of them have state transitions and most of them just keep the state. If the refrigerant is in the

superheated state, we only need to watch for the transition into two-phase. Whenever its enthalpy is less than

 9

saturated enthalpy calculated by library function with current pressure and quality equal to 1.0 (hpx(plocal,1.0d0)),

this element changes its state from superheated into two-phase. Then different governing equations are used to

simulate the following elements. When the refrigerant is in two phases, we need to watch for the transitions to both

subcooled and superheat. If the enthalpy decreases, we watch for it to become less than the calculated enthalpy with

local pressure and quality equal to 0 (hpx(p,0.0d0), where the element is changing to a subcooled state. If the local

enthalpy is greater or equal to the calculated enthalpy, hpx(plocal, 1.0d0), the following element will be in superheat

states. Each element is solved by using the governing equations associated with the appropriate states. Within the

subroutine, arrays with same number as elements are defined to store local refrigerant heat transfer, pressure drop

and refrigerant mass. Based on the overall energy balance, we also can calculate the air inlet or outlet temperature

of the heat exchanger. Finally, the arrays containing local heat transfer, pressure drop and refrigerant mass are used

to calculate the subroutine output variables. Then these calculated variables (Set O) are returned back to residual

equations in main program.

Figure 2.4 Condenser parallel flow configurations

For cross-flow case, we have two kinds of configurations: parallel airflow and counter airflow.

Harshbarger and Bullard (2000) have developed two algorithms, respectively: downstreaming for the cross-parallel

configuration, and upstreaming for the cross-counterflow configuration. The above Figure 2.4 shows the transitions

in condenser parallel flow case. In either algorithm, the calculation begins from the inlet end of the air. There are

two transition points in the heat exchanger along the flow direction of the refrigerant: one is from superheat to two-

phase, the other one is from two-phase to subcooled. In total, five conditions may exist for any given element. They

are superheated vapor, two-phase refrigerant, subcooled liquid, transition between superheated vapor and two-phase

refrigerant, and transition between two-phase refrigerant and subcooled liquid. Each element is capable of deciding

which conditions it is in and uses exact governing equations to simulate the element. The upstreaming algorithm is

similar to the downstreaming algorithm. The only difference is the inputs: downstreaming needs refrigerant inlet

states (inlet pressure and inlet enthalpy) as inputs and calculates the outlet states (outlet pressure and outlet

enthalpy); upstreaming algorithm needs refrigerant outlet states (outlet pressure and outlet enthalpy) as inputs and

calculates refrigerant inlet states as outputs. This allows both algorithms to begin the calculation with the inlet air.

Parallel
Airflow

Refrigerant
superheat inlet

Elements

Refrigerant
subcooled outlet

State transition 1

State transition 2

 10

2.2 Communications
Because the new model structure divides the whole system into individual stand-alone components, the

communications between main program and sequential subroutines are very important issues. There are three main

kinds of communications in the new model structure: 1) communication between main program (NR solver) and

each sequential subroutine; 2) communication between main program and supportive files; and 3) communication

between sequential subroutines. The communication between sequential subroutines also includes two kinds of

situations: serial connection or parallel connection. More details will be provided in the following section.

2.2.1 Communication between main program and sequential subroutine
Each subroutine uses the same way to communicate with main program: getting inputs from main program

and transmitting calculated variables back to main program. All calculated variables are functions of the subroutine

inputs, so they can be sequentially calculated. There is a set of residual equations in the main program, associated

with each component simulated by the sequential subroutine. In a system simulation, NR solver simultaneously

solves the residual equations corresponding to all the system components, using the calculated variables from all the

sequential subroutines. The same general structure can be used to simulate individual components.

For component simulations the NR main program is smaller because its residual equations correspond to

the “calc” output variables from only one component subroutine. Main calls the subroutine while allowing the user

to interchange X’s and K’s. As an example, Figure 2.4 shows the communication configurations between main

program and refrigerator evaporator subroutine.

The NR solver performs several iterations in determining the solution to a set of equations. For the simple

evaporator (component) simulation, the NR solver solves a set of seven simultaneous residual equations. The solver

simultaneously forces the values of each of the seven equations, written in residual format, to zero. The number of

simultaneous equations is equal to the number of ‘calc’ variables from the evaporator sequential subroutine. The

seven NR residual equations are shown within the NR solver box. Each equation equates an interchangeable

variable with its corresponding subroutine output variable.

 11

Inputs

Set I
Pin, hin, m& ref, m& air,
Tairin, hairevap,
alphaevap

Set P

Levap, Devap, AAFE,
hevapNum, NSECTE,
RTBEVP, ertmult,
STE, rough, Etc.

Outputs

Set C

Qsup, Q2ph, Asup, A2ph,
dpsup, dp2ph, Aevap,Caevap,
vout, Evap2phX, etc…

‘calc’ Variables
(FROM SET O)

Pout_calc, hout_calc,
Qevap_calc, Dpevap_calc
Toutcalc, Mevap_calc,
Taevapout_calc
Xoe_calc/superheat_calc

Set P + Set I Set O

Newton-Raphson solver

f(1) = Pout - Pout_calc
f(2) = hout – hout_calc
f(3) = Qevap – Qevap_calc
f(4) = Dpevap – Dpevap_calc
f(5) = Taevapout- Taevapout_calc
f(6) = Mevap- Mevap_calc
f(7) = Tout- Tout_calc

Evaporator subroutine

Pout_calc = ocalc(Pin,hin, m& ref,Tairin,etc.)
hout_calc = ocalc(Pin,hin, m& ref,Tairin,etc.)

Qevap_calc = ocalc(Pin,hin, m& ref,Tairin,etc.)
Dpevap_calc = ocalc (Pin,hin, m& ref,Tairin,etc.)
Taevapout_calc = ocalc (Pin,hin, m& ref,Tairin,etc.)
Mevap_calc = ocalc (Pin,hin, m& ref,Tairin,etc.)
Tout_calc = ocalc (Pin,hin, m& ref,Tairin,etc.)

Figure 2.4 main program/sequential subroutine communications

At each iteration of the NR solver, the simultaneous equation set in Figure 2.4 is solved for new improved

values of the ‘X’ variables. The process involves solving Equation 2.1, where [J] is the Jacobian matrix, {f} is the

vector of NR residual equation values, and {∆X} is the vector used to update the values of the ‘X’ variables

(Harshbarger and Bullard, 2000).

{ } [] { }fJX 1−=∆ (2.1)

The Jacobian, shown in Figure 2.5, consists of derivatives of the NR equations, f, with respect to the ‘X’

variables. The derivatives in the Jacobian are approximated numerically, using Equation 2.2. The first step in this

process is to evaluate the NR equations using the known parameters (K’s) and the current iteration’s guess values

for the unknown variables (X’s). The results are seven scalar values for the NR residuals. These values are nonzero

for each iteration until a solution is achieved. The next step is to slightly alter the value of an individual ‘X’ value

and recalculate the values of the seven NR equations. The derivative is then approximated by the change of the NR

residual equation divided by the change in the altered ‘X’ variable. This process is repeated for each ‘X’ variable.

 12

[]

























∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=

OMMM

L

L

L

3

3

2

3

1

3
3

2

2

2

1

2
3

1

2

1

1

1

X
f

X
f

X
f

X
f

X
f

X
f

X
f

X
f

X
f

J

Figure 2.5 Jacobian matrix

X
f

X
f

δ
δ

≈
∂
∂

 (2.2)

Indirectly, the evaporator sequential subroutine is used to calculate the Jacobian. For each evaluation of the

NR equations, the condenser subroutine is solved for new values of the ‘calc’ variables. The new values of the

‘calc’ variables alter the value of the NR residuals for the next iteration. More details about the fundamental

mathematical algorithm can be found in Harshbarger and Bullard (2000).

If none of the inputs to the sequential subroutine were designated unknown (X) variables by the user, the

calculation will be finished in one iteration. Otherwise, if any X variables appear among the subroutine inputs, more

than one iteration can be needed to finish the calculation. In every iteration, initial guesses and current values of X

variables are improved based upon the Jacobian Matrix by Eq 2.1.

All variables and parameters in XK file are categorized into four groups, marked with X, K, P and C,

respectively. Xs are unknown interchangeable variables that are to be calculated by the model. All the initial values

are guesses provided by the user. The number of the Xs should be equal to the number of the residual equations. Ks

are the subset of interchangeable variables that are specified by user, whose values are not changed during the

calculation. Ks are interchangeable with Xs because in different simulations, users want to calculate different

variables. Ps are parameters that are always known by users, including the flags to select heat transfer and pressure

drop correlations, provide values such as ambient air pressure or other parameters describing the refrigerant and air.

Ps are noninterchangeable and cannot be changed during the calculation. Cs are informative variables calculated by

the sequential subroutines, based on the inputs (Ps, Xs and Ks). Cs are not essential variables needed by the

simulation system, but they are helpful for understanding the system or transmitting information to user and

programmer.

Based on the variable categories, it is easier to understand the communication between main program and

sequential subroutines. Generally speaking, the system communication is the transmission of the system variables.

The input and outputs of the sequential subroutine are divided into four sets: Set I, Set P, Set O and Set C. The

following Figure 2.6 shows the relationship among these four subsets.

 13

Set
P

Set
I

Set
O

INTERCHANGEABLE
VARIABLES

(COMPONENT MODEL)

Subroutine
Inputs

Subroutine
Outputs

Set
C

Figure 2.6 Subroutine Subsets Description

It is important to understand the implications of each variable subset prior to sorting the variables. Inputs

include Set P and Set I. Set P contains only known parameters. But Set I can include both Ks and Xs, both of them

are interchangeable variables. In outputs, Set C only includes Cs variables, which are not used by NR solver. Just

like set I, set O includes both Xs and Ks. The interchangeable variables that are inputs to the subroutine (set I) are

not present in any simultaneous equation for a single component simulation. However, each interchangeable

variable in set O does appear in a NR equation. For each NR equation there is one ‘X’ variable that requires an

initial guess. Therefore, the number of variables in set O will be the number of required initial guesses in the final

simulation. By placing vaguely known variables into sets P and C, initial guesses can be limited to readily known

quantities.

2.2.2 Communication between main program and supportive files
The communication between main program and supportive files is also an important issue, which is very

helpful for running the simulation model correctly. Besides the NR solver and sequential subroutines simulating the

system components, the model contains separate supportive files and subroutines for model initialization, checking

and solution output. Although the checking files can be used as pre- or post-processors, their primary purpose is to

provide a means of checking the values of variables and parameters before or after the solution.

The checking that takes place before solving is used to set logical flags that are used within the list of

governing equations and subroutines. For example, the “before” checking will determine, based upon the

parameters and the init ial guesses of the variables, which kind of expansion device or heat exchanger is used, and a

logical flag will be set accordingly. This flag will cause the NR solver to evaluate the correct set of governing

equations related the correct device. For an example of “before” checking, the logical flag, CTSLHXSIM, indicates

whether or not the capillary tube-suction line heat exchanger (ct-slhx) model is going to be used in the simulation. If

the XKflag of CaptubeModel is a “K”, then the ct-slhx model will be used and CTSLHXSIM is given a value of

“true”. The XKflag of the effectiveness of the ct-slhx (ectslhx) is given a value of “C” since it will be calculated in

the subroutine. If the XKflag of CaptubeModel is an “X”, then the ct-slhx model will not be used in the system and

 14

CTSLHXSIM is given a value of “false”. The XKflag for the effectiveness of the ct-slhx is given a value of “K”,

and the value of the effectiveness is entered.

The “after” checking is used to see if the values of certain variables are within allowable ranges (e.g.

evaporating and condensing temperatures for the compressor maps).

In the model directory, a file named “XK” serves as the input for the model, providing the desired values of

the parameters and the initial guess values for all the variables in this file. All the variables are global variables.

Their memory addresses can be reached by all the system files during the calculation, to update the values of the X

variables and calculated variables. During the NR iterations, the user-specified Ks and Ps remain constant, but Xs

and Cs will be updated in each iteration by sequential subroutines and NR solver.

Other files allow the user to control the operation of the Newton-Raphson solver, and the overall operation

of the program. The files “SLVERSET” and “INSTR” specify the solver options and the type of model run desired,

respectively. The file SLVERSET contains the settings for various Newton-Raphson parameters such as the

convergence criteria and maximum number of iterations, and it also contains information specifying the type of

model output. The INSTR file tells the NR solver whether to perform a “SINGLE”, “MULTIPLE”,

“SENSITIVITY”, or “UNCERTAINTY” analysis, and it also contains new specified K values different from the

values in XK file. Output file name and compressor map used by the model are also indicated in the INSTR file.

2.2.3 Communication between sequential components
The basic simulation system is divided into four main components connected in the order of compressor,

condenser, expansion device and evaporator. To clarify and understand the connection between components is very

important. Compared with traditional systems, condenser and evaporator in modern systems may be the

combination of multiple heat exchangers in serial or parallel format. The detailed communications inside the

condenser or evaporator will be described in a later section.

In a multi-component system, certain variables describe the communication between components. These

links between subsystems must be identified and included in a specific manner. Refrigerant is the link between

components in the system. The pressure and enthalpy of the refrigerant are picked to describe the connections

between components. Within the simulation system, each component is described by a subset of the residual

governing equations. There are also sets of residual equations linking components in the main program. The

following Figure 2.7 shows the connections of two serial components in the simulation system. One is simulating

the evaporator and the other one is simulating the compressor.

Figure 2.7 Components connection configuration

w w
Evaporator Compressor

PoutEvap
houtEvap

PinComp
hinComp

 15

The links between these two components are the outlet pressure and enthalpy of evaporator and the inlet

pressure and enthalpy of compressor. An essential aspect of the relationship between components is the definition

of one state point by two variables. In this example, the outlet pressure of the evaporator is one variable while the

inlet pressure to the compressor is another. While these variables are physically the same pressure, the mathematics

of the system simulation dictate that two variables be used. Variables representing the same state point will be

equated in a NR equation at the system level (Harshbarger and Bullard, 2000).

For a full system simulation, both components must be solved together by the NR solver. The NR

equations from each individual component are included in the full set of NR equations. Additionally, NR equations

that equate the linking variables are included. Figure 2.8 shows the full set of NR equations for the example system.

These equations ensure that each component converges to a solution consistent with the remaining components.

By introducing two variables that describe a single state point, several advantages are obtained. The main

advantage is the system simulation is allowed to converge. Another advantage is the user can easily understand the

significance to a variable based upon its name. Introducing variables in this manner allows each component to be

contained within its own modular solution. Because of the modular construction, components can be linked in

various combinations with minimal reprogramming.

 NR solver
…
…

Evaporator residual equations:
R(evap+0) = poutevap - poutevapcal
R(evap+1) = houtevap – houtevapcal
R(evap+2) = Qevap – Qevapcal
R(evap+3) = dpevap – dpevapcal

…
…

Equations linking components :
R(n-1) = poutevap – pincomp
R(n) = houtevap - hincomp

Compressor residual equations:
R(comp+0) = w – wcalc
R(comp+1) = power – powercalc
R(comp+2) = qcomp – qcompcalc

…
…

Evaporator Sequential
Subroutine

Set P + Set I

‘calc’ variables

Compressor
Sequential Subroutine

Set P + Set I

‘calc’ variables

Figure 2.8 System residual equations for component connection

 16

Chapter 3: Heat Exchanger Algorithms

3.1 Description
Harshbarger and Bullard (2000) employed a “module” algorithm to correctly simulate more complex

individual heat exchanger geometries in finite-element method. “Module” is defined generally as portion, or sub-

heat exchanger, part of a larger complex heat exchanger. The essential quantities defining a module are the

refrigerant flow configuration and the number of tubes within the module. A heat exchanger can be defined by any

number of modules.

Recently, the condenser and evaporator components are becoming more and more complicated

geometrically and companies are showing more interest in simulating multi-heat exchanger systems cases, such as

dual evaporator refrigerators and a/c systems, including minivan air-conditioning systems. An algorithm dealing

with multiple complex condensers or evaporators in single simulation system is needed now. An algorithm,

“divide-and-conquer”, is proposed here to simulate modern comp lex systems, which have multiple heat exchangers

in serial or parallel. The name of the algorithm is borrowed from computer science. This approach divides the

problem into several modules that are smaller but similar to the original one, solves the modules recursively, and

then combines these solutions to create a solution to the original problem. The divide-and-conquer paradigm

involves three steps.

The first step is to divide the whole component into a number of modules. Just like electronic circuit

analysis, the whole evaporator or condenser component is a complex combination of parallel and serial

configurations. Parallel and serial configurations are basic structures of the simulated system. When we start the

division from the original component (first level), the number of modules is the number of the parallel modules at

this level and each of these modules might consist of several serial smaller modules (second level). The smaller

modules of second level can be serially divided into a number of modules. At each level, the structure can be

recursively divided into many levels until each module is single stand-alone heat exchanger. In Harshbarger and

Bullard (2000), this smallest element was called a “module”, and each of those modules was simulated using a finite

element algorithm.

The second step is to conquer the modules by solving them sequentially, starting with the smallest

modules. Harshbarger and Bullard (2000) showed how to solve complex single heat exchanger using finite element

algorithms. This step is finalized in the sequential subroutines, calling finite element algorithms.

The third and final step is to combine the module solutions into the solution for the upper level component,

until the original component solution is obtained. It reverses the dividing process. Newton-Raphson residual

equations in the main program describe the connections among the modules. If the current modules are in series, the

outlet states of the refrigerant from former module are the inlet states to the latter module. Each module shares the

same mass flow rate but may have different air and refrigerant states. Otherwise if the current modules are parallel,

refrigerant mass flow rates through each module must be determined by solving the equations simu ltaneously, by

setting their exit pressures equal. For each module, running condition and heat exchanger geometry potentially

decide the mass flow rate, and the sum of air and refrigerant flow rates of each parallel module should be equal to

 17

the next upper level mass flow rate. The direction of combining is just opposite to the dividing process. More

details about the combining process are provided in later sections of this chapter.

Finite element algorithm gives us a way to simulate complex geometry of heat exchangers, but the divide-

and-conquer algorithm gives us a way to deal with modern complex system with any number and combination of

heat exchangers. Figure 3.1 shows the general structure in evaporator component with multiple heat exchangers.

All the heat exchangers are serially or parallel arranged. Details are provided to describe how we simulate this

complex structure in three steps according to divide-and-conquer algorithm.

Figure 3.1 Evaporator component configurations

3.2 Heat exchanger configurations

The modern evaporator and condenser components may be the combination of serial and parallel heat

exchanger geometries. There are several issues that we should pay attention to: mass flow rate distribution, air and

refrigerant states, air flow direction over each heat exchanger, connections between serial and parallel heat

exchangers (this connection still includes air-side), and special geometries of heat exchangers. The advantage that

each heat exchanger is stand-alone gives us great flexibility to model complex combinations of serial and parallel

heat exchangers. We only need to indicate correct flags to call already-built sequentially -solved subroutines that

reside in the system library. In main program, residual equations that connect each stand-alone heat exchanger are

built to finalize the simulation of multiple-heat exchanger system.

Parallel and serial configurations are two fundamental configurations, which are defined by the refrigerant

flow direction. Any complex system can be divided into these two fundamental configurations. Parallel

configuration consists of two or more heat exchangers at the same level, having identical input states but maybe

different output states, depending on geometries and air-side input states. Each parallel heat exchanger does not

necessarily have the exactly same geometry for general cases. If each parallel heat exchanger has the same

geometry and the same air and refrigerant inlet states, they will carry the same mass flow rate faction. Otherwise,

these heat exchangers may carry different mass flow fractions because of different geometries or air-side input states

or both, which will be simultaneously determined by the Newton-Raphson solver in the main program. The Figure

3.2 and Figure 3.3 show examples of the parallel and serial heat exchanger configuration, respectively.

pinevap
hinevap

w
Tain
VdotE

poutevap
houtevap
w
Taout

Evaporators

W2

W3 W3

W11 W12 W13

 18

Figure 3.2 Parallel heat exchanger configuration

Figure 3.3 Serial heat exchanger configuration

Note that Pi or Si can be a stand-alone heat exchanger module (smallest unit under discussion here), or they can be

combinations of several heat exchangers, since we recursively divide every complex component into many different

levels in order to simulate it.

Before we turn into complex structure, these two basic elements, parallel and serial configurations, need to

be clearly understood. In either configuration, mass flow rate of refrigerant is the most important issue because we

define these two configurations based on their refrigerant flow patterns. At the same time, the air-side flow

determines the different kinds of algorithms we use to simulate the heat exchanger: e.g. counter flow, parallel flow

or cross-flow, which describe the heat transfer based on airflow directions.

3.2.1 Parallel refrigerant flow
For parallel configuration, the whole mass flow rate of refrigerant is divided into the number of parallel

modules, with a fraction of the mass flowing through each corresponding parallel module. Each heat exchanger may

have different geometries and different air and refrigerant states might be specified. The mass flow fractions can

then be calculated; they may not be equal. The following mass, momentum energy equations must apply to the

parallel configuration:

m& = ∑ m& i (i=1, 2…N) Eq. 3.1

m& * hout = ∑ m& i * hout_i (i=1, 2…N) Eq. 3.2

Pi = Pj ∀i, j (i,j=1, 2…N) Eq. 3.3

Where m& i is the mass flow rate through each of the N parallel modules; m& is the sum of each mass flow rate

through all modules; hout_i is the outlet enthalpy of the ith module; hout is the mixed outlet enthalpy from all modules;

Pi and Pj are outlet pressures of ith and jth modules, respectively. The mass flowing through each circuit may have a

different experience, as it encounters different geometries and heat transfer. At the starting point, all refrigerant has

the same inlet thermodynamics state. But at outlet point of the configuration, flows from each circuit, each with a

hin
pin
w

hout
pout
w

 S1 S2 Sn

m

hin
pin
w

hout
pout
w

P1: hin, pin, w1

P2: hin, pin, w2

Pn: hin, pin, wn

 19

potentially different flow rate and heat transfer experience, combine together as shown in Figure 3.2. The outlet

states detected by the component outside of the configuration, hout and pout, result from the combinations of these

mass flows, shown in the equations above.

Generally, a parallel refrigerant configuration can have three air flow patterns, as shown in the Figures 3.4,

Figure 3.5 and Figure 3.6, respectively: cross/parallel, parallel/parallel and counter/parallel configurations, each

requiring a different algorithm to simulate. Actually the governing equations for Figure 3.5 and Figure 3.6 are

identical. However, they require two different solution algorithms. Both march downwind, but one requires the

refrigerant inlet states as input, while the other requires the refrigerant outlet states in order to begin the sequential

finite element algorithm.

Figure 3.4 Cross/parallel flow configuration

Air

Figure 3.5 Parallel/parallel flow configuration

Figure 3.6 Counter/parallel flow configuration

P1: hin, pin, w1

P2: hin, pin, w2

Pn: hin, pin, wn

hin
pin
w

hout
pout
w

Tain, madot

Taout

Air

Refrigerant

hin
pin
w

hout
pout
w

P1: hin, pin, w1

P2: hin, pin, w2

Pn: hin, pin, wn

Tain
madot

Taout

hout
pout
w

P1: hin, pin, w1

P2: hin, pin, w2

Pn: hin, pin, wn

Tain
madot Taout

 20

For the cross/parallel flow configuration, air flows across each parallel module one-by-one. Each module

encounters the same airflow rate, but with a different inlet temperature. The outlet temperature from former module

serves as the inlet temperature for the next one. The following residual equations are included in the main program

to specify the connections among the modules on both air and refrigerant sides. The equations in the main program,

which includes the subroutine calls, are solved simultaneously solved by the Newton-Raphson solver.

Figure 3.7 Residual equations of cross/parallel configuration

For parallel/parallel and counter/parallel configurations, each module may not encounter the whole air mass

flow rate. They may have equal or unequal air flow fractions, and the sum of their fractions should be equal to the

whole airflow rate. They are calculated from the frontal areas of each heat exchanger, where the current version of

the model assumes that the air mass flux and pressure drop are identical for each air flow fraction. Just like

refrigerant outlet thermodynamics states, the outlet enthalpy of the air results from the mixture of each mass flow

fraction through each heat exchanger. The residual equations in Figure 3.8 are used to simulate these

configurations, where ‘madot’ is the sum of air flow, madot_i is air fraction flowing through the ith module, haout is

mixed outlet enthalpy of the combined air flows; haout_i is the outlet enthalpy of the air fraction flowing through the

ith module; Afr_i is the frontal area of the ith module and Afr is the total frontal area of the whole configuration.

The outputs of the finite element subroutines return the results from each module to the main program,

where the module’s governing equations and the “connection equations” describing the serial or parallel

configurations are calculated simultaneously by the Newton-Raphson solver. Generally, the model can not converge

in only one iteration because we can not specify the mass fractions or the input air temperatures for all modules in

cross/parallel configuration except the first one. There is no difference between parallel/parallel and counter/parallel

flows since they share the same residual connection equations.

 Air-side equations:

R(1) = Tain_1 – Tain

R(2) = Tain_2 – Taoutcalc_1

R(3) = Tain_3 – Taoutcalc_2

.

R(n) = Taoutcalc_n - Taout

Refrigerant side equations:

R(p+1) = Qtot - ΣQcalc_i

R(p+2) = Mtot - ΣMcalc_i

R(p+3) = w*hout - Σw_i*houtcalc_i
R(p+4) = pout - Σpoutcalc_i

R(p+5) = w - Σ wcalc_i

 21

Figure 3.8 Equations of counter/parallel and parallel/parallel configurations

3.2.2 Serial refrigerant flow
Compared to parallel configuration, it is easier to analyze and simulate the serial configuration because all

the refrigerant has the same experience, as it flows serially through all modules in this configuration. The main

issue we need to consider here is the sequence in which the modules are connected. States of connection points

between any two serial modules (for example, numbered m and m+1) are described by two groups of variables: one

is the outlet state from the former module and the other one is the inlet state of the latter one. Corresponding

residual equations that are created to describe the connections are shown in Figure 3.9. Details about connections

between parallel and serial configurations will be provided in the specified example in the following section.

Figure 3.9 Residual equations describing connection

As in the case of parallel configurations, we have equations describing connection of refrigerant states

between serial modules. We also need to pay attention to the airside flow situations. We also have three kinds of

configurations: cross/serial flow, parallel/serial flow and counter/serial flow, shown in Figures 3.10, 3.11 and 3.12,

respectively.

 Air-side equations:

R(1) =madot*haout-Σmadot_i*haout_i R(2) =

madot - Σ madot_i

R(3) = madot_i – (Afr_i/Afr)*madot

Refrigerant side equations:

R(p+1) = Qtot - ΣQcalc_i

R(p+2) = Mtot - ΣMcalc_i

R(p+3) = w*hout - Σw_i*houtcalc_i
R(p+4) = pout - poutcalc_i

R(p+5) = w - Σ wcalc_i

R(n) = houtm – hinm+1

R(n+1) = poutm – poutm+1

R(n+2) = wm – wm+1

 22

Figure 3.10 Cross/serial flow configuration

Figure 3.11 Parallel/serial flow configuration

Figure 3.12 Counter/serial flow configuration

For the cross/serial flow case, all the modules have the same inlet air states, but maybe different air mass

fractions if they do not have the exactly same geometries. The following residual equations in Figure 3.13 simulate

this configuration.

hin
pin
w

hout
pout
w

 S1 S2 Sn

m

Tain
madot Air

hin
pin
w

hout
pout
w

 S1 S2 Sn

m

AIR

hin
pin
w

hout
pout
w

 S1 S2 Sn

m

AIR

 23

Figure 3.13 Residual equations describing cross/serial configuration

For the counter/serial and parallel/serial configurations, refrigerant side has the same residual equations as cross

flow configuration, and has easier air side equations because all the air passes each heat exchanger sequentially, and

undergoes the same heat transfer experience. Both configurations are governed by almost the same residual

equations in the main program, but the sequentially -solved finite element subroutines for each module require

specification of inlet refrigerant enthalpy and pressure for the parallel/serial configuration, and the refrigerant outlet

state for the counter/serial configuration. The boldface equations in Figures 3.14 highlight the difference between

these two configurations.

Figure 3.14 Residual equations describing parallel/serial configuration

 Air-side equations:

R(1) = ihaoutimhaoutm aa __Σ−

R(2) = am - im a _Σ

R(3) = im a _ - (Afr_i/Afr) am

R(4) = iTaoutcalciTaout __ −

Refrigerant-side Equations:

R(n) = Q_i – Q_icalc

R(n+1) = M_i – M_icalc

R(n+2) = hout_i – hout_icalc

R(n+3) = Pout_i – Pout_icalc

…

R(n+m) = hout_i – hin_i+1

R(n+m+1) = pout_i – pin_i+1

R(n+m+2) = w_i – w

R(n+m+3) = hout – hout_ncalc

R(n+m+4) = pout – pout_ncalc

R(n+m+5) = Mtot - ΣM_i

 Air-side equations:

R(1) = nTaoutTaout _−

R(2) = am - im a _

R(3) = 1__ +− iTainiTaout

R(4) = TainTain −1_

R(5) = iTaoutcalciTaout __ −

Refrigerant-side Equations:

R(n) = Q_i – Q_icalc

R(n+1) = M_i – M_icalc

R(n+2) = hout_i – hout_icalc

R(n+3) = Pout_i – Pout_icalc

…

R(n+m) = hout_i – hin_i+1

R(n+m+1) = pout_i – pin_i+1

R(n+m+2) = w_i – w

R(n+m+3) = hout – hout_ncalc

R(n+m+4) = pout – pout_ncalc

R(n+m+5) = Mtot - ΣM_i

 24

3.3 Complex component analysis and simulation
An example, which shows a general structure of a complex component, is used to illustrate the use of the

divide-and-conquer algorithm, which is designed to deal with the multiple-heat exchanger component. As described

above, three steps are needed to simulate the complex structure.

3.3.1 Division
Division is the first step of the divide-and-conquer algorithm and we start from the original complex

components consisting of multiple condensers or evaporators. The division will continue at consecutive levels until

every module is an individual stand-alone heat exchanger, where the finite element method can be used for its

simulation. Residual equations describing the connections and combinations among different heat exchangers are

also listed in main program. The following paragraphs describe the procedure of dividing the complex structure

shown in Figure 3.1.

Division is executed at different levels and the original component is the first level. The original

component consists of three parallel heat exchangers, which are second level elements. At each level, we focus first

on any parallel configuration. Without parallel elements, we then turn to serial configurations. A detailed view of

the second level is shown below:

Figure 3.15 Second level elements

W = w1 + w2 + w3, where w is the mass flow rate of refrigerant of the whole system and w1, w2 and w3 are

the mass flow rates of refrigerant through P1, P2 and P3, respectively. At the same time, w1 is equal to w11, w12, w13

and w3 is equal to w31, w32 since the modules are serial. W11, w12 and w13 are mass flow rates through the three

serial modules in P1 and w31, w32 are mass flow rates through the two serial modules in P3.

Two of the second level heat exchangers Pi (i=1,2,3) are serial. Therefore we continue the division because

there are still heat exchangers that are not single modules. In this example, the first heat exchanger P1 includes

three smaller modules, which are serially connected and share the same mass flow rate of refrigerant, w1. P3 has two

serial modules, which share the mass flow rate of refrigerant, w3.

P1: w11 w13 w12
w1

w2 P2:

w2

w31 w32 P3:
w3

 25

P1 is divided into three smaller modules at the third level:

 P11:

 P12:

 P13 :

w1 = w11 = w12 = w13
Figure 3.16 Third level modules

P11, P12, P13 are all individual stand-alone modules, which are the smallest units of this algorithm, and can

not be divided any more. Similarly, P3 also can be divided into two third-level modules:

 P31

P32

where P31 and P32 share the same mass flow rate w3 since they are serially connected stand-alone heat exchangers

and do not need further division any more.

Now all the modules are individual stand-alone heat exchangers, which can be simulated by calling

sequential finite element subroutines. Many such stand-alone subroutines for simulating different geometries are

already stored in the main library of the simulation system. In the main program, one just needs to select the right

subroutine names and flags for different heat exchangers. These kinds of stand-alone subroutines give us great

flexibility in simulating different heat exchangers without rewriting codes and redesigning algorithms.

Briefly, all parallel configurations share the same inlet refrigerant states, and their outlet pressures must be

identical, but not necessarily their refrigerant outlet enthalpies, or their air inlet and outlet states. As discussed

above, the outlet pressure and enthalpy result from the combination of all parallel outlets. All serial configurations

share same mass flow rates of refrigerant. That is the criterion we use to divide the complex components. On the air

side, we need to pick up different residual equations to simulate the connections among heat exchangers defined by

different airflow directions. In order to simulate a single stand-alone heat exchanger, airflow directions still define

corresponding algorithms we should use in simulation. The details will be provided in the latter sections of this

chapter.

3.3.2 Conquer
Conquer is the second step of the divide-and-conquer algorithm, whose purpose is to simulate every

smallest module, stand-alone single heat exchanger. Sequential stand-alone subroutines have been built and are

available within ACRC for many different geometries. These subroutines are stored in library of the simulation

system.

W11

W13

W12

W3

W3

 26

Within conquer process, we focus on simulating every single heat exchanger with different geometries.

Harshbarger and Bullard (2000) already have developed “module” algorithms to simulate complex single heat

exchangers, even multi-slab counterflow and parallel flow designs such as those shown in Figure 3.17.

Figure 3.17 Overall structures of heat exchangers subroutines

Figure 3.17 shows the structure of heat exchangers subroutines that can be called to simulate different heat

exchanger geometries without re-compiling source codes. These subroutines are sequential stand-alone procedures

that simu late one heat exchanger having a particular geometry. The subroutines can be shared by different systems

with the heat exchangers of same geometries and they can be called recursively when simulating a more complex

system, which has multiple heat exchangers.

Based on the relationship between the flow directions of refrigerant and air, there are two kinds of

algorithms, upstreaming and downstreaming, referring to the refrigerant flow direction. Simulations always proceed

downwind, so the upstreaming and downstreaming algorithms apply to overall counter-flow and parallel-flow heat

exchanger configurations, respectively. To enable sequential solution of the upstreaming subroutine, refrigerant

outlet pressure and enthalpy are needed as input because the calculation is started from air inlet (refrigerant outlet)

point, and the calculated inlets of pressure and enthalpy are returned. For the downstreaming subroutines, because

the air and refrigerant are flowing in the same direction, each of their states is assumed to be known. Then the

highest and lowest temperatures needed by ε-NTU method are easily decided for each small element, as the

calculation starts from inlet point and marches downwind and towards the refrigerant outlet. Calculated outlet

pressure and enthalpy of refrigerant are the returned values. Therefore the residual equations simulating these heat

exchangers are different. The Figure 3.18 shows the residual equation groups simulating downstreaming and

upstreaming algorithms for the single stand-alone heat exchanger, respectively. The most important difference is in

the first two boldface equations shown in both boxes.

Finned Tube

MicroChannel

Wire-on-Tube

Etc.

Downstream Marching

Finned Tube

MicroChannel

Wire-on-Tube

Etc.

Upstream Marching

Heat
Exchangers
Components

Call
subroutines

 ‘calc’ outputs

 27

Figure 3.18 Downstreaming and upstreaming equations interface

A user-selected flag is set to s elect either the downstream or the upstream marching algorithm,

corresponding to overall parallel or counterflow, respectively. A separate flag is used to select the type of heat

exchanger in use. This structure allows the locations of the governing equations to be logically organized within the

source code. Because of the sequential nature of the subroutines, the solution method and the assumptions are more

apparent and understandable to users.

3.3.3 Combination
Combination is the final step of the divide-and-conquer algorithm, which reverses the reverse process of

division. The programmer reunites the divided modules. That is, we start from the lowest level of the modules

(single stand-alone heat exchanger), build the connections and combinations until the highest level to finish the

simulation of complex component. The combinations and connections issues among multiple heat exchangers are

the most important points we need to understand for our simulations. The connection and combination equations are

written in residual format, and are listed in the main program and simultaneously solved by Newton-Raphson solver.

Harshbarger and Bullard (2000) have provided details about complex heat exchanger using finite element

algorithms. Here we focus on the connections and combinations among multiple heat exchangers in the same

component. Residual equations describing the combination of the former example in ‘division’ step are grouped in

the later section.

At the third level, P11, P12 and P13 are the smallest units, which are serially connected. The links between

any two serial modules are the inlet and outlet pressures and enthalpies of refrigerant flowing through the whole

serial structure. According to their geometries, finite element subroutines are called to simulate them. At the same

time, each module has a group of residual equations describing the heat transfer performance. Figure 3.18 gives the

equations of individual module for both upstreaming and downstreaming configurations. Here we focus on the

combination of these three modules. Figure 3.19 shows the residual equations and connection equations listed in the

main program, for the case where air flows parallel to the refrigerant, so the downstreaming algorithm is used to

simulate the individual modules.

 Downstreaming Equations:

R(n) = hout – hout_calc

R(n+1) = pout – pout_calc

R(n+2) = dp – dp_calc

R(n+3) = M – M_calc

R(n+4) = Q – Q_calc

R(n+5) = Tairout – Tairout_calc

R(n+6) = Tout – Tout_calc

Upstreaming Equations:

R(n) = hin – hin_calc

R(n+1) = pin – pin_calc

R(n+2) = dp – dp_calc

R(n+3) = M – M_calc

R(n+4) = Q – Q_calc

R(n+5) = Tairout – Tairout_calc

R(n+6) = Tout – Tout_calc

 28

Figure 3.19 Residual equations groups simulating P1

In order to classify the variables, we append the number to them, such as hout_11, hout_12, which are

outlet enthalpies of P11 and P12, respectively. Pout_11 and Pout_12 are outlet pressures of P11 and P12. Hout_P1 and

pout_P1 are the outlet enthalpy and pressure of the whole module, P1. We can explain other variables in the same

way.

Residual equations of P11:

R(0) = hout_11 – houtcalc_11

R(1) = pout_11 – poutcalc_11

R(2) = dp_11 – dpcalc_11

R(3) = M_11 – Mcalc_11

R(4) = Q_11 – Qcalc_11

R(5) = Taout_11 – Taoutcalc_11

R(6) = Tout_11 – Toutcalc_11

Residual equations of P12 :

R(7) = hout_12 – houtcalc_12

R(8) = pout_12 – poutcalc_12

R(9) = dp_12 – dpcalc_12

R(10) = M_12 – Mcalc_12

R(11) = Q_12 – Qcalc_12

R(12) = Taout_12 – Taoutcalc_12

R(13) = Tout_12 – Toutcalc_12

Residual equations of P13:

R(14) = hout_13 – houtcalc_13

R(15) = pout_13 – poutcalc_13

R(16) = dp_13 – dpcalc_13

R(17) = M_13 – Mcalc_13

R(18) = Q_13 – Qcalc_13

R(19) = Taout_13 – Taoutcalc_13

R(20) = Tout_13 – Toutcalc_13

Refrigerant side Connection equations:

R(21) = w11 – w1

R(22) = w12 – w1

R(23) = w13 – w1

R(24) = pin_11 – pin

R(25) = hin_11 – hin

R(26) = hout_11 – hin_12

R(27) = pout_11 – pin_12

R(28) = hout_12 – hin_13

R(29) = pout_12 – pin_13

R(30) = hout_13 – hout_P1

R(31) = pout_13 – pout_P1

R(32) = Q_P1 – Q_11 – Q_12 – Q_13

R(33) = M_P1 – M_11 – M_12 – M_13
Air-side equations:

R(34) =Taout_P1 – Taout_13

R(35) = Tain – Tain_11

R(36) = Taout_11 – Tain_12

R(37) = Taout_12 – Tain_13

P1: w11 w13 w12

w1

 29

Similarly, P3 has two serial stand-alone modules, P31 and P32, which can be simulated by using the same

groups of residual equations and the connection equations used for P1, as shown in Figure 3.21. In order to simplify

this example, we suppose air flows parallel to the refrigerant in all the modules. P2 is the smallest unit and can be

simulated as a single module, as shown in Figure 3.20.

Figure 3.20 Residual equations simulating P2

w2 P2:

w2

w31 w32 P3:
w3

 Residual equations of P2:

R(0) = hout_21 – houtcalc_21

R(1) = pout_21 – poutcalc_21

R(2) = dp_21 – dpcalc_21

R(3) = M_21 – Mcalc_21

R(4) = Q_ 21– Qcalc_21

R(5) = Taout_21 – Taoutcalc_21

R(6) = Tout_21 – Toutcalc_21

Refrigerant side connection equations:

R(7) = w_21 – w2

R(8) = pin_21 – pin

R(9) = hin_21 – hin

R(10) = hout_21 – hout_P2

R(11) = pout_21 – pout_P2

R(12) = Q_P2 – Q21

R(13) = M_P2 – M_21

Air-side connection equations:

R(14) =Taout_P2 – Taout_21

R(15) = Tain – Tain_21

 30

Figure 3.21 Residual equations simulating P3

We built residual equations to simulate these three parallel modules, P1, P2 and P3. We need to turn to the

combination of these parallels to finalize the combination of the complex component. Figure 3.22 contains both the

refrigerant side and air side combination equations. Total heat transfer and refrigerant charge, Q and M, are

calculated as well as each air mass fractions, where it is assumed that the air mass flux is identical across the frontal

areas. Refrigerant outlet enthalpy results from the mixture of the parallel circuits.

 Residual equations of P31:

R(0) = hout_31 – houtcalc_31

R(1) = pout_31 – poutcalc_31

R(2) = dp_31 – dpcalc_31

R(3) = M_31 – Mcalc_31

R(4) = Q_ 31– Qcalc_31

R(5) = Taout_31 – Taoutcalc_31

R(6) = Tout_31 – Toutcalc_31

Refrigerant side connection equations:

R(17) = w_31 – w3

R(18) = pin_31 – pin

R(19) = hin_31 – hin

R(20) = hout_32 – hout_P2

R(21) = pout_32 – pout_P2

R(22) = w_32 – w3

R(23) = hout_31 – hin_32

R(24) = pout_31 – pin_32

R(25) = Q_P3 – Q_31 – Q_32

R(26) = M_P3 – M_31 – M_32

Air-side connection equations:

R(14) =Tain_32 – Taout_31

R(15) = Tain – Tain_31

R(16) = Taout_32 – Taout_P3

Residual equations of P32:

R(7) = hout_32 – houtcalc_32

R(8) = pout_32 – poutcalc_32

R(9) = dp_32 – dpcalc_32

R(10) = M_32 – Mcalc_32

R(11) = Q_ 32– Qcalc_32

R(12) = Taout_32 – Taoutcalc_32

R(13) = Tout_32 – Toutcalc_32

 31

Figure 3.22 Combination equations for parallel modules

If the air side performance is not parallel but cross flow, the refrigerant side connection equations are the

same, but air side equations need to be changed. Figure 3.23 shows the air side connection equations for the cross

flow configuration.

Figure 3.23 Airside connection equations for cross flow configuration

By ‘divide-and-conquer’ algorithm, any kind of complex component with multiple heat exchangers with

any kind of geometries can be simulated. A simple example, dual-evaporator refrigerator simulation model where

two evaporators are serially connected, is provided in the Chapter 4.

Refrigerant side connection equations:

R(0) = w - w1 - w2 - w3

R(1) = w*hout – w1*hout_P1 – w2*hout_P2

 – W3 * hout_P3

R(2) = pout_P1 – pout

R(3) = pout_P2 – pout

R(4) = pout_P3 – pout

R(5) = Q – Q_P1 – Q_P2 – Q_P3

R(6) = M – M_P1 – M_P2 – M_P3

Air side connection equations:

R(7) = Vadot – Vadot_P1 – Vadot_P2 –

Vadot_P3

R(8) = Vadot*haout – Vadot_P1*haout_ P1–

 Vadot_ P2*haout_ P2 – Vadot_ P3*haout_ P3

R(9) = Vadot_ P1 – Vadot * (Afr_ P1/Afr)

R(10) = Vadot_ P2 – Vadot*(Afr_ P2/Afr)

R(11) = Vadot_ P3 – Vadot*(Afr_ P3/Afr)

Air-side equations:

R(1) = 3_ PTaoutTaout −

R(2) = am - 1_ Pm a

R(3) = am - 2_ Pm a

R(4) = am - 3_ Pm a

R(5) = 21 __ PTainPTaout −

R(6) = 32 __ PTainPTaout −

R(7) = TainPTain −1_

 32

Chapter 4: Dual Evaporator System Modeling

4.1 Introduction
Dual evaporator refrigerators were modeled using a computer simulation. Modifications were made to the

previously developed code in order to simulate better two evaporators arranged in series, served by a single

condenser and compressor.

The model was initially developed for the study of single evaporator refrigerator-freezers at the Air

Conditioning and Refrigeration Center (ACRC) at the University of Illinois at Urbana-Champaign. It consists of a

general Newton-Raphson solver linked to a series of equations and functions that describe the particular

refrigeration system being modeled (Mullen and Bullard (1994) and Mullen et al. (1998)). The simulation model for

refrigerators is called RFSIM. The model assumes a steady state operation and the single evaporator version is

described in more detail by Woodall and Bullard (1996). RFSIM was modified (Stein et al. (1999)) for dual

evaporator refrigerators by adding a second evaporator in the fresh food section and eliminating air exchange

between the compartments. The fresh food evaporator is modeled as a two-phase region and the freezer evaporator

includes both a two-phase region and a single-phase superheated region. Additional modifications were needed to

accurately represent the prototypes tested. In response to a manufacture’s request, we tried to simulate a parallel-

configured dual evaporator system by using the single-evaporator version of RFSIM. One evaporator was

simulated, supposing the other one idle. Only a few variables and residual equations need to be modified to simulate

such a dual evaporator system. More details can be found in the Appendix B.

A simulation model with all equations solved simultaneously built by Stein et al. (1999) and Gerlach and

Newell (2000), for a serially-configured dual-evaporator system. This chapter describes a new simulation model

with a modular structure. Every system component has an associated sequential subroutine describing the

component. The number of initial guess values is thereby decreased substantially, from 144 to 67. Moreover,

structured and independent sequential subroutines can be easily embedded in the simulation system without

recompiling and changing codes.

The nomenclature used in Stein et al. (1999) and continued here is that the freezer compartment variables

are written simply such as “tevap.” The fresh food variables have an “f” added, e.g. tevapf. Alternatively, a freezer

variable is denoted with a “z” added, e.g. tevapz. In the new model structure, the variable names are kept

unchanged, but all the variables are categorized into four categories as discussed above and by Harshbarger and

Bullard (2000).

 33

4.2 Sequential simulation

Figure 4.1 New mo del structure of dual evaporator system

In the new model structure, the dual-evaporator system is divided into several components: compressor,

condenser, ct-slhx and evaporator. The evaporator component includes two serial evaporators: fresh food

evaporator and freezer evaporator. Each component is associated with a sequential subroutine describing the

component. Evaporator component will call sequential subroutine twice, with flags changed and different values

describing the heat exchanger geometries and inlet conditions. All the components are serial, so the residual

equations simulating the connections among the components are created. The evaporator component only has two

serial heat exchangers, or subcomponents, which are “connected” by defining the intermediate states in the main

program. The connection issue is the main issue to be considered at this point we do not need to be concerned about

combining flows among the subcomponents since there are no parallel heat exchangers. More details are provided

below.

4.2.1 Compressor
The compressor subroutine used by the dual evaporator system is based on the manufacturer’s performance

map specified in the ‘instr.base’ instruction file. Using these inputs, the compressor subroutine calculates mass flow

rate through the compressor, power consumed by the compressor; refrigerant-side energy balance about the

compressor; air-side energy balance about the compressor; and a rate equation describing the heat transfer from the

compressor shell to the air stream. The mass flow rate through the compressor and the power consumed by the

compressor are described by compressor map stored in the system library. The mass flow rate and power

consumption are calculated as functions of the saturation temperatures corresponding to the inlet and outlet

pressures of the compressor. These relations or data necessary to make them are available from the manufacturers.

In compressor subroutine, two equations involving the compressor mass flow rate and power consumption appear as

follows:

R(comp+0)= beta_Wmap * wf(tsatoutcomp,tsatincomp,CompNum) – w (Eq. 4.1)

R(comp+1)= beta_Pmap * pcompf(tsatoutcomp, tsatincomp, CompNum) –powercomp (Eq.4.2)

main program:
NR solver and residual equations

Condenser

Sequential condenser
subroutine

Fresh food
evaporator

Freezer
evaporator

Sequential evaporator subroutine

Compressor
subroutine

CT-SLHX
subroutine

 34

Refrigerant-side energy balance equation about the compressor is a classic application of the first law of

thermodynamics for a control volume:

R(comp+2)=BTU(powercomp)-w*(houtcomp -hincomp) – qcomp (Eq. 4.3)

Similarly, the following is the residual equation to simulate the air-side energy balance:

R(comp+3)=mdotacond * (ha(tacondfanin) – ha(tacondout)) – qcomp (Eq. 4.4)

The rate of heat transfer from the compressor can also be described through the use of a convection heat

transfer relation, and an empirical relationship also obtained from the manufacturer’s compressor data, expressing

shell temperature as a linear function of discharge temperature (see Kim and Bullard, 2000).

Ts=-3.4407+0.88355*t0

R(comp+4)= hAcomp * (Ts – tacondout) – qcomp (Eq. 4.5)

Beta_Wmap, beta_Pmap and CompNum are the compressor inputs from system XK file specified by the

user. The basic purpose of beta_Wmap and beta_Pmap is to scale the compressor maps to simulate the effect of a

change in compressor speed or compressor size. Tsat0 and tsat11 are variables calculated by the subroutine based

on pressure inputs: inlet pressure and outlet pressure of the compressor p11 and p0. Wf and pcompf are functions to

calculate power and mass flow rate stored in library file. H0, mdotacond and Ts are calculated variables.

Tacondout and h11 are inputs variables of compressor subroutine. Qcomp, w, , powercomp, taconfanin and t0 are

output variables of the subroutine.

4.2.2 Condenser
The condenser is modeled as a cross-flow heat exchanger, using a finite-element method in the new model

structure. All stand-alone sequential subroutines simulating different geometries (e.g. wire-on-tube) are stored in

system library. The special flags and subroutine name are used to call the corresponding sequential subroutine,

returning the expected calculated outputs needed by the subset of the system residual equations dealing with that

component.

The Figure 4.2 shows schematically the interface between the NR solver and the sequential condenser

subroutine. The seven NR residual equations are shown within the NR solver box. Each equation equates an

interchangeable variable with its corresponding subroutine output variable. The NR solver performs several

iterations in determining the solution to a set of equations. For the condenser (component) simulation, the NR

solver solves a set of seven simultaneous equations. The solver simultaneously forces the values of each of the seven

equations, written in residual format, to zero. The number of simultaneous equations is equal to N, the number of

‘calc’ variables.

 35

Figure 4.2 interface of residual equations and condenser sequential subroutine

Figure 4.3 condenser sequential subroutine variable categories

Each ‘calc’ output of subroutine is the function of inlet state, mass flow rate, inlet conditions and geometry.

Iteratively, NR solver updates the X variables associated with this component until the system converges to a series

of solution. If there are no X variables among the inputs to the subroutine, the calculation will finish in only one

iteration. Otherwise, iterations will be necessary, based on good initial guess values for the unknown X variables.

Figure 4.3 shows the inputs and outputs of the condenser finite-element subroutine. Variable names are

defined in Appendix E of TM22. The inputs include heat exchanger geometry, inlet conditions, mass flow rate of

refrigerant through the heat exchanger, air mass flow rate and inlet temperature, plus some other necessary XK

Condenser sequential subroutine

Pout_calc = ocalc(Pin,hin, m& ref,Tairin,etc.)
hout_calc = ocalc(Pin,hin, m& ref,Tairin,etc.)
Qcond_calc = ocalc(Pin,hin, m& m& ref,Tairin,etc.)
Mcond_calc = ocalc (Pin,hin, m& ref,Tairin,etc.)
Tacondout_calc = ocalc (Pin,hin, m& ref,Tairin,etc.)
Tout_calc = ocalc (Pin,hin, m& ref,Tairin,etc.)
Dpcond_calc = ocalc (Pin,hin, m& ref,Tairin,etc.)

Subroutine
Inputs (Set I)

Newton-Raphson solver

f(1) = Pout - Pout_calc
f(2) = hout – hout_calc
f(3) = Qcond – Qcond_calc
f(4) = Mcond - Mcond_calc
f(5) = Tacondout – Tacondout_calc
f(6) = Tout – Tout_calc
f(7) = Dpcond – Dpcond_calc

Subroutine
Outputs

‘calc’ Variables

Condenser
Subroutine

Inputs

Set P
Lcond, Dcond, AAFC,
hcondNum, NSECTC,
RTBCND, crtmult,
DZC, rough, Etc.

Set I
Pin, hin, m& ref, m& air,
Tairin, haircond,
alphacond

Outputs
Set C

Qsup, Q2ph, Qsub,
Asup, A2ph, Asub,
dpsup, dp2ph, dpsub,
Acond, vout, Cond2phX

‘calc’ Variables
(from set O)
Qcond_calc, hout_calc,
Mcond_calc, Pout_calc
subcool_calc,
Dpcond_calc, Toutcalc,
Tacondout_calc

 36

variables needed by the subroutine to simulate the condenser. Usually, haircond is calculated in subroutine by

library function. But in this version of the model, haircond is a user-specified input to the subroutine. The outputs

include two main parts: Set C and Set O. The set C consists of calculated variables, which are directly returned back

to user interface, but not to the NR solver. The Set O are calculated X variables, needed by NR solver to

simultaneously solve the set of residual equations associated with the X variables. From the viewpoint of sequential

subroutine, the inputs and outputs are not interchangeable. But at the main program level, the XK variables are

interchangeable, which is the big advantage of the NR solver. The number of unknown X variables must be kept

equal to the number of residual equations.

4.2.3 Captube-suction line heat exchanger
The residual equations that describe the behavior of the capillary tube-suction line heat exchanger (ct-slhx)

are substantially different from the other groups of residual equations. There are actually two different sets of

equations, or submodels, that can be used to model the CT-SLHX. One sub-model is based upon a finite-difference

solution of the governing equations for refrigerant flow through it. This method calculates directly the mass flow

rate and heat transfer that takes place within the component based on published correlations. The other sub-model is

a simple method that relies on a user-specified heat transfer effectiveness of the CT-SLHX, instead of performing

geometry-specific calculation. In this simple submodel, only two residual equations describe the capillary tube-

suction line heat exchanger. The first one predicts the amount of the heat transfer from the hot refrigerant in the

capillary tube to the colder refrigerant in the suction line based upon the user-supplied value of the effectiveness:

ectslhx, one variable from XK:

R(cap+0)= ectslhx * (hpt(pincomp,tinexp) – houtE) – (hincomp – houtE) (Eq. 4.6)

Where (hincomp – houtE) represents the actual heat transfer and (hpt(pincomp,tinexp) – houtE) represents the

maximum heat transfer that could occur when the refrigerant at the suction line outlet reaches the temperature of the

refrigerant at the capillary tube inlet.

The second residual equation that describes the capillary tube – suction line heat exchanger in this case is

the refrigerant-to-refrigerant energy balance for the component. It is assumed that there is no heat transfer from the

capillary tube or suction line to the environment:

R(cap+1) = (hinexp – hinE) – (hincomp – houtE) (Eq. 4.7)

This residual equation sets the change in enthalpy across the capillary tube (hinexp – hinE) equal to the change in

enthalpy across the suction line (hincomp – houtE).

The other residual equations that are used to simulate the CT-SLHX when the effectiveness-based sub-

model is used are shown below:

R(cap+2) = CaptubeModel – 1.0 (Eq. 4.8)

R(cap + 3) = ((0.75*Lin/(Lin+Lhx+Lout))*(pinexp -pcrit)/numDPin – Dpin (Eq. 4.9)

R(cap+4) = (tincomp -toutE)/numDTsl – DTsl (Eq. 4.11)

R(cap+5) = ((2.5d0*Lout/(Lin+Lhx+Lout))*(pinexp -pcrit))/numDPout – Dpout (Eq. 4.12)

R(cap+6) = pinE - 10.0d0 – pcrit (Eq. 4.13)

 37

4.2.4 Evaporator
Similarly, the evaporator is modeled locally as a cross-flow heat exchanger, using a finite-element method.

There are two serial evaporators in this component, so the sequential subroutine is called twice from the main

program with different values to respectively simulate the fresh food evaporator and freezer evaporator. Figure 4.4

shows the interface of the subroutine and system residual equations as well as variables categories involving in the

evaporator component.

The NR solver will serially call the sequential subroutine, with different geometry and different inlet states.

Because these two evaporators are serial, the mass flow rates through the evaporators are equal and the outlet

calculated states from the fresh food evaporator are the input states for the freezer evaporator. Additional

connection equations describing the connection force the refrigerant states to equate at the connection point.

Figure 4.4 interface of sequential subroutine, residual equations and variables

Inputs

Set P
Levap, Devap,
AAFE,
hevapNum,
NSECTE,
RTBEVP,
ertmult, STE,
rough,
Etc.

Set I
Pin, hin, m& ref,
m& air, Tairin,
hairevap, alphaevap

Evaporator subroutine
Pout_calc = ocalc(Pin,hin,m& ref,Tairin,etc.)
hout_calc = ocalc(Pin,hin, m& ref,Tairin,etc.)
Qevap_calc = ocalc(Pin,hin, m& ref,Tairin,etc.)
Dpevap_calc = ocalc
(Pin,hin, m& ref,Tairin,etc.)
Taevapout_calc = ocalc
(Pin,hin, m& ref,Tairin,etc.)
Mevap_calc = ocalc
(Pin,hin, m& ref,Tairin,etc.)
Tout_calc = ocalc (Pin,hin, m& ref,Tairin,etc.)

Outputs

‘calc’ Variables
(from set O)

Pout_calc,
hout_calc,
Qevap_calc,
Dpevap_calc
Toutcalc,
Mevap_calc,
Taevapout_calc

Set C
Qsup, Q2ph, Asup,
A2ph, dpsup, dp2ph,
Aevap,Caevap, vout,
Evap2phX,
superheat_calc

Newton-Raphson solver
f(1) = Pout - Pout_calc
f(2) = hout – hout_calc
f(3) = Qevap – Qevap_calc
f(4) = Dpevap – Dpevap_calc
f(5) = Taevapout - Taevapout _calc
f(6) = Mevap- Mevap_calc
f(7) = Tout - Tout_calc

Set O Set P + Set I

call sequential subroutine

 38

Figure 4.5 residual equations associated with evaporator component

Fresh food evaporator equations:

R(1) = Poutfevap - Poutfevap_calc
R(2) = houtfevap – houtfevap_calc
R(3) = Qfevap – Qfevap_calc
R(4) = Dpfevap – Dpfevap_calc
R(5) = Tafevapout- Tafevapout_calc
R(6) = Mfevap- Mfevap_calc
R(7) = Toutfevap- Toutfevap_calc

Connection equations:

R(8) = poutfevap – pinE
R(9) = houtfevap – hinE
R(10) = pinevapf – poutE
R(11) = hinevapf – houtE
R(12) = houtevap – hinsl
R(13) = poutevap - pinsl

Freezer evaporator equations:

f(14) = PoutE - PoutE_calc
f(15) = houtE – houtE_calc
f(16) = Qevap – Qevap_calc
f(17) = Dpevap – Dpevap_calc
f(18) = Taevapout - Taevapout_calc
f(19) = Mevap - Mevap_calc
f(20) = Toutevap - Toutevap_calc

 39

References

Andrade, M.A. and C.W. Bullard, “Controlling Indoor Humidity Using Variable Speed Compressors and Blowers”,
University of Illinois at Urbana-Champaign, ACRC TR 151, 1999.

American Society of Heating, Refrigeration and Air-conditioning Engineers, “Handbook of Fundamentals”,
ASHRAE, 1993.

Bridges, B.D. and Bullard, C.W., Unpublished Manuscript, University of Illinois Air Conditioning & Refrigeration
Center, 1994.

Harshbarger, D.S. and Bullard, C.W., “Finite Element Heat Exchanger Simulation within a Newton-Raphson
Framework”, August 2000

Incropera, F. P. and DeWitt, D. P., “Fundamentals of Heat and Mass Transfer”, Fourth edition, JOHN WILLEY &
SONS Corp. 1991

Kirkwood, A.C. and Bullard, C.W., “Modeling, Design, and Testing of a Microchannel Split-System Air
Conditioner”, University of Illinois at Urbana-Champaign, ACRC TR-149, 1999.

Kirby, E.S., Bullard C.W. and Dunn, W.E., “Effect of Airflow Nonuniformity on Evaporator Performance”,
ASHRAE Transactions, vol. 104, no. 2, pp. 755-762, 1998.

Klein, S.A., Duffie, J.A. and Beckman, W.A., “ TRNSYS - A Transient Simulation Program”, ASHRAE
Transactions, vol. 82, pp. 623-631, 1976.

Mullen, C.E. et al., “Development and Validation of a Room Air-Conditioning Simulation Model”, ASHRAE
Transactions, vol. 104, no. 2, pp. 389-397, 1998.

Stoecker, W.F., “Design of Thermal Systems”, third edition, McGraw-Hill, Inc. 1989

Woodall, R.J. and Bullard, C.W., “Development, Validation, and Application of a Refrigerator Simulation Model”,
ACRC TR-99, June 1996

 40

Appendix A: Capillary Tube Suction-Line Heat Exchanger Design Model

A.1 Design operating condition
In this section, several capillary tube-suction line heat exchanger (ct-slhx) geometrys are simulated to

determine mass flow rate and several other performance indicators at the “design” operating condition. Refrigerator

is tested at a 90o F, with Te=-12.4F and Tc=105 F, corresponding to high and low side pressures of 149.7 psia and

15.7 psia, respectively. To maximize performance of evaporator and condenser, superheat degree and subcooling

degree are usually set at 5o F and 3o F. The inside diameter of the suction line is 0.375 inches. At these conditions

the design calls for a mass flow rate w=12.4 lbm/hr. The following summary Table (Table A.1) shows only Lct,

Lin, Lhx, w, Tsuc and Xcrit. However, Tsuc is the indicator of effectiveness of the ct-slhx.

In order to investigate how subcooling affects the mass flow rate and other performance indicators, the

CTSLHX model is run at 1o, 3o and 6o F subcooling, respectively.

Simulations were performed for several different total lengths of capillary tube, where possible, the inlet

length of capillary tube is changed while keeping the heat exchanger and outlet lengths unchanged at 68 inches and

6 inches, respectively. For each diameter (0.038, 0.036, 0.034 and 0.032 inches, respectively), from the property

profile printed on the computer screen, it was found that re-condensation occurred in the following cases: when

length decreases to 95 inches and 85 inches with ∆Tsub=6o F, there is re-condensation in the heat exchanger part,

and flashing occurs again in the outlet part; It also occurs in the case where Dct=0.034 inches, and Lct= 90 inches

with 6o F subcooling; For Dct= 0.032 inches with only 1o F subcooling, re-condensation also can be found.

However, if length decrease to 70 inches with 6o F subcooling degree, the whole capillary tube is almost filled with

single-phase liquid refrigerant, and there is only one flash point which is located in the adiabatic outlet section.

The following Table summarizes the results for all geometry simulated:

Table A.1 Calculated results for several different cases

Geometry ∆Tsub=1o F ∆Tsub=3o F ∆Tsub=6o F

Lct
[inch]

Lin
[inch]

Dct
[inch]

Lct
[inch]

w
Lbm/

hr

Pcrit
[psia]

Tsuc
[F]

w
Lbm/

hr

Pcrit
[psia]

Tsuc
[F]

w
Lbm/h

r

Pcrit
[psia]

Tsuc
[F]

130 56 0.038 68 15.6 29 69 16.5 30 69 17.7 31 69
120 46 0.038 68 16.6 30 70 17.6 32 70 19.0 33 70
110 36 0.038 68 17.9 32 72 19.0 34 71 20.7 36 70
105 31 0.036 68 16.2 32 73 17.2 34 73 18.8 36 72
95 21 0.036 68 18.0 36 74 19.2 37 74 21.1 40 73
85 11 0.036 68 20.6 40 76 22.2 43 75 24.8 47 74

110 36 0.034 68 13.4 30 73 14.2 31 73 15.4 34 72
100 26 0.034 68 14.6 33 75 15.6 34 74 17.1 37 73
90 16 0.034 68 16.5 36 76 17.7 38 75 19.5 41 74
80 6 0.032 68 15.2 40 79 16.6 43 78 17.6 44 77
70 10 0.032 54 15.1 40 71 16.3 43 71 18.1 47 69

 41

From the above summary table, it is obvious that all the calculated mass flow rates are greater that the

design target of 12.4 lbm/hr. If the mass flow rate should meet the design value, the length of capillary tube should

be extended. The ct-slhx model was then used to calculate the adiabatic inlet length required to meet the 12.4

lbm/hr mass flow rate for all capillary diameters situation at 1F, 3F, 6F subcooling.

Table A.2 Calculated length for different diameters to meet design mass flow

∆Tsubcooling=1o F ∆Tsubcooling=3o F ∆Tsubcooling=6o F

Tsuc
[F]

Dct
[inch]

Lin
[inch]

Tsuc
[F]

Dct
[inch]

Lin
[inch]

Tsuc
[F]

Dct
[inch]

Lin
[inch]

65 0.038 104 64 0.038 117 63 0.038 137
69 0.036 71.2 68 0.036 82.0 66 0.036 97.2
73 0.034 45.7 71 0.034 54 70 0.034 66.0
78 0.032 18.8 76 0.032 24.0 74 0.032 32.4

The results suggest that a diameter equal to 0.032 inches would have several advantages. At Lct=92.8

inches, the length is the shortest, and it also transfers the most heat from the capillary tube to the suction line, as

evidenced by the suction inlet temperature. That should maximize the EER increase contributed by the ct-slhx.

A.1.1 Effect of low condensing pressure
It may be possible that the captube exit becomes subsonic at low ambient temperature and ∆Tsub may be

larger. The following Table shows us the results. The subcooling degrees shown in the table are the maximal

values corresponding to different diameters and lengths, which can be used to calculate the critical pressure by ct-

slhx model. From the result table, critical pressure is always greater than the evaporator pressure in these special

situations, so in every case there is no subsonic.

Table A.3 Effectiveness of low condensing pressure

Dct=0.038
[inch]

Dct=0.036
[inch]

Dct=0.034
[inch]

Dct=0.032
[inch]

Lin
[inch]

Pcirt
[psia]

Tsub
[F]

Lin
[inch]

Pcirt
[psia]

Tsub
[F]

Lin
[inch]

Pcrit
[psia]

Tsub
[F]

Lin
[inch]

Pcirt
[psia]

Tsub
[F]

56 34.1 10 31 40.1 10 36 36.5 10 6 40.1 1
56 36.5 15 31 41.6 12.5 36 39.6 15 6 42.3 2.5
56 38.8 20 31 43.0 15.5 36 40.5 17.5 6 44.9 5.0
46 36.4 10 21 40.3 5.0 26 38.3 7.5 10 45.9 5
46 39.2 15 21 44.4 10.0 26 40.3 10 10 47.8 8.5
46 41.3 19 21 45.5 12.0 26 43.0 13.5 10 47.9 9.2
36 39.3 10 11 43.2 2.5 16 40.8 5 --- --- ---
36 42.7 15 11 46.9 6.0 16 43.4 7.5 --- --- ---
36 42.9 16 11 47.8 7.5 16 44.8 9.0 --- --- ---

For the Lct=70 inches case with Dct=0.032 inches, the length of capillary tube is not long enough to keep

the length of heat exchanger at 68 inches, so the inlet length is set at 10 inches, and deduced the heat exchanger part

to 54 inches.

 42

A.2 Capillary Tube-Suction Line Heat Exchanger Model user’s reference
The purpose of this section is to acquaint any potential users with the operation of the capillary tube-suction

line heat exchanger model. The ct-slhx model calculates the mass flow rate through the capillary tube, the

temperature rise in the suction line and the exit pressure and quality of the capillary tube. By using the cold liquid

refrigerant in the suction line to decrease the enthalpy of the refrigerant in the capillary tube, this equipment can

increase system capacity with a modest increase in the compressor power. At the same time, it can make sure that it

is pure vapor refrigerant to enter into the compressor. Generally speaking, for the modeling purpose, the capillary

tube is divided into three sections: adiabatic inlet section, heat exchanger section and the adiabatic outlet section.

A.2.1 Definition description for variables and parameters
In the capillary tube-suction line heat exchanger model, the capillary tube is divided into three different

sections: adiabatic inlet section, followed by heat exchanger section, and the last one is adiabatic outlet section. The

following figure (Woodall and Bullard, 1996) defines the main variables and parameters appearing in the XK

initialization file. The flashing point is located in the inlet section, however, it can occur in either of the other two

sections. At the same time, the refrigerant may re -condense in the heat exchanger section and then re-flash occur in

the following adiabatic outlet region, which is not shown in the following figure.

Figure A.1 Divisions of capillary-tube suction line heat exchanger

Definition description for the variables and parameters:
Dct Diameter of the capillary tube

Dsuct Diameter of suction line

Lin Adiabatic inlet section length of capillary tube

Lhx Heat exchanger length of capillary tube

Lout Adiabatic outlet section length of capillary tube

w Mass flow rate through the capillary tube

subcool Degree of subcooling inlet the capillary tube

t9 Temperature at inlet of suction line

t11 Temperature at the exit of suction line

Xoe,
t9,p9

Subcool
P4, xoc

w

flash point
Pcrit, xcrit

C

Suc

liquid

Lin, Dpin Lhx, DTsl

Two-phase

Lout, DPout

t11, p11

 43

p4 Pressure at the exit of condenser

p9 Pressure at the inlet of suction line

p11 Pressure at the outlet of suction line

Pcrit Critical pressure at the exit of capillary tube

Xoc Quality at the exit of condenser

Xoe Quality at the exit of capillary tube

Xcrit Quality at the exit of capillary tube(choked flow)

Dpin Pressure step in the inlet section of capillary tube

DTsl Temperature step in the suction line heat exchanger section

Dpout Pressure step in the outlet section of capillary tube

superheat Degree of superheat at the exit of evaporator

The procedure that refrigerant flows through capillary tube-suction line heat exchanger is very complicated,

so this component is a very difficult one to simulate. Depending on different locations in capillary tube and

different design conditions, there will be several different processes occurring in the capillary tube. Generally, the

total capillary tube is divided into three consecutive three sections, just like the above plot.

Now, the first adiabatic inlet section is considered. The entering refrigerant usually has two states: pure

subcooled liquid or two-phase mixture. If pure subcooled liquid, the pressure will decrease without changing

temperature before it reaches the saturation pressure. However, its pressure decreases when it flows through the

inlet section. At the saturation pressure, liquid refrigerant begins to vaporize. We mark this location as flash point,

and the remainder length of adiabatic inlet could be modeled as two-phase mixture. The subcooling degree is large,

and the inlet section length is not long enough for refrigerant to vaporize and flash. The total inlet section is single-

liquid flow. If the entering refrigerant is two-phase mixture, the total capillary tube can be model as two-phase

condition. The pressure decreas es with the increase of the quality when it flows through the inlet section.

Leaving the inlet section, the refrigerant enters into heat exchanger section. However, the entering state is

subcooled liquid or two-phase mixture, which is decided by the operating condition and the geometry of inlet

section. During flowing through this heat exchanger section, the heat transfer loss will cause decrease of the quality

and the temperature. At the same time, the flow friction causes the drop of the pressure. Unfortunately, the pressure

drop and the heat loss cause opposite changing on the refrigerant. The pressure drop of the refrigerant tends to

increase the quality, however, the heat loss will increase the subcooling tendency or decrease refrigerant’s quality.

Under such complicated circumstances, the state transition of refrigerant in the heat exchanger will be unpredictable

and complicated. Under the effect of the two opposite mechanisms, there will be five different possible scenarios in

this part (R.J.Woodall and C.W.Bullard,1996):

(1). The refrigerant enters as two-phase mixture and it stays two-phase;
(2). The refrigerant enters as two-phase mixture and it recondenses and exits as subcooled liquid;
(3). The refrigerant enters as subcooled liquid and it stays subcooled;
(4). The refrigerant enters as subcooled liquid and it flashes and exits as a two-phase mixture;
(5). The refrigerant enters as subcooled liquid and it flashes and then recondenses downstream and exits

as a subcooled liquid;

 44

The last scenario only can occur in a special situation, where the effect of pressure drop of the refrigerant is

dominant in the upper stream, however the effect of heat transfer loss is dominant in the downstream of the heat

exchanger section.

The last part is adiabatic outlet section. Just like adiabatic inlet section, there is no heat transfer, only

pressure drop. This will also have the same two possible entering states: pure subcooled liquid or two-phase

mixture. The situation should be the same as inlet section, except that the exiting state of outlet section should

always be two-phase mixture at the choked flow condition. So if the entering state is pure liquid, the refrigerant

subcooled degree should decrease until the saturation point, then vaporize and increase quality as two-phase

mixture. For two-phase entering condition, the refrigerant pressure drops with the increase of the quality under the

effect of the flow friction. When the quality increases, the specific volume of the mixture will increase, too. Since

the mass flow rate is constant, the increase of the specific volume will cause the increase of the refrigerant flow

speed. The velocity of the refrigerant will increase until critical flow is reached at the exit. At a prescribed

condenser pressure, further reductions of the evaporator pressure below this point will not increase the mass flow

rate of the refrigerant. Therefore, the condition of choked flow at the exit of the outlet section is assumed. If

refrigerant is choked at the exit, there will be a discontinuity between the critical pressure at the capillary tube exit

and the pressure at the inlet to the evaporator (R.J.Woodall and C.W.Bullard, 1996).

A.2.2 XK file, variables and parameters definition
The XK file is the primary bridge for communication between the user and the ct-slhx model. In the XK

file, variables and parameters can be changed for every case, and the corresponding output calculated by the model

is written to the output file. Now, the output name in the ct-slhx model is “s.derek”, whose name can be changed in

the instruction file. In the XK file, variables are marked with “X” flags and parameters are marked with “K” flags.

At the same time, X’s and K’s can be switched without recompiling. The primary storage location for variables and

parameters is the XK array, where every element is made “equivalent” to Fortran variables and parameters, which

appear in the governing equations in the “equation.f” file. For example, in the XK file of ct-slhx model, XK (1) and

Dpin variable are “equivalent” and they can be used interchangeably. In other words, variables and parameters are

usually referred to by XK# in the solver, while the governing equations and subroutines refer to them by their

names. The XK array and “equivalent” Fortran variables and parameters are declared and put in the common block

in “EQUIVLNT.INC” file, which is usually included in different subroutines and files.

The following is the XK interface, which can be used to change parameter’s values or switch X’s, and K’s.

If variable or parameter is needed to appear in the written file, the “output flag” value should be set to 1, otherwise,

it should be 0. Parameters are flagged with “K”, which need user-specified values. However, variables are flagged

with “X”, which need ideal initial guess value for model’s calculation, and are updated by the model latest results

appearing in the written file.

Table.A.4 Sample XK initialization file

** XK initialization file: initializes variable guesses and parameter values.
** Output Flag specifies if variable is printed to spreadsheet readable file.
** (1 = Print, 0 = Don't Print)

 45

** Parameters are flagged with "K" and variables are flagged with "X."
** The units are delimited with '[]'.
** The last number signifies the number of decimal places (0-10).
** The ORDER of the input lines CANNOT CHANGE without program modification.

 Output Flag Name XK# Value Units # of digit
*********** DO NOT DELETE THESE FIRST NINE LINES! ***********

0 X DPin = XK(1) = 4.840 [psia] 3
0 X DPout = XK(2) = 4.056 [psia] 3
0 X DTsl = XK(3) = 5.453 [F] 3
1 X pcrit = XK(4) = 42.35 [psia] 3
1 X w = XK(5) = 10.856[lb m/hr] 3
1 X xcrit = XK(6) = 0.1025 [] 4
0 K CaptubeOutput = XK(7) = 2.0 [] 1
1 K Dct = XK(8) = 0.002750 [ft] 6
0 K Dsuctline = XK(9) = 0.02604 [ft] 5
1 K Lin = XK(10) = 4.250 [ft] 3
1 K Lhx = XK(11) = 5.167 [ft] 3
1 K Lout = XK(12) = 0.667 [ft] 3
0 K numDPin = XK(13) = 4. [] 0
0 K numDPout = XK(14) = 5. [] 0
0 K numDTsl = XK(15) = 6. [] 0
1 K p4 = XK(16) = 12 0.400 [psia] 3
1 K p9 = XK(17) = 42.320 [psia] 3
1 K subcool = XK(18) = 7.625 [F] 3
1 K t9 = XK(19) = 37.050 [F] 3
1 C superheat = XK(20) = 10.000 [F] 3
0 K xoc = XK(21) = 0.000 [] 3
0 K xoe = XK(22) = 1.000 [] 3
1 C t11 = XK(23) = 69.766 [F] 3
0 K Cap_clog = XK(24) = 1. [] 0
0 K absR = XK(25) = 0.0000009708 [ft] 10

The next part is the description for the parameter-variable switch. Just like interface above, the w(mass

flow rate) is the variable, and Dct is the parameter. If w is wanted to be a specified parameter value, and Dct is

required to be calculated by the ct-slhx model with an initial guess, only the two flags are required to be changed in

the above XK initialization file. The corresponding two lines

1 X w = XK(5) = 10.856[lbm/hr] 3
1 K Dct = XK(8) = 0.002750 [ft] 6

would have to be changed to

1 K w = XK(5) = 10.856[lbm/hr] 3
1 X Dct = XK(8) = 0.002750 [ft] 6

After forgoing operation, the model will run according to the above description. When swapping variables

and parameters, caution must be exercised to ensure that the equations are not made singular or non-independent

because of the swapping operation. Since the ct-slhx mode may become more sensitive to initial guess values

because of the swapping, it is recommended that a solution for original equations be found before swapping, and this

solution can be set as the initial guess value for the new XK file with parameters and variables swapping. As far as

we know, some equations are very sensitive to a particular parameter, a larger change in the particular parameter

 46

may make it difficult to get solution. It maybe is a good idea to achieve the designed change using a series of

intermediate steps, with each intermediate solution used as updated initial guess value for the XK file.

Parameters marked with “C” are constant values specified by ct-slhx model. The flags can not be changed

without program modification, and in the output file, these parameters can get the results calculated by ct-slhx

model.

A.2.3 Sample instruction file
For different cases, different parameter values may be needed, then the instruction file is needed. The

instruction file contains a list of parameters, which are needed to have their values modified, as well as the list of

values for these parameters. On the other hand, the number of intermediate steps can also be specified to take

between solutions. If the step number is one or more, then instruction file can direct the Newton-Raphson solver to

linearly interpolate the intermediate solution between the previous specified parameter and the next specified

parameters. This method can ensure a smooth transition from previous parameter to the designed value, when the

model is very sensitive to this particular para meter’s initial guess value. According to the user’s choice in the XK

file, the final results will be written into the specified file, however, the intermediate solutions will not be saved.

The following is the example for the instruction file:

Table A.5 Instruction file Sample

Items Description

MULTIPLE Solve for multiple sets of parameters
XK Name of XK initialization file
XK.richard Name of output file
1,4,8 #of runs, #of parameters to modify, #of intermediate steps
8 9 10 11 List of parameters to be modified in XK interface file
0.28 0.03 2.1 5.7 List of specified values for parameters’ modification

A.2.4 Solver setting file
The file “SLVERSET” contains settings for various solver parameters, convergence criteria and tolerances,

and output options. The following is the sample SLVERSET file. Some of the output settings, such as printing

initial, intermediate and final XK and R values, and other settings, are primarily useful for debugging a model, and

normally the solver setting need not be changed. However, according to the design value for different case, these

setting can be changed to meet the design need.

**
******** NEWTON-RAPHSON SETTINGS ********
Instruction file name : INSTR

Step factor for partial derivatives : .0001
Maximum allowable NR iterations : 15
Convergence criteria 1(Maximum residual) : 1.0e-3

Convergence criteria 2 (RMS residual) : 1.0e-4
Selected convergence criteria (1 or 2) : 2
NR step relaxation parameter 1.0
Use sparse matrix techniques? : .TRUE.
Update guesses between runs? : .TRUE.

 47

******** GENERAL OUTPUT SETTINGS ********
Send general output to screen? : .TRUE.
Send general output to a file? : .FALSE.
Print abbreviated solver settings? : .TRUE.
Print initial XK values? : .FALSE.
Print initial residual values? : .FALSE.
Print iteration summaries? : .TRUE.
Print intermediate XK values? : .FALSE.
Print intermediate residual values? : .FALSE.
Print final XK values? : .FALSE.
Print final residual values? : .FALSE.
Print a final summary : .TRUE.

******** SOLUTION OUTPUT SETTINGS ********
Save XK values in input file format? : .FALSE.
Save XK values in spreadsheet format? : .TRUE.
Output digits 0-10 (-1 = as in XK file) : -1

Using the solver setting file, the operating conditions and desired formation can be set. According to

different need, special flags can realize different solution output appearances. At the same time, special values can

be input to change model’s initial information. For example, if file format like XK formation is needed, then logic

value in “SOLUTION OUTPUT SETTINGS” section should be switched as “TRUE”, otherwise, it should be

“FALSE”.

 48

Appendix B: Dual Evaporator Simultaneous System Modeling

B.1 Introduction
Dual evaporator refrigerators are modeled most accurately using the modular system simulation approach

described in Chapter 4. This Appendix describes a crude intermediate method for using a single-evaporator model

to simulate a dual evaporator system. This model is now obsolete, having been superceded by the version described

in Chapter 4. However, it is documented here for archival purpose. Modifications were made to the previously

developed single-evaporator code in order to simulate better the refrigerators in this study.

The ACRC refrigerator simulation model was initially developed for the study of single evaporator

refrigerator-freezers at the Air Conditioning and Refrigeration Center (ACRC) at the University of Illinois at

Urbana-Champaign. It consists of a general Newton-Raphson solver linked to a series of equations and functions

that describe the particular refrigeration system being modeled (Mullen (1994) and Woodall (1996)). The

simulation model for refrigerators is called RFSIM. The model assumes a steady state operation. The single

evaporator model is described in more detail in Woodall and Bullard (1996). RFSIM was modified (Stein, 1999)

and refined by Gerlach (2000) for dual evaporator refrigerators by adding a second evaporator in the fresh food

section and eliminating the equation describing air exchange between the compartments. The fresh food evaporator

was mo deled as a two -phase region and the freezer evaporator includes both a two-phase region and a single-phase

superheated region.

Additional modifications were needed to accurately represent the prototypes tested. Based upon the request

of the sponsor, we tried to simulate the dual evaporator system separately by running the single-evaporator model

alternately, first simulating one evaporator, supposing the other one idle. A few variables and residual equations

were modified to simulate the dual evaporator system and its separate refrigerated compartment. This approximate

approach is not recommended, but is described in Sec.B.2 for those who prefers to use the simultaneous instead of

the modular version of the RFSIM.

Chapter 4 describes the simulation model with new modular structure for simulating dual-evaporator

refrigerators. Every system component has an associated sequential subroutine describing the component. The

number of initial guess values substantially decreases, also structured and independent sequential subroutines were

easily embedded in the simulation system without recompiling and changing codes.

The nomenclature used in Stein (1999) and continued here is that the freezer compartment variables are

written simply such as “tevap.” The fresh food variables have an “f” added, e.g. tevapf. Alternatively, a freezer

variable is denoted with a “z” added, e.g. tevapz. In the new model structure, the variables name are kept

unchanged, but all the variables are categorized into four categories as discussed in Harshbarger and Bullard (2000).

B.2 Simultaneous system
This simultaneous system is built upon the original RFSIM, using one-evaporator system to simulate dual-

evaporator system. Suppose we run the dual evaporators separately, that means one time we run fresh food

compartment, and the other time we run the freezer compartment. In the single evaporator RFSIM model, we ignore

 49

the heat transfer between these two compartments through the mullion, but in dual evaporator model, it is an issue

we need to pay attention to. The UA of the mullion is a new variable added into the XK variable list.

We simulate fresh food and freezer compartments concurrently in single evaporator system. Variables ‘fz’

and ‘runtime’ are describing the running conditions. In order to simulate dual-evaporator system using the single-

evaporator approach, we need to focus on one compartment at one time. Variable ‘fz’ is a specified K value, which

is switched between 0 and 1 for fresh food case and freezer case, respectively. For fresh food case, fz is specified to

zero, meaning that no air flows into freezer compartment; On the other hand, fz is equal to one in the freezer case,

where all air flows into freezer compartment instead.

For freezer simulation, the Figure 4.1 shows us the specified inputs for freezer compartment case, which is

a little different from the original RFSIM evaporator system.

Governing equations for the freezer case are shown below. They have been modified from the original

RFSIM system model since new heat transfer boundary is considered in the modified simulation model.

The following residual equation simulates the total heat transfer balance of the freezer compartment. The

mullion heat transfer between fresh food and freezer compartments has been added. The heat transfer sources

include heat transfer between ambient and freezer compartment, heat transfer from heater, heat transfer between

fresh food and freezer compartments and heat transfer of liquid line (post-condenser loop for heating the door gasket

areas), all of which is assumed to enter the freezer compartment.

R(cab+0) = BTU(UAz)*(tamb - tafrez) + BTU(FrezHeater) + qliqline
+BTU(UAm)*(tafrig - tafrez) – Qfrez (Eq. B.1)

Figure B.1 Freezer component simulation: no air flows into fresh food compartment

Fresh compartment:

Tafrig = 41 Fo

Freezer compartment:

Fz = 1.0

Tafrez = -4 Fo

Qm =UAm*(Tafrig-Tafrez)

Q = UAz * (Tamb – Tafrez)

Freezer
Evaporator

Q = UA f * (Tamb -Tafrig)

 50

The second residual equation describes the total heat transfer balance of the fresh food compartment

without air flowing through since Fz is specified 1.0. This is the running condition we suppose. The heat transfer

sources include heat transfer between two compartments, heat transfer from ambient and heater.

R(cab+1) = BTU(UAf)*(tamb - tafrig) + BTU(FrigHeater) - BTU(UAm)*
(tafrig - tafrez) - Qfrig (Eq. B.2)

The following residual equation is used to calculate the time that the system has to run to remove all the

heat added to the freezer compartment in order to keep the constant temperature in the compartment.

R(cab+2) = (mdotaevap*fz*(ha(tafrez)-ha(taevapfanout)))*Runtime – Qfrez (Eq. B.3)

where the fz is equal to 1.0. When simulating the freezer, the other residual equation that is modified to simulate the

running condition is the one calculating the fresh food compartment heat transfer ‘Qfrig’. Since we know there is no

air flowing into this compartment, variable ‘Qfrig’ is forced to be equal to zero all the time in this case.

R(cab+3) = Qfrig – 0.0 (Eq. B.4)

The residual equation that is not listed above but in the original system is still kept to help the simulation.

We should keep in mind that during the whole simulation, the fresh food compartment temperature should

constantly keep 41 °F, so the heat transfer between ambient and fresh food compartment should be equal to the heat

transfer from fresh food compartment to freezer part. In order to make the equation valid, we need to keep UAf as a

‘X’ variable. Similarly, when we simulate the fresh food compartment, we need exchange UAz and UAf: UAf is K

parameter, but UAz is allowed to float to some artificial value. We can do the simulation in another way, keeping

the variable fz float to some artificial value instead and specifying the UAz or UAf alternately. In our current

model, we specify and switch fz between 1 and 0, keeping UAz or UAf float in order to balance the heat transfer in

fresh and freezer compartments.

We use similar way to simulate the fresh food compartment, but this time fresh food evaporator is active

and total air flows into fresh food compartment. Variable fz is specified to zero. During the simulation, freezer

compartment temperature, -4 °F, is constantly kept. At the same time, just as discussed about, variable UAz is

allowed to float in order to satisfy the heat transfer between freezer compartment, fresh food compartment and

ambient. The Figure B.2 shows us the relationship around the fresh food compartment.

Similarly, some residual equations as below are modified to simulate the running condition from the

original RFSIM residual equations.

The first residual equation is to describe the heat transfer balance of the freezer compartment. Heat transfer

between ambient and freezer compartment, heat transfer from heater and liquid line and heat transfer between these

two compartments are considered in this equation.

R(cab+0) = BTU(UAz)*(tamb - tafrez) + BTU(FrezHeater) + qliqline
+BTU(UAm)*(tafrig-tafrez)- Qfrez (Eq B.5)

 51

Figure B.2 Fresh food compartment simulation

The second residual equation modified is the equation simulating the heat transfer balance of the fresh food

compartment.

R(cab+1) = BTU(UAf)*(tamb – tafrig) + BTU(FrigHeater) - BTU(UAm)*
 (tafrig-tafrez) - Qfrig (Eq. B.6)

The following is the residual equation used to calculate the fraction time the system uses to remove the heat

added to this compartment in order to keep temperature balanced.

R(cab+2)=(mdotaevap*(1.0d0-fz)*(ha(tafrig)-ha(taevapfanout)))*RunTime-Qfrig (Eq. B.7)

The last residual equation needing attention is to specify the heat transfer balance of the freezer

compartment. The variable ‘Qfrez’ is forced to zero since there is no air flowing in and the evaporator is idle now.

R(cab+3) = Qfrez – 0.0 (Eq. B.8)

In conclusion, we can use single evaporator system model to simulate the dual evaporator refrigerator

components separately, but the simulation method can not provide exact results for us. Previously, when this dual

evaporator system is stable, the Figure B.3 shows the states of refrigerant at different connection points.

Figure B.3 stable refrigerant states of dual evaporator system

Fresh compartment:

Tafrig = 41 Fo

Freezer compartment:

Fz = 0.0

Tafrez = -4 Fo

Qm =UAm*(Tafrig-Tafrez)

Q = UAz * (Tamb – Tafrez)

Fresh
Evaporator

Q = UA f * (Tamb -Tafrig)

compressor
ct-slhx

Condenser

Fresh food evaporator Freezer evaporator

pinE, hinE poutfE, houtfE
poutE, houtE

pinC, hinC

poutC, houtC

 52

For fresh food evaporator, the inlet states of refrigerant are hinE and pinE from expansion device. The outlet

states of refrigerant are poutfE and houtfE. Since these two evaporators are serial, poutfE and houtfE are inlet states of

the freezer evaporator with the outlet states of poutE and houtE. The other main state points are marked above.

In our running cases, we simulate the dual evaporators separately, using the single evaporator system.

When we simulate the fresh food evaporator case, the refrigerant states are described below in figure B.4.

The combination of compressor, condenser and expansion device is the same as the figure above, but the

freezer evaporator is removed from the dual-serial-evaporator system and assumed idle during the simulation.

Several steps are used to analyze the process. We supposed that the combination of compressor, condenser and

expansion device provides the same inlets and outlets states of refrigerant as above, then fresh food evaporator has

the inlet states, pinE and hinE. Secondly, the evaporator provides the same outlet states as before, houtfE and

poutfE. Now poutfE and houtfE are inlet states of the compressor, but not poutE and houtE any more. With the

different inputs, the combination changes its outputs to fresh food evaporator in the next round, different from hinE

and pinE. At this time, the whole system is under unstable state. When the whole system becomes stable again, the

system has different refrigerant states at the connection points in the figure. The fresh food evaporator has input

states, hinE1 and pinE1, and output states, poutE1 and houtE1. With the same specified variables, the system

definitely has different performance now, not as expected in the original figure B.3.

Figure B.4 Refrigerant states of single fresh food evaporator case

Similarly, in the freezer evaporator simulation, the evaporator gets the inlet states, hinE2 and pinE2, and outlet

states, houtE2 and poutE2, which are different from expected values: hinE, pinE, poutE and houtE, respectively.

Figure B.5 Refrigerant states at connection points of freezer simulation

compressor
ct-slhx

Fresh food evaporator
pinE1, hinE1 poutE1, houtE1

pinC1,hinC1
 Condenser

poutC1, houtC1

Freezer evaporator
pinE2, hinE2 poutE2, houtE2

Condenser

compressor
ct-slhx

pinC2,hinC2

poutC2, houtC2

 53

Appendix C: Residential A/C System Modeling

C.1 Introduction
The ACRC air conditioner system simulation model was developed by Mullen et al. (1998). Instead of

solving the equations with a successive substitution algorithm, the ACRC solver utilizes a Newton-Raphson

algorithm to solve the governing equations simultaneously. The solver allowed the input parameters and output

variables to be interchanged without the need to reprogram the model.

Recently, the system simulation model was improved by Andrade and Bullard (1999). Equations were

added that allowed the simulation of split type a/c units in addition to the window units. Improvements were made

to the evaporator heat and mass transfer equations, implementing a study by Kirby, Bullard and Dunn (1998).

Equations simulating sensible and latent loads of a house were also added, to simulate the system’s ability to reduce

indoor humidity for a given set of outdoor conditions and air infiltration rates.

The system simulation model has proved an accurate and sophisticated design tool. However, the program

had two prominent limitations. Modern and future heat exchanger designs were exposing the limitations with the

conventional modeling techniques. This became apparent when Kirkwood and Bullard (1999) modified the model

to simulate microchannel heat exchanger geometries in a multizone framework, where a finite element approach

would have been more appropriate. Additionally, for the ACRC solver to calculate a solution, accurate initial

guesses must be known for each output variable. Many initial guesses were required, sometimes for obscure values,

which caused great burden on the user. Furthermore, sponsoring companies were expressing interest in individual

component models. With a large set of interrelated equations, component simulations were difficult to isolate and

export from the system simulation program.

To address these limitations, Harshbarger and Bullard (2000) have developed a new structure to be

implemented into the system simulation model. Finite element solutions of the heat exchangers were developed for

the condenser and evaporator. The finite element structure allows the simulation of complex geometries that were

not possible with conventional methods. The finite element solutions were integrated into the system model in a

manner that reduced the number of required init ial guesses and therefore, the burden on the user.

To further the capabilities of the model, a modular structure was adopted. Using a structure similar as

TRNSYS (Klein et al., 1976), each component in the system is solved in a self-contained manner. Therefore, each

component simulation can easily be isolated and/or integrated into a simultaneous set of system-level equations.

C.2 Model description
The RACMOD system model consists of components models for the condenser, evaporator, compressor

and capilla ry tube, as well as simulation equations for system, component connections and charge calculation. We

built sequential subroutines for each component and the details describing the modeling strategies and algorithms

used in the subroutines are provided.

C.2.1 Condenser
The air conditioner condenser is modeled as a crossflow heat exchanger with uniform inlet air temperature

and velocity. A stand-alone sequential subroutine is used to simulate this component, where the finite element

 54

algorithm is used. The first part of the condenser geometry has two refrigerant circuits and both are defined as

identical and parallel modules. We simulate one module, and multiply by the number of parallel modules to

calculate the total heat transfer performance and areas for different heat transfer zones.

Figure C.1 Condenser geometry

Along the refrigerant flow direction, the circuit is equally divided into many small elements. Each small

element has the same length, so they have the same air-side and refrigerant-side heat transfer areas during

simulation. This is a cross flow configuration, where each element has the same air input temperature and we

assume air mass flux is identical everywhere. As shown above in Figure C.1, air flows vertically into page from the

outside. The difference is the input refrigerant state of each element since they are divided along the refrigerant

flow.

The condenser includes two parts: the first part has two identical parallel circuits, which join together in the

middle. The second part only has one circuit. In old 3-zone modeling framework, the circuit number is assumed 1.5

to calculate an approximate mass flux for all three zones. However, in the new simulation model, each small

element uses the exact circuit number and mass flux for the calculation. Mass flux is calculated locally as well as

heat transfer area, pressure drop, refrigerant and air properties and local heat transfer.

Figure C.2 Condenser module structure

Refrigerant
inlet

Refrigerant
outlet

Module #1

Module #2

Module #3

Nc=2

Nc=1

 55

In Figure C.2, we suppose we have two identical parallel modules in the first part; the second part only has

one module. Finite element algorithm is used to simulate each module. Heat transfer correlations and pressure drop

correlations are also calculated in each small element in order to exactly simulate the real heat transfer. Each

element in three heat transfer areas – superheat, two-phase and subcooling – is modeled using effectiveness-NTU

heat transfer rate equations.

At the end of the subroutine, we accumulate the heat transfer, mass charge, heat transfer areas, pressure

drop of the refrigerant, and calculate the air temperature. The Figure C.3 shows the flow chart of the condenser

subroutine. Because the difference of the circuit numbers in simultaneous and new models, we get different UA and

areas for three zones as well as the mass charge in subcooling zone. However, the total heat transfer is almost the

same because air-side heat transfer coefficient is always the dominant one.

C.2.1.1 State transition
There is another point we need to put attention to, which is the state transition point in the middle of each

element. At the beginning of each element, we decide the current state of the refrigerant. However, there is

possibility the refrigerant changes the state among superheat, two-phase and subcooling in the middle of simulation

on the element. We have two methods to deal with these elements: we can divide the whole heat exchanger into

small enough elements, where we suppose there is no transition. Because the element is small enough, the result is

also acceptable. Another method is that we calculate the transition point inside the element, and then divide the

element into two smaller elements. We calculate these two elements sequentially. In our current model, we use the

latter method to decide the transition point, then call the subroutines with the exact lengths to exactly simulate the

smaller elements although the difference between these two results is negligible.

C.2.1.2 Subroutine description
In the condenser main program, named condenser.f, there is a logical variable to decide which algorithm

should be called to simulate it:

 If (downstream) then
 Call dwnstmCond(Pincond, hincond,houtC_calc,poutC_calc,
 & QtotC_calc,AtotC_calc,heightC_calc,AfrC_calc,
 & massC_calc,QsupC,Q2phC,QsubC,AsupC,A2phC,AsubC,
 & T2phin,T2phout,P2phin,P2phout,TphinC,TphoutC)

 56

Figure C.3 Flow chart for condenser subroutine

Start the subroutine

Pass inputs

Call Structure
file

No Call structure
file

Yes

Call geometry
subroutine

No Call geometry
subroutine

Yes

superheat Two-phase Subcooling

Call superheat
subroutine

Call twophase
subroutine

Call subcool
subroutine

yes
yes yes

Last
element

yes

Return calcs

Pin = pout
Hin = hout

 57

 Else
 Call upstmCond(Poutcond,houtcond,hinC_calc,pinC_calc,
 & QtotC_calc,AtotC_calc,heightC_calc,
 & AfrC_calc,massC_calc,QsupC,Q2phC,QsubC,AsupC,
 & A2phC,AsubC,T2phin,T2phout,P2phin,P2phout,
 & TphinC,TphoutC)
 Endif

Consequentially, two different groups of residual equations are used separately to simulate these two

algorithms, which are listed in the main program:

If (downstream) then

10 R(cond+0) = MtotC - massC_calc
 goto 5000

20 R(cond+2) = Acond - AtotC_calc
 goto 5000

30 R(cond+1) = Qcond - QtotC_calc
 goto 5000

40 R(cond+3) = AfrC - AfrC_calc
 goto 5000

50 R(cond+4) = heightC - heightC_calc
 goto 5000

60 R(cond+5) = Poutcond - PoutC_calc
 goto 5000

70 R(cond+6) = houtcond - houtC_calc
 goto 5000

80 R(cond+7) = degsubcool - degsubcool_calc
 goto 5000
 else

100 R(cond+0) = MtotC - massC_calc
 goto 5000

200 R(cond+1) = Acond - AtotC_calc
 goto 5000

300 R(cond+2) = Qcond - QtotC_calc
 goto 5000

400 R(cond+3) = AfrC - AfrC_calc
 goto 5000

500 R(cond+4) = heightC - heightC_calc
 goto 5000

600 R(cond+5) = hincond - hinC_calc
 goto 5000

700 R(cond+6) = Pincond - PinC_calc
 goto 5000

800 R(cond+7) = degsubcool - degsubcool_calc
 goto 5000
 endif

The variables affixed with ‘calc’ are returned from the sequential subroutine called above. All the residual

equations are sent to the ACRC solver, which simultaneously solves them and updates the variables in each iteration

until the final solution is reached.

When the sequential subroutine is called, the main program transmits the input values to it. In each

component, there is a file named ‘XK.update’, shared by the system. It gives a way for the component to access the

 58

initial guess values for X variables, specified interchangeable variables and parameters. The flow process inside the

sequential subroutine is described below. First of all, there is a logical to indicate whether the element configuration

has already been read from the file, ‘condenser.txt’, which defines the total number of the elements, the number of

parallel circuits in each element, and total number of tube passes, etc. In order to avoid recompiling, the logical

variable is used to indicate whether subroutine already has initialized the arrays, which store the information listed

above. If this information has already been read, this input step will be skipped.

 if (.not. elementread) then

 call Readelem(NelpassC,ElperpassC,ModstartC,airinputC,

 & NparamodC,NcircuitC,'condinput.txt')

 elementread = .true.

 endif

The logical variable, elementread, is initialized as ‘False’, causing the information to be loaded before the

calculation. After the first iteration, elementread is set to ‘true’.

The next step is to calculate the condenser geometry. Each element has the same length. Refrigerant-side

and air-side heat transfer areas for each circuit are calculated as well as other variables used in further calculation in

this subroutine, which is named FTcondgeom.

 call FTcondgeom(DinC,DoutC,NtubesperslabC,VtubedistC,WidthC,

 & height,LRtrnBndC,FinthC,FinPtchC,

 & TuberowsC,HtubedistC,NelpassC,ElperpassC,

 & thickC,DLC,Afr,VRtrnBndC,DcC,AffC,AairC,

 & coilfactC,Volume,Area,AadivAffC,CSareaC)

The next part is the core of the finite element simulation. We use downstream algorithm to simulate this

condenser, so we start from the refrigerant inlet and the air inlet. The first step is to decide whether the current

numbered element is over the boundary of the maximal element number by the ‘do-while’ control loop. If so, we

will skip the loop to return the calculated variables to condenser main program. Otherwise, calculation will be

continued until the last element.

do while (element .le. (NelpassC * ElperpassC))

 …

 …

 enddo

At the beginning of each element, we decide the current inlet status of the refrigerant: superheated, two

phase or subcooled based on the element inlet, pressure and enthalpy:

hsatv = hpx(pin,1.0)
 hsatl = hpx(pin,0.0)
 if (hin .ge. hsatv)then
 vapor = .true.
 twoph = .false.
 liquid = .false.
 else if (hin .ge. hsatl) then
 vapor = .false.

 59

 twoph = .true.
 liquid = .false.
 else
 vapor = .false.
 twoph = .false.
 liquid = .true.
 endif

We have three subroutines to deal with vapor, liquid or two-phase, respectively, which are named supeldwnstmC,

tpheldwnstmC, subeldwnstmC.

 if (vapor) then
 call supeldwnstmC(hin,Pin,wlocal,
 & Tairout(airinputC(element)),mdot,DLC,Area,Volume,
 & AaDivAffC,AffC,coilfactC,DcC,hout,Pout,
 & Tairout(element),Qsup,Q2ph,Asup,A2ph,Vapor,twoph,
 & liquid,mass,hsupC)

else if (twoph)then
 call tpheldwnstmC(hin,Pin,wlocal,
 & Tairout(airinputC(element)),md ot,DLC,Area,Volume,
 & AadivAffC,AffC,coilfactC,DcC,hout,Pout,
 & Tairout(element),Qsub,Q2ph,Asub,A2ph,Vapor,twoph,
 & liquid,mass,h2phC,U2phClocal)

else if (liquid)then
 call subeldwnstmC(hin,Pin,wlocal,
 & Tairout(airinputC(element)),mdot,DLC,Area,volume,
 & AadivAffC,AffC,coilfactC,DcC,hout,pout,
 & Tairout(element),Qsub,Asub,mass,hsubC)
 endif

The local refrigerant mass flow rate, wlocal, is calculated for each circuit in the module as well as the air mass flow

rate by the following equations.

 wlocal = (w/dble(NparamodC(element)))/dble(NcircuitC(element))

 mdot = (MdotaC/AfrC)*(DLC*VtubeDistC)

Where NparamodC is the array to store the numbers of the parallel modules of the current element and NcircuitC is

the array to store the number of circuits in the current element, which are all initialized at the beginning of the

sequential subroutine by calling the text file, ‘condenser.txt’.

In each subroutine simulating the small element, the traditional ε-NTU method is used to calculate the heat

transfer of the element. The governing equations used in the finite element are the same as the simultaneous models.

After simulating each element, we accumulate the designed variables from each element as shown below:

Qsuptot = Qsuptot + Qsup*dble(NcircuitC(element))
 Q2phtot = Q2phtot + Q2ph*dble(NcircuitC(element))
 Qsubtot = Qsubtot + Qsub*dble(NcircuitC(element))
 Asuptot = Asuptot + Asup*dble(NcircuitC(element))
 A2phtot = A2phtot + A2ph*dble(NcircuitC(element))
 Asubtot = Asubtot + Asub*dble(NcircuitC(element))
 masstot = masstot + mass*dble(NcircuitC(element))
 mtotalC = mtotalC + mdot*dble(NcircuitC(element))

 60

When the subroutine finishes the final element, it skips out of the ‘do-while’ loop. The variables above are the final

values describing the performance of the component, which are returned to the main program (design variables) or

the user interface (calculated variables).

Within an element there may be a transition between superheat and two-phase, or between two phase and

subcooled. There are two methods to deal with this problem: the first is to ignore the transition since we usually

divide the heat exchanger into small enough elements that the difference is negligible; the other method is to

calculate the real transition location inside the element, and then divide the current element into two elements, with

each of them calling the corresponding subroutine with the real lengths. We use the latter method to deal with

problem currently.

The calculated variables are returned by the sequential subroutine to the main program, where they appear

in the residual equations. The residual equations are sent to ACRC solver and are simultaneously solved.

C.2.2 Expansion device
The ACRC finite difference adiabatic capillary tube model developed by Peixoto and Bullard (1994) has

been implemented in RACMOD. This model is integrated into the whole RACMOD system without rewriting. A

captube option is selected by appropriately setting the parameter “CapTubeSelect”. Setting CapTubeSelect =1

specifies the ACRC captube and CapTubeSelect=2 specifies the ASHRAE captube. If CapTubeSelect is a negative

number, then the design model is chosen and user needs to specify the amount of the evaporator superheat.

C.2.3 Compressor
A manufacturer-supplied compressor map is used to predict the compressor mass flow rate and power

consumption as a function of condensing and evaporating temperatures. Bridges and Bullard (1994) provided

details about this component.

C.2.4 Evaporator
Like the condenser, the residential air conditioner evaporator model assumes a crossflow heat exchanger

with uniform inlet air temperature and velocity. There is also a stand-alone subroutine to simulate this heat

exchanger, where the finite element algorithm is used. Inside the sequential subroutine, modular concept is used to

simplify the simulation. There are six parallel circuits, and each one is considered identical module. We only need

to simulate one of them, dividing the mass flow by the number of the modules. Then the total heat transfer and mass

charge result from timing the number by the performance of single module. The whole module is equally divided

into hundreds of small elements, and heat transfer coefficients, pressure drop, heat transfer and mass charge are also

calculated locally and accumulated together to simulate the total heat transfer performance. Each element is solved

by a series of heat transfer equations that utilize an ε-NTU method sequentially. Two regions of the heat exchanger

require unique governing equations. The two regions are the superheated and two-phase refrigerant zones. With the

finite element approach, a few elements will likely experience a zone change within their volume. In the model, the

element is either totally two-phase or superheated and the error introduced by this assumption is negligible if the

element is small enough. The inlet enthalpy of each element is checked to determine if it is in two-phase or

superheated zone.

 61

Evaporator subroutine shares the same flow chart as the condenser subroutine. The big difference is that

we need to deal with dehumidification since there is water condensed from the hot air. Depending upon the

circumstances of the operating condition, an evaporator may operate with totally dry surface, totally wet surface or

partially dry / partially wet surface. Due to circuiting, it may happen that the refrigerant rejects heat to the air if the

upwind element is colder. So if the air inlet temperature to an element is lower than the refrigerant inlet temperature,

the element is assumed to be totally dry because the refrigerant is rejecting heat instead of absorbing heat.

If the refrigerant inlet temperature to an element is higher than the air inlet dew point temperature, the

element is assumed to be totally dry and we do not need to calculate the mean fin temperature at the leading edge.

Otherwise, the mean fin temperature at the leading edge has to be calculated to determine the surface condition.

In partial or total wet element, Log mean enthalpy method is introduced to calculate the total heat transfer,

including both sensible and latent heat transfers. The mean air enthalpy difference is given by

LMhDAUQ awot ,=
 Eq. C.1

Where

() ()












−
−

−−−
=

rosao

risai

rosaorisai

hh
hh

hhhh
LMhD

,

,

,,

ln

We may show that

()
() wo

mw

wFFrpwo

wFmw

rrp

aR
wo

h
b

AAh
b

hA
Ab

U

,

,

,,,

,,

,

',

/
1
1

+
+

−
+

=

η
η

 Eq. C.2

Where mwb , is evaluated at the mean surface temperature of the water film on the fin. wF ,η is the fin

efficiency for wet surface.

We have to separate the sensible and latent capacity for enthalpy potential method after the total capacity is

obtained. We use the traditional ε-NTU method to calculate the sensible heat transfer, and then deduct it from the

total heat transfer to get the latent part.

C.2.4.1 Totally dry, partially wet or fully wet
Depending upon the circumstances of the operating condition, an evaporator may operate with totally dry

surface, totally wet surface or partially dry / partially wet surface. Figure C.4 describes the process we use in the

current model.

 62

Figure C.4 Process of determining surface condition

If the refrigerant inlet temperature to an element is higher than the air inlet dew point temperature, the

element is assumed to be totally dry and we do not need to calculate the mean fin temperature at the leading edge.

Otherwise, the mean fin temperature at the leading edge has to be calculated to determine the surface condition.

Assuming that the surface is initially dry and the refrigerant temperature is constant on a small element, we

can write the 1-D heat transfer rate equation

() ()rarprr ttUAttAh −=− Eq C.3

Where pt is the tube surface temperature.

Totally dry
Yes

No

Location>L

Partia lly dry

Calculate the location where
condensation just begins

Yes
iria tt ,, ≤ Totally dry

Calculate the fin mean temperature at the
leading edge, fmit

Yes

No

dpimf tt ≤,,
Totally wet

No

irdp tt ,≤ Totally dry

Yes

No

 63

rrsuraa AhAhUA
111

+=
η

 Eq C.4

We also have

() ()pafmfa tttt −=− η, Eq C.5

Where mft , is the fin mean temperature.

()







−








−−= ra

rr
famf tt

Ah
UA

tt 1, η Eq C.6

If the mean fin temperature at the leading edge is lower than the air inlet dew point temperature, the surface

is totally wet. If the mean fin temperature at the leading edge is higher than the air inlet dew point temperature, we

have to determine if the surface is totally dry or not. Recall that when the fin mean temperature is equal to the air

inlet dew point temperature, condensation begins. We have






 −−






 −−

=

rr
f

r
rr

fdp

oa

Ah
UA

tAh
UAt

t
11

1

,

η

η
 Eq C.7

The heat transfer area needed to make mean fin temperature equal to the air inlet dew point temperature is

obtained by

() LMTDUAttcm dryoaiaapa =− ,,, Eq C.8

Where
() ()

roa

ria

roaria

tt
tt

tttt
LMTD

−
−

−−−
=

,

,

,,

ln
 Eq C.9

If dryUA is larger than UA , the surface is totally dry. If dryUA is smaller than UA , the surface is partially

dry and the ratio of dryUA over UA is the dry fraction of the whole heat transfer area.

C.2.4.2 Subroutine description
The Figure C.5 describes the real flow chart in the sequential subroutine called by the evaporator main

program. The structure of the evaporator is very similar with the condenser, but the main difference is that we have

more lines to deal with the dehumidification since some water will condense from the water air, more details are

shown above.

 64

Start the subroutine

Pass inputs

Call structure
file

No Call structure
file

Yes

Call geometry
subroutine

No Call geometry
subroutine

Yes

 65

Figure C.5 Evaporator subroutine flow chart

Call superheat
subroutine

Element initialization

Hin .gt. hpx(pin,1.0)

yes

Call 2ph
subroutine

Total
dry

Dry subroutine

yes

Part
wet

Partially Wet
subroutine

Fully wet
subroutine

no

no

no

Qtot = Qtot + Qlocal
Mtot= Mtot + Mlocal
Asup = Asup + Alocal
A2ph_wet = A2ph_wet + Alocal
A2ph_dry = A2ph_dry + Alocal

Last element

End of
subroutine

yes

no
hin = hout
pin = pout

 66

Similar to the condenser component, we have two finite element algorithms to deal with the simulation:

downstream marching algorithm and upstream marching algorithm. We have logical variable to call the right

subroutine for the simulation in the evaporator main program, ‘EVAPORATOR.F’. Consequentially, we have two

groups of residual equations for different algorithms, shown below.

If (downwind) then

 Call dwnstmevap(Pinevap, hinevap,houtE_calc,poutE_calc,
 & QtotE_calc,Qsns_calc,Qlat_calc,AtotE_calc,
 & f2phwet,A2ph,heightE_calc,AfrE_calc,massE_calc,
 & T2phout,P2phout,TphoutE,MWR_calc)

Goto (10,20,30,40,50,60,70,80,90,100), EQNUM

10 R(evap+0) = MtotE - massE_calc
 goto 5000
20 R(evap+1) = Aevap - AtotE_calc
 goto 5000
30 R(evap+2) = Qevap - QtotE_calc
 goto 5000
40 R(evap+3) = AfrontE - AfrE_calc
 goto 5000
50 R(evap+4) = heightE - heightE_calc
 goto 5000
60 R(evap+5) = Poutevap - PoutE_calc
 goto 5000
70 R(evap+6) = houtevap - houtE_calc
 goto 5000
80 R(evap+7) = pwrfanE -PwrfanE_calc
 goto 5000
90 R(evap+8) = MWR -MWR_calc
 goto 5000
100 R(evap+9) = degsup - degsup_calc
 goto 5000

else
 call upstmevap(Poutevap,houtevap,hinE_calc,pinE_calc,
 & QtotE_calc,Qsns_calc,Qlat_calc,AtotE_calc,
 & f2phwet,A2ph,heightE_calc,AfrE_calc,massE_calc,
 & T2phout,P2phout,TphoutE,MWR_calc)

 Goto (110,120,130,140,150,160,170,180,190,200) , EQNUM

110 R(evap+0) = MtotE - massE_calc
 goto 5000

120 R(evap+1) = Aevap - AtotE_calc
 goto 5000

130 R(evap+2) = Qevap - QtotE_calc
 goto 5000

140 R(evap+3) = AfrontE - AfrE_calc
 goto 5000

150 R(evap+4) = heightE - heightE_calc
 goto 5000
160 R(evap+5) = Pinevap - PinE_calc

 goto 5000
170 R(evap+6) = hinevap - hinE_calc

 67

 goto 5000
180 R(evap+7) = pwrfanE -PwrfanE_calc

 goto 5000
190 R(evap+8) = MWR -MWR_calc

 goto 5000
200 R(evap+9) = degsup - degsup_calc

 goto 5000
endif

When we call the evaporator subroutine, the inputs are passed into the subroutine. The ‘XK.update’ file are

shared by the whole workspace, so the initial guess values for unknown variables and parameters can be accessed in

any file if the ‘XK.update’ is included in the declaration. During the iterations, all of the residual equations are sent

to the Newton-Raphson solver with the calculated variables from the sequential subroutine.

At the beginning of the sequential subroutine, there is also a logical variable, elementread, designed to

indicate whether the geometry configuration has been transmitted from the text file, ‘evaporator.txt’, to the arrays,

‘modstartE(maxmod)’, ‘airinputE(maxNelem)’, ‘NparamodE(maxNelem)’, ‘NcircuitE(maxNelem)’, used by the

subroutine for the simulation. Otherwise, the subroutine written to initialize the arrays is called.

if (.not. elementread) then
 call Readelem(NelpassE,ElperpassE,ModstartE,airinputE,
 & NparamodE,NcircuitE,'evapinput.txt')
 elementread = .true.
endif

After the geometry initialization, the subroutine designed for the element geometry calculation is called.

This calculation is performed for each circuit, including the refrigerant-side and air-side heat transfer area, volume

of element, frontal area, frontal height, wall thickness and the ratio of air-side heat transfer area to refrigerant-side,

which are used in the calculation in each element.

Call FTevapgeom(DinE,DoutE,NtubesperslabE,VtubedistE,WidthE,

 & height,LRtrnBndE,FinthE,FinPtchE,

 & TuberowsE,HtubedistE,NelpassE,ElperpassE,

 & thickE,DLE,Afr,VRtrnBndE,DcE,AffE,AairE,

 & coilfactE,Volume,Area,AadivAffE,CSareaE,Ar)

The next step is to initialize the variables, including refrigerant state inputs, air state inputs and both

refrigerant and air mass flow rates for local element. Then we start to simulate the heat exchanger element. A ‘Do-

while’ loop is introduced to decide whether we are in the range of the maximal element number.

 do while (currentelement .le. maxelement)

 ……

 ……

 end do

At the beginning of each element simulation, we decide the refrigerant inlet status: two phase or superheat,

then call different subroutines for the simulation.

hsatv = hpx(pin,1.0)
 hsatl = hpx(pin,0.0)

 68

 if (hin .ge. hsatv)then
 vapor = .true.
 twoph = .false.
 else if (hin .ge. hsatl) then
 vapor = .false.
 twoph = .true.
 endif

The refrigerant and air mass flow rates are calculated using following equations:

 wlocal = (w/dble(NparamodE(element)))/dble(NcircuitE(element))
 mdot = (MdotaE/Afr)*(DLE*VtubeDistE)

The subroutines are called depending on the input status:

if (vapor) then
 call supeldwnstmE(hin,Pin,wlocal, Tairout(airinputE(element)),
 & RHout(airinputE(element)),mdot,DLE,Area,Volume,
 & AaDivAffE,AffE,Afr,coilfactE,DcE,hout,Pout,
 & Tairout(element),Qsup,Asup,Vapor,twoph,mass,
 & RHout(element))

else if (twoph)then
 call tpheldwnstmE(hin,Pin,wlocal, Tairout(airinputE(element)),
 & RHout(airinputE(element)),mdot,DLE,Area,Volu me,
 & AadivAffE,AffE,Afr,coilfactE,DcE,Qflux,hout,Pout,
 & Tairout(element),RHout(element),Qdry,Qsns,Qlat,
 & Adry,Awet,Vapor,twoph,mass,MWRel,Ar)
endif

In the subroutine called to simulate the element in two -phase state, we check whether there is water

condensing from the warm air onto the evaporator surface, by comparing the surface temperature and dew point

temperature. As a result, there are three possibilities: totally dry surface, partially wet surface and fully wet surface.

If (fully dry) then
 call drysection(hin,Pin,wlocal,G,Tairin,RHin,mdot,Cair,
 & Volume,AadivAffE,AffE,Afr,coilfactE,DcE,Qflux,
 & Tairout,RHout,Qdry,Area)

else if (partially wet) then
 call Pwetsection(hin,pin,Tdew,wlocal,G,Tairout,Tairout,RHout,
 & mdot,Cair,Volume,AadivAffE,AffE,Afr,coilfactE,DcE,
 & Qflux,Tairout,RHout,Qsns,Qlat,(Area-Adry),MWRel)

else if (fully wet) then
 call wetsection(hin,pin,Ts,wlocal,G,Tairin,Tairin,RHin,
 & mdot,Cair,Volume,AadivAffE,AffE,Afr,coilfactE,DcE,
 & Qflux,Tairout,RHout,Qsns,Qlat,Awet,MWRel,1,Ar)
endif

Inside the subroutines, the ε-NTU method is used to calculate the heat transfer. The governing equations

used to calculate the heat transfer coefficients and pressure drop are the same as simultaneous models. The locally

calculated variables are accumulated to describe the performance of the evaporator like below:

Qsnstot = Qsnstot + (Qsns+Qdry)*dble(NcircuitE(element))
Qlattot = Qlattot + Qlat*dble(NcircuitE(element))

 69

Qsuptot = Qsuptot + Qsup*dble(NcircuitE(element))
Asuptot = Asuptot + Asup*dble(NcircuitE(element))
A2phdrytot = A2phdrytot + Adry*dble(NcircuitE(element))
A2phwettot = A2phwettot + Awet*dble(NcircuitE(element))
masstot = masstot + mass*dble(NcircuitE(element))
MWRtot = MWRtot + MWRel*dble(NcircuitE(element))

When the calculation skips out of the loop, all the calculated variables above will be returned back to the

evaporator main program used in the residual equations. If they do not match the final solution, the residual

equations are sent to the Newton-Raphson solver for further iterations. Newton-Raphson solver updates the input

variables for sequential subroutine, which is called until reaching the final solution.

C.3 Residual equations
We greatly reduce the number of residual equation as well as the number of the initial guess values. The

Figure C.6 shows us the residual equations, associated to each component and connection point between

components.

Compressor residual equations

R(comp+0) = houtcomp – houtcomp_calc

R(comp+1) = mcomp – mcomp_calc

R(comp+2) = Qcomp – Qcomp_calc

R(comp+3) = powercomp – powercomp_calc

R(comp+4) = Massfrac – Massfrac_calc

R(comp+5) = Tsatincomp – Tsatincomp_calc

R(comp+6) = Tsatoutcomp – Tsatoutcomp_calc

Compressor
subroutine

Call subroutine

Return ‘calc’
variables

Connection residual equations

R(line+0) = poutcomp – pddisline - pinC

R(line+1) = houtcomp – hinC – QDL/w

Capillary tube residual equations

R(cap +0) = houtexp – houtexp_calc

R(cap +1) = Poutexp – Poutexp_calc

R(cap +2) = Mcap – Mcap_calc

R(cap +3) = Xcritcap – Xcritcap_calc

R(cap +4) = Pcritcap – Pcritcap_calc

R(cap +5) = DeltaP – DeltaP_calc

R(cap +6) = Vcap – Vcap_calc

Capillary
tube

subroutine

Call subroutine

Return ‘calc’
variables

 70

Condenser residual equations

R(cond +0) = houtC – houtC_calc

R(cond +1) = PoutC – PoutC_calc

R(cond +2) = Qcond – Qcond_calc

R(cond +3) = TaoutC – TaoutC_calc

R(cond +4) = Mcond – Mcond_calc

R(cond +5) = degsub – degsub_calc

R(cond +6) = Acond – Acond_calc

Condenser
subroutine

Call subroutine

Return ‘calc’
variables

Connection residual equations

R(line+2) = PoutC – PinLL

R(line+3) = houtC – hinLL

R(line+4) = hinexp – houtLL

R(line+5) = pinexp – poutLL

Connection residual equations

R(line+6) = Poutexp – Pinevap

R(line+7) = houtexp – hinevap

Evaporator residual equations

R(evap +0) = houtE – houtE_calc

R(evap +1) = PoutE – PoutE_calc

R(evap +2) = Mevap – Mevap_calc

R(evap +3) = TaoutE – TaoutE_calc

R(evap +4) = Qevap – Qevap_calc

R(evap +5) = degsup – degsup_calc

R(evap +6) = MWR – MWR_calc

R(evap + 7) = PwrfanE – PwrfanE_calc

R(evap + 8) = Aevap – Aevap_calc

Evaporator
subroutine

Call subroutine

Return ‘calc’
variables

Connection residual equations

R(line+8) = PoutE – PinSL

R(line+9) = houtE – hinSL

R(line+10) = hincomp – hinSL – QSL/w

R(line+11) = pincomp – pinSL + pdsuctline

 71

Figure C.6 System residual equations

System residual equations

R(sys +0) = SHR – SHR_calc

R(sys +1) = COP – COP_calc

R(sys +2) = Mtotal – Mtotal_calc

R(sys +3) = EER – EER_calc

R(sys +4) = LoadSen – LoadSen_calc

R(sys +5) = mainf – mainf_calc

R(sys +6) = LoadLat – Loadlat_calc

R(sys + 7) = Load – Load_calc

R(sys + 8) = OnTime – OnTime_calc

R(sys + 9) = Woutdoor – woutdoor_calc

R(sys +10) = Ach – Ach_calc

R(sys +11) = Tdpoutdoor – Tdpoutdoor_calc

R(sys +12) = LoadSHR – LoadSHR_calc

System
subroutine

Call subroutine

Return ‘calc’
variables

