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Abstract 

A general framework is proposed for simulating complex heat exchanger geometries in a manner suitable 

for sequential solution of the refrigerant- and air-side equations for mass, momentum and energy.  The sequential 

solution enables the algorithm to be applied to a single module of a complex heat exchanger, and then integrated 

with other modules within a simultaneous equation solver employing a Newton-Raphson approach.  This report also 

describes the integration of component subroutines into system simulation models for air conditioners and 

refrigerators.  The modular approach is illustrated by describing its application to a dual-evaporator refrigerator 

simulation.  
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Chapter 1: Introduction 

1.1 Background 
Earlier versions of the ACRC refrigerator and a/c simulation models consisted of an equation solver and a 

set of governing equations that simulated the components. The ACRC solver utilized a Newton-Raphson algorithm 

to simultaneously solve the system governing equations.   The biggest advantage of the solver is that it allows the 

input parameters and output variables to be interchangeable without the need to reprogram the model. The room air 

conditioning simulation model developed by Bridges and Bullard (1995), was summarized by Mullen et al. (1998), 

and its development and validation are described in Mullen, Bridges and Bullard (1998), Kirkwood and Bullard 

(1999). Woodall and Bullard (1996) developed the RFSIM simulation model.  Kirkwood and Bullard (1999) 

developed the split system model with microchannel heat exchangers, and Stott and Bullard (1999) validated it.  

Recently, Stein, Bullard and Newell (2000) began to develop the dual evaporator simulation model and Gerlach and 

Newell (2000) finalized it.  

Although the system simulation model was proved an accurate and sophisticated design tool, the program 

had two prominent limitations.  The NR algorithm requires the user to provide accurate initial guesses for all output 

variables in order to ensure convergence.  For many obscure output variables, this proved difficult and frustrating.  

Reducing the number of required initial guesses was therefore identified as an important goal in the development of 

the next generation of simulation programs.  That approach was described by Harshbarger and Bullard (2000) and 

included another desirable feature: the ability to simulate modern heat exchanger designs, particularly exchangers 

having complex circuiting, or consisting of multiple slabs in the airflow direction. The geometry of each heat 

exchanger module may be the same or different from others.  

Another limitation of the original version was that it could only simulate one system with specified 

geometry.  To simulate different systems, it was necessary to rewrite the governing equations.  This led to a 

proliferation of distinct models, with the need to keep updating all of them. This report describes the implementation 

of the modular system simulation models, which also accommodates systems having multiple evaporators or 

multiple condensers systems (e.g. dual evaporator refrigerator and minivan system). 

A new model structure was created to implement the modular simulation approach. Finite element solutions 

of the heat exchangers were developed for the condenser and evaporator, allowing simulation of complex 

geometries that were not possible with conventional methods.  The finite element solutions were integrated into the 

system model in a manner that reduced the number of required initial guesses and therefore, the burden on the user.  

In this modular structure, each component in the system simulated by a stand-alone subroutine, solved sequentially 

in a self-contained manner.  Therefore, each component simulation can easily be isolated and/or integrated into a 

simultaneous set of system-level equations.   

This kind of modeling technique allows the simulation of complex heat exchanger designs while 

maintaining the interchangeability of the inputs and outputs; and also reduces the burden on the user to provide 

many initial guesses.  A further advantage of this algorithm is that the initial guesses are restricted to readily known 

quantities.  The enhanced algorithm uses a novel approach by simultaneously employing a NR solver for the system 
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and a sequential simulation for each component.  This kind of modeling technique also gives us a easier way to build 

general structured framework for simulating multi-evaporator or multi-condenser systems.  

Chapter 2 of this report details the general framework of the modular simulation model.  The mathematics 

of the new algorithm is discussed in general terms, along with the process of interfacing a sequential simulation 

within a Newton-Raphson solution.  Chapter 3 explains the mechanics and implementation of the new algorithm for 

multiple heat exchangers.  Chapter 4 describes the modular structure of the dual evaporator simulation model.  

Appendix A explains the captube-suction line heat exchanger model design.  Appendix B explains how one could 

use the single evaporator simulation model to simulate a dual evaporator refrigerator.  Appendix C concisely 

describes the a/c modular simulation model, and provides details of component subroutines and algorithms to 

simulate the complex heat exchangers.  
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Chapter 2: General Model Description 

The structure of the ACRC refrigerator and air-conditioner models is versatile and the models are accurate 

for simulating various types of systems and components.  The principal advantage is that the structure is 

independent of the user’s selection of dependent and independent variables.  This is unlike conventional models 

employing the method of successive substitution in which the model structure is tied uniquely to an a priori selection 

of input and output variables. 

At the same time, the limitations of this kind of structure are obvious and frustrating.  The biggest 

disadvantage is that user and programmer need to provide a set of internally consistent and reasonably accurate 

initial guess values for all unknown variables.  Otherwise, the system model and its Newton-Raphson solution 

algorithm will not converge to a solution.  Practically, it has proved to be very difficult and a big burden to 

programmers and users, for example when switching refrigerants and therefore needing to alter the initial guess 

values of enthalpies, subcooled areas, etc.  Now, reducing the number of system initial guess values is an important 

goal, because heat exchanger geometries are becoming more complex.  A single heat exchanger can have very 

complex circuiting or many slabs, or each component can have multi-exchangers.  A good design model structure is 

needed to simulate the more complicated heat exchangers and systems.   

Harshbarger and Bullard (2000) have suggested a new model structure to simulate the a/c systems.  In order 

to address the limitations described above, finite element solutions of the heat exchangers were developed for the 

condenser and evaporator. The finite element structure allows the simulation of complex geometries that were very 

hard within the conventional N-R framework.  The finite element solutions were integrated into the system model in 

a manner that reduced the number of required initial guesses and therefore, the burden on the user.  To further the 

capabilities of the model, a modular structure was adopted.  Using a structure similar as TRNSYS (Klein et al., 

1976), each component in the system is solved in a self-contained subroutine.  Therefore, each component 

simulation can easily be isolated and/or integrated into a simultaneous set of system-level equations.   

This kind of modeling technique allows the simulation of complex heat exchanger designs while 

maintaining the interchangeability of the inputs and outputs, because the core part of original model, NR solver, is 

still used in the new model simulation.  It also reduces the burden on the user to provide many initial guesses; the 

user  can restrict initial guesses to a subset of variables that can be easily known or measured.   

The new model structure uses a novel approach by simultaneously employing a NR solver and a series of 

sequential simulations.  Newton-Raphson solver is still the core in the main program, which simultaneously solves 

all the residual equations simulating the system.  NR solver also provides new updated guess values of unknown (X) 

variables for the next iteration until the system converges to the final solution. A finite-element approach is used in 

sequential component to simulate the complex heat exchangers.  

All the component-specific sequential subroutines can stand alone, providing more flexibility for 

programmers to integrate different stand-alone subroutines into the mo del.  They also facilitate simulation of multi-

heat exchanger systems, which are becoming more common.  The corresponding subroutines can be integrated into 

the system without rewriting any code.  A detailed discussion of mechanics, structures and implementations will be 

introduced in the following sections.  
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2.1 Model structure 
In the original Newton-Raphson simulation model developed by Mullen et al. (1998), all the residual 

equations are stored in a single file.  The new model uses sequential subroutines to simulate each system component.  

In the hx subroutines, a finite-element approach is introduced to simulate more complicated geometries.  This 

technique greatly reduces the number of residual equations in the main program, which connects the components  

together to define the system.  The sequential subroutine transmits the calculated output variables back to the main 

program, so the Newton-Raphson solver can solve the residual equations simultaneously.  From the user 

perspective, only the component models are visible.  The NR equations and solver operate in the background, 

returning after each iteration a set of updated inputs to each of the component subroutines.  

The user initiates the simulation after selecting and providing values for the known independent variables 

(K’s), unknown output variables (X’s), and known parameters (P’s).  The internal relationships within the model 

complete the simulation.  The calculated values of the output variables (X’s), and the informative variables (C’s) are 

returned to the user, along with the known parameters (K’s) and the input parameters P that the user supplied to help 

specify components.    

Different systems may have different condenser or evaporator geometries (e.g. finned tube; microchannel; 

wire-on-tube, etc).  If we have already built self-contained subroutines for those types of geometries, the main 

program can just call the subroutines for components that are used in the simulated system, without necessity to 

rewrite the codes. The same compressor subroutine is used in different systems, but different compressor maps 

(curve fits) are chosen to calculate the mass flow rate and power consumption.  The new model structure is shown 

below.  

 

 
               Main Program 

(Newton-Raphson solver) 
Expansion Device 

Evaporator 
Subroutine 

Compressor 
Subroutine 

Condenser 
Subroutine Simultaneous 

Solutions 
Sequential 
Solutions 

 

Figure 2.1 General model structure 

 

In the general simulation model structure, which includes main program (NR solver is the core part), 

system components are simulated within their sequential subroutine.  This new model structure has two kinds of 
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calculations: simultaneous and sequential.  In main program, with the returns of calculated variables from sequential 

subroutines, NR solver simultaneously solves all residual equations, and in every iteration submits updated inputs 

unknown (X) variables to sequential subroutines.   

The internal structure of the subroutines was defined by the need to solve sequentially.  To accomplish this, 

the programmer pre-selected a subset of variables to be subroutine inputs.  This subroutine structure is transparent to 

the user, who is free to switch independent and dependent (X’s and K’s) at the overall structure’s user interface. 

Whenever one of the subroutine inputs is “unknown” to the user and the main program, the current or initial guess 

value for that variable is supplied as the input to the subroutine.   

Inside the sequential subroutine, the dependent and independent variable inputs (X’s and K’s) and 

parameters (P’s) are provided by main program.  A finite-element approach is used to sequentially simulate the heat 

exchangers and capillary tube based upon the geometry, running condition and inlet states.  The outputs from 

subroutine include two parts: 1) calculated variables suffixed with ‘_calc’ and returned to the main program and 2) 

calculated variables (Cs) that are not needed by the NR solver, but provide valuable information to the user and to 

programmers who wish to know about the system running condition.  For example, in HX subroutine, the total heat 

transfers are decided by two phase part, therefore the input or output enthalpies.  So the calculated heat transfer or 

enthalpy variables can not give us too much information, but subcooled or two-phase area ratios can tell us what is 

going on inside the subroutines, which is very useful in debugging procedure.  So generally, the whole calculation 

procedure involves simultaneous and sequential simulation.  

Not only the heat exchanger geometries are becoming more and more complicated, so also are a/c and 

refrigerator systems, as multiple evaporators are being served by a single condensing unit.  We are employing a 

finite-element approach to match the needs for individual heat exchangers.  For systems having multiple evaporators 

or compressors, a more general idea about the model structure is needed.  Figure 2.2 shows the more general 

structures used in simulating  cases where evaporator or condenser component is actually a combination of serial 

and parallel heat exchangers.  This may include a/c heat exchangers having multiple layers (slabs) or a refrigerator 

with freezer and food compartment evaporators in series.  We need to pay attention to the mass flow rates and inlet 

states of each heat exchanger as well as air flow directions because air flow directions decide which algorithm we 

should call to simulate the HX.  For serial cases, the outlet states values are equal to the inlet values of the coming 

heat exchanger with the equal mass flow rate.  But for parallel ones, each heat exchanger has the same inlet state 

values, but these mass flow rates are not necessary equal although their sum should be equal to the whole system 

mass flow rate.  More details about inlet states and mass flow rate distribution will be provided in the later 

discussion. 
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      Main Program 
        (Newton-Raphson Solver) 

Condenser Subroutines 
Sequential 
Solutions 

Evaporator Subroutines 

Expansion Device Compressor 
Subroutine 

Simultaneous 
Solutions 

W 

W 

 

Figure 2.2 New general model structure 

2.1.1 Main program 
In main program, the NR solver is the essential part.  It operates in the same manner as a traditional NR 

algorithm.  The solver simultaneously determines the solution to a given set of N equations, the same number as 

system variables (Xs in XK file).  The algorithm starts with an initial guess value for the ‘X’ variables from the user 

interface.  By utilizing first order derivative information, the NR solver iteratively improves the guess values until 

the solver converges to a solution.  During the solution of the simultaneous equations, the solver communicates with 

the sequential subroutines, submitting subroutine inputs, receiving calculated variables suffixed with ‘_calc’.  This 

communication is internal to the model and is transparent to the user. 

Firstly, the user initializes the system with providing values for parameters P, independent variables K and 

initial guesses for the dependent variables X.  The main program transmits these initial guess values and parameters 

needed by sequential subroutine.  Based on the inputs, subroutine sequentially calculates the output results: the 

output-calculated variables marked with “_calc” and the informative variables (Cs).  Cs are sent back to the user 

interface and ‘_calc’ variables are sent back to system equations that are solved simultaneously by Newton-Raphson 

Solver.   

The residual equations and the connections equations between major components are listed in the main 

program.  After the main program calls each sequential subroutine, which return component output “_calc” variables 

which are then used by NR solver to simultaneously solve residual governing equations, one associated with each 

“_calc” output from the component subroutines.   
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If there is no X variable in inputs of subroutines, the simulation will be finished just in one iteration.  

Because of the interchangeability between Xs and Ks at the user interface, Xs can be inputs to the subroutine in 

some cases.  Then, NR updates the input X variables with new calculated values in each iteration.  Main program 

iteratively calls components subroutines with new updates inputs until the NR solver converges to a solution.   

2.1.2 Sequential subroutines    
The sequential subroutine contains all the information needed to simulate a component, solving all the 

governing equations.  Without the force of NR solver, the subroutine will only solve a component for a certain set of 

specified input variables, parameters and geometry.  The inputs and outputs of the sequentially solved subroutine are 

not interchangeable.   

Harshbarger and Bullard (2000) built a new concept to divide the global set of subroutine inputs and 

outputs into four subsets: Set I, Set P, Set C and Set O, which are very helpful for our discussion.  Both Set I and Set 

P comprise the subroutine inputs, while outputs include Set C and Set O.  Set I is a subset of the interchangeable 

variables (X’s and K’s) from the main program.  Usually the sequential subroutine requires the inlet refrigerant and 

air states, mass flow rates for the air and refrigerant, and a set of variables that describe the heat exchanger 

geometry.  Unless the user happens to specify all these subroutine inputs as independent variables (K’s), the whole 

calculation needs more than one iteration.  Any Xs contained in the Set I is improved by NR solver in every 

iteration.  Set P is a subset of Ps needed by this subroutine, which are specified in XK file and not changed during 

the whole calculation.  

The subroutine outputs include a new category of variable, denoted a ‘calc’ variable.  The subroutine does 

not output actual value of the interchangeable variables.  Instead, the subroutine outputs ‘calc’ variables that 

represent the same quantities as interchangeable variables.  The ‘calc’ variables are suffixed with ‘calc’ in order to 

distinguish them from their corresponding interchangeable variables. All interchangeable variables (X’s and K’s) 

not input to the subroutine correspond to subroutine outputs, which are included in set O.  The ‘calc’ variables 

correspond to the interchangeable variables in Set O.  Together sets O and I include all M interchangeable variables 

(X’s and K’s), that is I∪O = X∪K = M (Harshbarger and Bullard, 2000).  Generally, the sequential structure of the 

subroutine involves solving for the heat exchanger outlet refrigerant and air states, performance variables (heat 

transfer, pressure drop and mass charge), and the remaining geometry values that simulate and describe the running 

conditions.   

Each sequential subroutine is called from the main program for simulating the associated component.  

Iteratively using new updated inputs from main program, subroutines  calculate outputs suffixed with ‘calc’, and 

return them to main program.  NR solver uses the new calculated outputs from subroutines to simultaneously solve 

the governing equations until converging to a solution.  If inputs to subroutines are all Ks and include no X 

variables, the calculation will be finished in one iteration because the inputs and outputs are specified and not 

interchangeable.  Otherwise, more iterations may be needed.  
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Inputs 

Set P 
 
Levap, Devap, 
AAFE, hevapNum, 
NSECTE, RTBEVP, 
ertmult, STE, rough,  
Etc.  

Set I 
 
Pin, hin, m& ref, 
m& air, Tairin, 

hairevap, alphaevap 

Outputs 

‘calc’ Variables  
(FROM SET O) 

 
Pout_calc, hout_calc, 
Qevap_calc,  Dpevap_calc 
Toutcalc, Mevap_calc, 
Taevapout_calc 
Xoe_calc/superheat_calc 

Set C 
 
Qsup, Q2ph,  Asup, 
A2ph, dpsup, dp2ph,  
Aevap,Caevap, vout, 
Evap2phX, etc… 

Evaporator subroutine 
 

Pout_calc = ocalc(Pin,hin,  m& ref,Tairin,etc.) 
hout_calc = ocalc(Pin,hin, m& ref,Tairin,etc.) 
Qevap_calc = ocalc(Pin,hin,  m& ref,Tairin,etc.)  
Dpevap_calc = ocalc (Pin,hin, m& ref,Tairin,etc.) 
Taevapout_calc = ocalc (Pin,hin, m& ref,Tairin,etc.) 
Mevap_calc = ocalc (Pin,hin, m& ref,Tairin,etc.) 
Tout_calc = ocalc (Pin,hin, m& ref,Tairin,etc.) 

 

Figure 2.3 Evaporator subroutine structure 

Figure 2.3 shows the structure of a simple dry evaporator sequential subroutine: the inputs (Set I and Set P) 

and the outputs (Set C and Set O).  All the outputs are functions of the inputs and can be sequentially calculated.   

In the subroutine, a finite-element approach is introduced to simulate heat exchangers having different 

geometries. Within the family of cross-flow heat exchangers, there are two possible configurations: the cross-

parallel flow case where the bulk refrigerant flow is travelling in the same direction as the air and the cross-counter 

flow case where the bulk refrigerant travels in the opposite direction of the airflow.  When the air and refrigerant 

streams flow in the same direction, the outlet variables for air and refrigerant are calculated for each element.  By 

marching downstream in the refrigerant flow direction, the states of both refrigerant and air are exactly determined.  

The outlet states from former element are the incoming states of the latter element.  The algorithm always marches 

in the downwind direction, to successively calculate the air temperatures.  When the bulk refrigerant and air flow in 

opposite directions, the algorithm again marches downwind, but in the upstream direction relative to the refrigerant 

flow.  In this (cross-counterflow) case, the subroutine inputs must include the refrigerant outlet states.  

For all kinds of cross-flow heat exchangers, there are three kinds of regions we need to consider: 

superheated, two-phase and subcooled refrigerant states, respectively.  Where a phase transition occurs inside a 

single finite element, the algorithms are able to handle this situation by solving an implicit equation to break the 

element into two parts.  Three logic flags variables are defined: supheat, twoph and subcool.  When they are true, the 

refrigerant is superheated, two-phase or subcooled, respectively.  At one time, only one of them can be true.  Along 

the flow direction of refrigerant, the heat exchanger is divided into the specified number of small elements.  Serially, 

each element is simulated by a group of sequentially solved governing equations.   

Because all elements are solved in numerical order and the outputs of one element are the inputs of the next 

element, only a few of them have state transitions and most of them just keep the state.  If the refrigerant is in the 

superheated state, we only need to watch for the transition into two-phase.  Whenever its enthalpy is less than 
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saturated enthalpy calculated by library function with current pressure and quality equal to 1.0 (hpx(plocal,1.0d0)), 

this element changes its state from superheated into two-phase.  Then different governing equations are used to 

simulate the following elements.  When the refrigerant is in two phases, we need to watch for the transitions to both 

subcooled and superheat.  If the enthalpy decreases, we watch for it to become less than the calculated enthalpy with 

local pressure and quality equal to 0 (hpx(p,0.0d0), where the element is changing to a subcooled state.  If the local 

enthalpy is greater or equal to the calculated enthalpy, hpx(plocal, 1.0d0), the following element will be in superheat 

states.  Each element is solved by using the governing equations associated with the appropriate states.  Within the 

subroutine, arrays with same number as elements are defined to store local refrigerant heat transfer, pressure drop 

and refrigerant mass.  Based on the overall energy balance, we also can calculate the air inlet or outlet temperature 

of the heat exchanger.  Finally, the arrays containing local heat transfer, pressure drop and refrigerant mass are used 

to calculate the subroutine output variables.  Then these calculated variables (Set O) are returned back to residual 

equations in main program.  

 

 

Figure 2.4 Condenser parallel flow configurations 

For cross-flow case, we have two kinds of configurations: parallel airflow and counter airflow.  

Harshbarger and Bullard (2000) have developed two algorithms, respectively: downstreaming for the cross-parallel 

configuration, and upstreaming for the cross-counterflow configuration.  The above Figure 2.4 shows the transitions 

in condenser parallel flow case.  In either algorithm, the calculation begins from the inlet end of the air.  There are 

two transition points in the heat exchanger along the flow direction of the refrigerant: one is from superheat to two-

phase, the other one is from two-phase to subcooled. In total, five conditions may exist for any given element.  They 

are superheated vapor, two-phase refrigerant, subcooled liquid, transition between superheated vapor and two-phase 

refrigerant, and transition between two-phase refrigerant and subcooled liquid.  Each element is capable of deciding 

which conditions it is in and uses exact governing equations to simulate the element.  The upstreaming algorithm is 

similar to the downstreaming algorithm.  The only difference is the inputs: downstreaming needs refrigerant inlet 

states (inlet pressure and inlet enthalpy) as inputs and calculates the outlet states (outlet pressure and outlet 

enthalpy); upstreaming algorithm needs refrigerant outlet states (outlet pressure and outlet enthalpy) as inputs and 

calculates refrigerant inlet states as outputs.  This allows both algorithms to begin the calculation with the inlet air.  

Parallel  
Airflow 

Refrigerant 
superheat inlet 

Elements 

Refrigerant 
subcooled outlet 

State transition 1  

State transition 2 
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2.2 Communications 
Because the new model structure divides the whole system into individual stand-alone components, the 

communications between main program and sequential subroutines are very important issues.  There are three main 

kinds of communications in the new model structure: 1) communication between main program (NR solver) and 

each sequential subroutine; 2) communication between main program and supportive files; and 3) communication 

between sequential subroutines.  The communication between sequential subroutines also includes two kinds of 

situations: serial connection or parallel connection. More details will be provided in the following section.  

2.2.1 Communication between main program and sequential subroutine 
Each subroutine uses the same way to communicate with main program: getting inputs from main program 

and transmitting calculated variables back to main program.  All calculated variables are functions of the subroutine 

inputs, so they can be sequentially calculated.  There is a set of residual equations in the main program, associated 

with each component simulated by the sequential subroutine.   In a system simulation, NR solver simultaneously 

solves the residual equations corresponding to all the system components, using the calculated variables from all the 

sequential subroutines.  The same general structure can be used to simulate individual components.   

For component simulations the  NR main program is smaller because its residual equations correspond to 

the “calc” output variables from only one component subroutine.  Main calls the subroutine while allowing the user 

to interchange X’s and K’s.  As an example, Figure 2.4 shows the communication configurations between main 

program and refrigerator evaporator subroutine.  

The NR solver performs several iterations in determining the solution to a set of equations.  For the simple 

evaporator (component) simulation, the NR solver solves a set of seven simultaneous residual equations.  The solver 

simultaneously forces the values of each of the seven equations, written in residual format, to zero. The number of 

simultaneous equations is equal to the number of ‘calc’ variables from the evaporator sequential subroutine.  The 

seven NR residual equations are shown within the NR solver box.  Each equation equates an interchangeable 

variable with its corresponding subroutine output variable.   
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Inputs 

Set I 
Pin, hin, m& ref, m& air, 
Tairin, hairevap, 
alphaevap 

Set P 
 
Levap, Devap, AAFE, 
hevapNum, NSECTE, 
RTBEVP, ertmult, 
STE, rough, Etc.  

Outputs 

Set C 
 
Qsup, Q2ph,  Asup, A2ph, 
dpsup, dp2ph,  Aevap,Caevap, 
vout, Evap2phX, etc… 

‘calc’ Variables 
(FROM SET O) 

 
Pout_calc, hout_calc, 
Qevap_calc,  Dpevap_calc 
Toutcalc, Mevap_calc, 
Taevapout_calc 
Xoe_calc/superheat_calc 

Set P + Set I Set O 

Newton-Raphson solver 
 

f(1) = Pout - Pout_calc 
f(2) = hout – hout_calc 
f(3) = Qevap – Qevap_calc 
f(4) = Dpevap – Dpevap_calc 
f(5) = Taevapout- Taevapout_calc 
f(6) = Mevap- Mevap_calc 
f(7) = Tout- Tout_calc 

Evaporator subroutine 
 
Pout_calc = ocalc(Pin,hin, m& ref,Tairin,etc.)  
hout_calc = ocalc(Pin,hin, m& ref,Tairin,etc.) 

Qevap_calc = ocalc(Pin,hin, m& ref,Tairin,etc.)  
Dpevap_calc = ocalc (Pin,hin, m& ref,Tairin,etc.) 
Taevapout_calc = ocalc (Pin,hin, m& ref,Tairin,etc.) 
Mevap_calc = ocalc (Pin,hin, m& ref,Tairin,etc.) 
Tout_calc = ocalc (Pin,hin, m& ref,Tairin,etc.)  

 

Figure 2.4 main program/sequential subroutine communications 

At each iteration of the NR solver, the simultaneous equation set in Figure 2.4 is solved for new improved 

values of the ‘X’ variables. The process involves solving Equation 2.1, where [J] is the Jacobian matrix, {f} is the 

vector of NR residual equation values, and {∆X} is the vector used to update the values of the ‘X’ variables 

(Harshbarger and Bullard, 2000).   

{ } [ ] { }fJX 1−=∆  (2.1) 

The Jacobian, shown in Figure 2.5, consists of derivatives of the NR equations, f, with respect to the ‘X’ 

variables.  The derivatives in the Jacobian are approximated numerically, using Equation 2.2.  The first step in this 

process is to evaluate the NR equations using the known parameters (K’s) and the current iteration’s guess values 

for the unknown variables (X’s).  The results are seven scalar values for the NR residuals.  These values are nonzero 

for each iteration until a solution is achieved.  The next step is to slightly alter the value of an individual ‘X’ value 

and recalculate the values of the seven NR equations.  The derivative is then approximated by the change of the NR 

residual equation divided by the change in the altered ‘X’ variable.  This process is repeated for each ‘X’ variable. 
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Indirectly, the evaporator sequential subroutine is used to calculate the Jacobian.  For each evaluation of the 

NR equations, the condenser subroutine is solved for new values of the ‘calc’ variables.  The new values of the 

‘calc’ variables alter the value of the NR residuals for the next iteration.  More details about the fundamental 

mathematical algorithm can be found in Harshbarger and Bullard (2000).  

If none of the inputs to the sequential subroutine were designated unknown (X) variables by the user, the 

calculation will be finished in one iteration.  Otherwise, if any X variables appear among the subroutine inputs, more 

than one iteration can be needed to finish the calculation.  In every iteration, initial guesses and current values of X 

variables are improved based upon the Jacobian Matrix by Eq 2.1.  

All variables and parameters in XK file are categorized into four groups, marked with X, K, P and C, 

respectively.  Xs are unknown interchangeable variables that are to be calculated by the model.  All the initial values 

are guesses provided by the user.  The number of the Xs should be equal to the number of the residual equations.  Ks 

are the subset of interchangeable variables that are specified by user, whose values are not changed during the 

calculation. Ks are interchangeable with Xs because in different simulations, users want to calculate different 

variables.  Ps are parameters that are always known by users, including the flags to select heat transfer and pressure 

drop correlations, provide values such as ambient air pressure or other parameters describing the refrigerant and air.  

Ps are noninterchangeable and cannot be changed during the calculation.  Cs are informative variables calculated by 

the sequential subroutines, based on the inputs (Ps, Xs and Ks).  Cs are not essential variables needed by the 

simulation system, but they are helpful for understanding the system or transmitting information to user and 

programmer.   

Based on the variable categories, it is easier to understand the communication between main program and 

sequential subroutines.  Generally speaking, the system communication is the transmission of the system variables.  

The input and outputs of the sequential subroutine are divided into four sets: Set I, Set P, Set O and Set C.  The 

following Figure 2.6 shows the relationship among these four subsets.  
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Set 
P 
 

Set 
I 

Set 
O 

INTERCHANGEABLE 
VARIABLES  

(COMPONENT MODEL) 

Subroutine 
Inputs 

Subroutine 
Outputs 

Set 
C 
 

 

Figure 2.6 Subroutine Subsets Description 

It is important to understand the implications of each variable subset prior to sorting the variables.  Inputs 

include Set P and Set I.  Set P contains only known parameters.  But Set I can include both Ks and Xs, both of them 

are interchangeable variables.  In outputs, Set C only includes Cs variables, which are not used by NR solver.  Just 

like set I, set O includes both Xs and Ks.  The interchangeable variables that are inputs to the subroutine (set I) are 

not present in any simultaneous equation for a single component simulation.  However, each interchangeable 

variable in set O does appear in a NR equation. For each NR equation there is one ‘X’ variable that requires an 

initial guess.  Therefore, the number of variables in set O will be the number of required initial guesses in the final 

simulation. By placing vaguely known variables into sets P and C, initial guesses can be limited to readily known 

quantities. 

2.2.2 Communication between main program and supportive files 
The communication between main program and supportive files is also an important issue, which is very 

helpful for running the simulation model correctly.  Besides the NR solver and sequential subroutines simulating the 

system components, the model contains separate supportive files and subroutines for model initialization, checking 

and solution output.  Although the checking files can be used as pre- or post-processors, their primary purpose is to 

provide a means of checking the values of variables and parameters before or after the solution.   

The checking that takes place before solving is used to set logical flags that are used within the list of 

governing equations and subroutines.  For example, the “before” checking will determine, based upon the 

parameters and the init ial guesses of the variables, which kind of expansion device or heat exchanger is used, and a 

logical flag will be set accordingly.  This flag will cause the NR solver to evaluate the correct set of governing 

equations related the correct device.  For an example of “before” checking, the logical flag, CTSLHXSIM, indicates 

whether or not the capillary tube-suction line heat exchanger (ct-slhx) model is going to be used in the simulation.  If 

the XKflag of CaptubeModel is a “K”, then the ct-slhx model will be used and CTSLHXSIM is given a value of 

“true”.  The XKflag of the effectiveness of the ct-slhx (ectslhx) is given a value of “C” since it will be calculated in 

the subroutine.  If the XKflag of CaptubeModel is an “X”, then the ct-slhx model will not be used in the system and 
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CTSLHXSIM is given a value of “false”.  The XKflag for the effectiveness of the ct-slhx is given a value of “K”, 

and the value of the effectiveness is entered. 

The “after” checking is used to see if the values of certain variables are within allowable ranges (e.g. 

evaporating and condensing temperatures for the compressor maps).    

In the model directory, a file named “XK” serves as the input for the model, providing the desired values of 

the parameters and the initial guess values for all the variables in this file.  All the variables are global variables.  

Their memory addresses can be reached by all the system files during the calculation, to update the values of the X 

variables and calculated variables.  During the NR iterations, the user-specified Ks and Ps remain constant, but Xs 

and Cs will be updated in each iteration by sequential subroutines and NR solver.    

Other files allow the user to control the operation of the Newton-Raphson solver, and the overall operation 

of the program.  The files “SLVERSET” and “INSTR” specify the solver options and the type of model run desired, 

respectively.  The file SLVERSET contains the settings for various Newton-Raphson parameters such as the 

convergence criteria and maximum number of iterations, and it also contains information specifying the type of 

model output.  The INSTR file tells the NR solver whether to perform a “SINGLE”, “MULTIPLE”, 

“SENSITIVITY”, or “UNCERTAINTY” analysis, and it also contains new specified K values different from the 

values in XK file.  Output file name and compressor map used by the model are also indicated in the INSTR file.   

2.2.3 Communication between sequential components 
The basic simulation system is divided into four main components connected in the order of compressor, 

condenser, expansion device and evaporator.   To clarify and understand the connection between components is very 

important.  Compared with traditional systems, condenser and evaporator in modern systems may be the 

combination of multiple heat exchangers in serial or parallel format.  The detailed communications inside the 

condenser or evaporator will be described in a later section.   

In a multi-component system, certain variables describe the communication between components.  These 

links between subsystems must be identified and included in a specific manner.  Refrigerant is the link between 

components in the system.  The pressure and enthalpy of the refrigerant are picked to describe the connections 

between components.   Within the simulation system, each component is described by a subset of the residual 

governing equations.  There are also sets of residual equations linking components in the main program.  The 

following Figure 2.7 shows the connections of two serial components in the simulation system.  One is simulating 

the evaporator and the other one is simulating the compressor.  

 

 

Figure 2.7 Components connection configuration 

w w 
Evaporator Compressor 

PoutEvap 
houtEvap 

PinComp  
hinComp  
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The links between these two components are the outlet pressure and enthalpy of evaporator and the inlet 

pressure and enthalpy of compressor.  An essential aspect of the relationship between components is the definition 

of one state point by two variables.  In this example, the outlet pressure of the evaporator is one variable while the 

inlet pressure to the compressor is another.  While these variables are physically the same pressure, the mathematics 

of the system simulation dictate that two variables be used.   Variables representing the same state point will be 

equated in a NR equation at the system level (Harshbarger and Bullard, 2000). 

For a full system simulation, both components must be solved together by the NR solver.  The NR 

equations from each individual component are included in the full set of NR equations.  Additionally, NR equations 

that equate the linking variables are included.  Figure 2.8 shows the full set of NR equations for the example system.  

These equations ensure that each component converges to a solution consistent with the remaining components.   

By introducing two variables that describe a single state point, several advantages are obtained.  The main 

advantage is the system simulation is allowed to converge.  Another advantage is the user can easily understand the 

significance to a variable based upon its name.  Introducing variables in this manner allows each component to be 

contained within its own modular solution.  Because of the modular construction, components can be linked in 

various combinations with minimal reprogramming. 

 

 NR solver 
… 
… 

 
Evaporator residual equations: 
R(evap+0) = poutevap - poutevapcal 
R(evap+1) = houtevap – houtevapcal 
R(evap+2) = Qevap – Qevapcal 
R(evap+3) = dpevap – dpevapcal 

… 
… 

Equations linking components : 
R(n-1) = poutevap – pincomp 
R(n) = houtevap - hincomp 

Compressor residual equations: 
R(comp+0) = w – wcalc 
R(comp+1) = power – powercalc 
R(comp+2) = qcomp – qcompcalc 

… 
… 

Evaporator Sequential 
Subroutine 

Set P + Set I 

‘calc’ variables 

Compressor 
Sequential Subroutine 

Set P + Set I 

‘calc’ variables 

 

Figure 2.8 System residual equations for component connection 
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Chapter 3: Heat Exchanger Algorithms 

3.1 Description 
Harshbarger and Bullard (2000) employed a “module” algorithm to correctly simulate more complex 

individual heat exchanger geometries in finite-element method.  “Module” is defined generally as portion, or sub-

heat exchanger, part of a larger complex heat exchanger.  The essential quantities defining a module are the 

refrigerant flow configuration and the number of tubes within the module.  A heat exchanger can be defined by any 

number of modules.   

Recently, the condenser and evaporator components are becoming more and more complicated 

geometrically and companies are showing more interest in simulating multi-heat exchanger systems cases, such as 

dual evaporator refrigerators and a/c systems, including minivan air-conditioning systems.  An algorithm dealing 

with multiple complex condensers or evaporators in single simulation system is needed now.   An algorithm, 

“divide-and-conquer”, is proposed here to simulate modern comp lex systems, which have multiple heat exchangers 

in serial or parallel.  The name of the algorithm is borrowed from computer science.  This approach divides the 

problem into several modules that are smaller but similar to the original one, solves the modules recursively, and 

then combines these solutions to create a solution to the original problem.  The divide-and-conquer paradigm 

involves three steps. 

The first step is to divide the whole component into a number of modules.  Just like electronic circuit 

analysis, the whole evaporator or condenser component is a complex combination of parallel and serial 

configurations.  Parallel and serial configurations are basic structures of the simulated system.  When we start the 

division from the original component (first level), the number of modules is the number of the parallel modules at 

this level and each of these modules might consist of several serial smaller modules (second level).  The smaller 

modules of second level can be serially divided into a number of modules.  At each level, the structure can be 

recursively divided into many levels until each module is single stand-alone heat exchanger.  In Harshbarger and 

Bullard (2000), this smallest element was called a “module”, and each of those modules was simulated using a finite 

element algorithm.  

The second step is to conquer the modules by solving them sequentially, starting with the smallest 

modules.  Harshbarger and Bullard (2000) showed how to solve complex single heat exchanger using finite element 

algorithms.  This step is finalized in the sequential subroutines, calling finite element algorithms.  

The third and final step is to combine the module solutions into the solution for the upper level component, 

until the original component solution is obtained.  It reverses the dividing process.  Newton-Raphson residual 

equations in the main program describe the connections among the modules.  If the current modules are in series, the 

outlet states of the refrigerant from former module are the inlet states to the latter module.  Each module shares the 

same mass flow rate but may have different air and refrigerant states.  Otherwise if the current modules are parallel, 

refrigerant mass flow rates through each module must be determined by solving the equations simu ltaneously, by 

setting their exit pressures equal.  For each module, running condition and heat exchanger geometry potentially 

decide the mass flow rate, and the sum of air and refrigerant flow rates of each parallel module should be equal to 
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the next upper level mass flow rate.  The direction of combining is just opposite to the dividing process.  More 

details about the combining process are provided in later sections of this chapter.   

Finite element algorithm gives us a way to simulate complex geometry of heat exchangers, but the divide-

and-conquer algorithm gives us a way to deal with modern complex system with any number and combination of 

heat exchangers.  Figure 3.1 shows the general structure in evaporator component with multiple heat exchangers.  

All the heat exchangers are serially or parallel arranged.  Details are provided to describe how we simulate this 

complex structure in three steps according to divide-and-conquer algorithm.  

 

Figure 3.1 Evaporator component configurations 

3.2 Heat exchanger configurations 
 

The modern evaporator and condenser components may be the combination of serial and parallel heat 

exchanger geometries.  There are several issues that we should pay attention to: mass flow rate distribution, air and 

refrigerant states, air flow direction over each heat exchanger, connections between serial and parallel heat 

exchangers (this connection still includes air-side), and special geometries of heat exchangers.  The advantage that 

each heat exchanger is stand-alone gives us great flexibility to model complex combinations of serial and parallel 

heat exchangers.  We only need to indicate correct flags to call already-built sequentially -solved subroutines that 

reside in the system library. In main program, residual equations that connect each stand-alone heat exchanger are 

built to finalize the simulation of multiple-heat exchanger system.  

Parallel and serial configurations are two fundamental configurations, which are defined by the refrigerant 

flow direction.  Any complex system can be divided into these two fundamental configurations.  Parallel 

configuration consists of two or more heat exchangers at the same level, having identical input states but maybe 

different output states, depending on geometries and air-side input states.  Each parallel heat exchanger does not 

necessarily have the exactly same geometry for general cases.  If each parallel heat exchanger has the same 

geometry and the same air and refrigerant inlet states, they will carry the same mass flow rate faction.  Otherwise, 

these heat exchangers may carry different mass flow fractions because of different geometries or air-side input states 

or both, which will be simultaneously determined by the Newton-Raphson solver in the main program.  The Figure 

3.2 and Figure 3.3 show examples of the parallel and serial heat exchanger configuration, respectively.  
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Figure 3.2 Parallel heat exchanger configuration 

 

Figure 3.3 Serial heat exchanger configuration 

 
Note that Pi or Si can be a stand-alone heat exchanger module (smallest unit under discussion here), or they can be 

combinations of several heat exchangers, since we recursively divide every complex component into many different 

levels in order to simulate it.  

Before we turn into complex structure, these two basic elements, parallel and serial configurations, need to 

be clearly understood.  In either configuration, mass flow rate of refrigerant is  the most important issue because we 

define these two configurations based on their refrigerant flow patterns.  At the same time, the air-side flow 

determines the different kinds of algorithms we use to simulate the heat exchanger: e.g. counter flow, parallel flow 

or cross-flow, which describe the heat transfer based on airflow directions.    

3.2.1 Parallel refrigerant flow 
For parallel configuration, the whole mass flow rate of refrigerant is divided into the number of parallel 

modules, with a fraction of the mass flowing through each corresponding parallel module.  Each heat exchanger may 

have different geometries and different air and refrigerant states might be specified.  The mass flow fractions can 

then be calculated; they may not be equal.  The following mass, momentum energy equations must apply to the 

parallel configuration: 

m&  = ∑ m& i (i=1, 2…N)  Eq. 3.1 

m& * hout = ∑ m& i * hout_i (i=1, 2…N)  Eq. 3.2 

Pi = Pj  ∀i, j (i,j=1, 2…N) Eq. 3.3 

Where m& i is the mass flow rate through each of the N parallel modules; m& is the sum of each mass flow rate 

through all modules; hout_i is the outlet enthalpy of the ith module; hout is the mixed outlet enthalpy from all modules; 

Pi and Pj are outlet pressures of ith and jth modules, respectively.  The mass flowing through each circuit may have a 

different experience, as it encounters different geometries and heat transfer.  At the starting point, all refrigerant has 

the same inlet thermodynamics state.  But at outlet point of the configuration, flows from each circuit, each with a 
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potentially different flow rate and heat transfer experience, combine together as shown in Figure 3.2.  The outlet 

states detected by the component outside of the configuration, hout and pout, result from the combinations of these 

mass flows, shown in the equations above. 

Generally, a parallel refrigerant configuration can have three air flow patterns, as shown in the Figures 3.4, 

Figure 3.5 and Figure 3.6, respectively: cross/parallel, parallel/parallel and counter/parallel configurations, each 

requiring a different algorithm to simulate.  Actually the governing equations for Figure 3.5 and Figure 3.6 are 

identical.  However, they require two different solution algorithms.  Both march downwind, but one requires the 

refrigerant inlet states as input, while the other requires the refrigerant outlet states in order to begin the sequential 

finite element algorithm.  

 

Figure 3.4 Cross/parallel flow configuration 

Air 

Figure 3.5 Parallel/parallel flow configuration 

 

Figure 3.6 Counter/parallel flow configuration 
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For the cross/parallel flow configuration, air flows across each parallel module one-by-one.  Each module 

encounters the same airflow rate, but with a different inlet temperature.  The outlet temperature from former module 

serves as the inlet temperature for the next one.  The following residual equations are included in the main program 

to specify the connections among the modules on both air and refrigerant sides.  The equations in the main program, 

which includes the subroutine calls, are solved simultaneously solved by the Newton-Raphson solver. 

 

Figure 3.7 Residual equations of cross/parallel configuration 

 
For parallel/parallel and counter/parallel configurations, each module may not encounter the whole air mass 

flow rate.  They may have equal or unequal air flow fractions, and the sum of their fractions should be equal to the 

whole airflow rate.   They are calculated from the frontal areas of each heat exchanger, where the current version of 

the model assumes that the air mass flux and pressure drop are identical for each air flow fraction.  Just like 

refrigerant outlet thermodynamics states, the outlet enthalpy of the air results from the mixture of each mass flow 

fraction through each heat exchanger.  The residual equations in Figure 3.8 are used to simulate these 

configurations, where ‘madot’ is the sum of air flow, madot_i is air fraction flowing through the ith module, haout is 

mixed outlet enthalpy of the combined air flows; haout_i is the outlet enthalpy of the air fraction flowing through the 

ith module; Afr_i is the frontal area of the ith module and Afr is the total frontal area of the whole configuration.  

The outputs of the finite element subroutines return the results from each module to the main program, 

where the module’s governing equations and the “connection equations” describing the serial or parallel 

configurations are calculated simultaneously by the Newton-Raphson solver.  Generally, the model can not converge 

in only one iteration because we can not specify the mass fractions or the input air temperatures for all modules in 

cross/parallel configuration except the first one.  There is no difference between parallel/parallel and counter/parallel 

flows since they share the same residual connection equations.  

 Air-side equations: 

R(1) = Tain_1 – Tain 

R(2) = Tain_2 – Taoutcalc_1 

R(3) = Tain_3 – Taoutcalc_2 

. 

R(n) = Taoutcalc_n - Taout 

Refrigerant side equations: 
 
R(p+1) = Qtot - ΣQcalc_i 

R(p+2) = Mtot - ΣMcalc_i 

R(p+3) = w*hout - Σw_i*houtcalc_i 
R(p+4) = pout - Σpoutcalc_i 

R(p+5) = w - Σ wcalc_i 
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Figure 3.8 Equations of counter/parallel and parallel/parallel configurations 

3.2.2 Serial refrigerant flow 
Compared to parallel configuration, it is easier to analyze and simulate the serial configuration because all 

the refrigerant has the same experience, as it flows serially through all modules in this configuration.  The main 

issue we need to consider here is the sequence in which the modules are connected.  States of connection points 

between any two serial modules (for example, numbered m and m+1) are described by two groups of variables: one 

is the outlet state from the former module and the other one is the inlet state of the latter one.  Corresponding 

residual equations that are created to describe the connections are shown in Figure 3.9. Details about connections 

between parallel and serial configurations will be provided in the specified example in the following section.   

 

Figure 3.9 Residual equations describing connection 

As in the case of parallel configurations, we have equations describing connection of refrigerant states 

between serial modules.  We also need to pay attention to the airside flow situations.  We also have three kinds of 

configurations: cross/serial flow, parallel/serial flow and counter/serial flow, shown in Figures 3.10, 3.11 and 3.12, 

respectively.  

 Air-side equations: 

R(1) =madot*haout-Σmadot_i*haout_i R(2) = 

madot - Σ madot_i 

R(3) = madot_i – (Afr_i/Afr)*madot 

 

Refrigerant side equations: 
 
R(p+1) = Qtot - ΣQcalc_i 

R(p+2) = Mtot - ΣMcalc_i 

R(p+3) = w*hout - Σw_i*houtcalc_i 
R(p+4) = pout - poutcalc_i  

R(p+5) = w - Σ wcalc_i 

 
R(n) =  houtm – hinm+1 

R(n+1) = poutm – poutm+1 

R(n+2) = wm – wm+1 
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Figure 3.10 Cross/serial flow configuration 

 

 

Figure 3.11 Parallel/serial flow configuration 

 

Figure 3.12 Counter/serial flow configuration 

For the cross/serial flow case, all the modules have the same inlet air states, but maybe different air mass 

fractions if they do not have the exactly same geometries.  The following residual equations in Figure 3.13 simulate 

this configuration. 
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Figure 3.13 Residual equations describing cross/serial configuration 

For the counter/serial and parallel/serial configurations, refrigerant side has the same residual equations as cross 

flow configuration, and has easier air side equations because all the air passes each heat exchanger sequentially, and 

undergoes the same heat transfer experience.  Both configurations are governed by almost the same residual 

equations in the main program, but the sequentially -solved finite element subroutines for each module require 

specification of inlet refrigerant enthalpy and pressure for the parallel/serial configuration, and the refrigerant outlet 

state for the counter/serial configuration.  The boldface equations in Figures 3.14 highlight the difference between 

these two configurations.  

 

Figure 3.14 Residual equations describing parallel/serial configuration 

 Air-side equations: 

R(1) = ihaoutimhaoutm aa __Σ−  

R(2) = am  - im a _Σ  

R(3) = im a _ - (Afr_i/Afr) am  

 
R(4) = iTaoutcalciTaout __ −   

Refrigerant-side Equations: 

R(n) = Q_i – Q_icalc 

R(n+1) = M_i – M_icalc 

R(n+2) = hout_i – hout_icalc 

R(n+3) = Pout_i – Pout_icalc 

… 

R(n+m) = hout_i – hin_i+1 

R(n+m+1) = pout_i – pin_i+1 

R(n+m+2) = w_i – w 

R(n+m+3) = hout – hout_ncalc 

R(n+m+4) = pout – pout_ncalc 

R(n+m+5) = Mtot - ΣM_i 

 Air-side equations: 

R(1) = nTaoutTaout _−  

R(2) = am  - im a _  

R(3) = 1__ +− iTainiTaout   

R(4) = TainTain −1_  

R(5) = iTaoutcalciTaout __ −  

 

Refrigerant-side Equations: 

R(n) = Q_i – Q_icalc 

R(n+1) = M_i – M_icalc 

R(n+2) = hout_i – hout_icalc 

R(n+3) = Pout_i – Pout_icalc 

… 

R(n+m) = hout_i – hin_i+1 

R(n+m+1) = pout_i – pin_i+1 

R(n+m+2) = w_i – w 

R(n+m+3) = hout – hout_ncalc 

R(n+m+4) = pout – pout_ncalc 

R(n+m+5) = Mtot - ΣM_i 
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3.3 Complex component analysis and simulation 
An example, which shows a general structure of a complex component, is used to illustrate the use of the 

divide-and-conquer algorithm, which is designed to deal with the multiple-heat exchanger component.  As described 

above, three steps are needed to simulate the complex structure.   

3.3.1 Division 
Division is the first step of the divide-and-conquer algorithm and we start from the original complex 

components consisting of multiple condensers or evaporators.  The division will continue at consecutive levels until 

every module is an individual stand-alone heat exchanger, where the finite element method can be used for its 

simulation.  Residual equations describing the connections and combinations among different heat exchangers are 

also listed in main program.  The following paragraphs describe the procedure of dividing the complex structure 

shown in Figure 3.1.  

Division is executed at different levels and the original component is the first level.  The original 

component consists of three parallel heat exchangers, which are second level elements.  At each level, we focus first 

on any parallel configuration.  Without parallel elements, we then turn to serial configurations.  A detailed view of 

the second level is shown below: 

 

 

Figure 3.15 Second level elements 

 
W = w1 + w2 + w3, where w is the mass flow rate of refrigerant of the whole system and w1, w2 and w3 are 

the mass flow rates of refrigerant through P1, P2 and P3, respectively.  At the same time, w1 is equal to w11, w12, w13 

and w3 is equal to w31, w32 since the modules are serial.  W11, w12  and w13  are mass flow rates through the three 

serial modules in P1  and w31, w32  are mass flow rates through the two serial modules in P3.  

Two of the second level heat exchangers Pi (i=1,2,3) are serial. Therefore we continue the division because 

there are still heat exchangers that are not single modules.   In this example, the first heat exchanger P1 includes 

three smaller modules, which are serially connected and share the same mass flow rate of refrigerant, w1.  P3  has two 

serial modules, which share the mass flow rate of refrigerant, w3.   

P1: w11 w13 w12 
w1 

w2 P2: 

w2 

w31 w32 P3: 
w3 
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P1 is divided into three smaller modules at the third level: 

 

 P11: 

 

 P12: 

 

 P13 :  

w1 = w11 = w12 = w13 
Figure 3.16 Third level modules 

 
P11, P12, P13 are all individual stand-alone modules, which are the smallest units of this algorithm, and can 

not be divided any more.  Similarly, P3 also can be divided into two third-level modules: 

 

 P31 

 

P32 

 

where P31 and P32 share the same mass flow rate w3 since they are serially connected stand-alone heat exchangers 

and do not need further division any more.  

Now all the modules are individual stand-alone heat exchangers, which can be simulated by calling 

sequential finite element subroutines.  Many such stand-alone subroutines for simulating different geometries are 

already stored in the main library of the simulation system.  In the main program, one just needs to select the right 

subroutine names and flags for different heat exchangers.  These kinds of stand-alone subroutines give us great 

flexibility in simulating different heat exchangers without rewriting codes and redesigning algorithms.  

Briefly, all parallel configurations share the same inlet refrigerant states, and their outlet pressures must be 

identical, but not necessarily their refrigerant outlet enthalpies, or their air inlet and outlet states.  As discussed 

above, the outlet pressure and enthalpy result from the combination of all parallel outlets.  All serial configurations 

share same mass flow rates of refrigerant.  That is the criterion we use to divide the complex components. On the air 

side, we need to pick up different residual equations to simulate the connections among heat exchangers defined by 

different airflow directions.  In order to simulate a single stand-alone heat exchanger, airflow directions still define 

corresponding algorithms we should use in simulation.  The details will be provided in the latter sections of this 

chapter. 

3.3.2 Conquer 
Conquer is the second step of the divide-and-conquer algorithm, whose purpose is to simulate every 

smallest module, stand-alone single heat exchanger.  Sequential stand-alone subroutines have been built and are 

available within ACRC for many different geometries.  These subroutines are stored in library of the simulation 

system.  

W11 

W13 

W12 

W3 

W3 
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Within conquer process, we focus on simulating every single heat exchanger with different geometries.  

Harshbarger and Bullard (2000) already have developed “module” algorithms to simulate complex single heat 

exchangers, even multi-slab counterflow and parallel flow designs such as those shown in Figure 3.17.  

 

Figure 3.17 Overall structures of heat exchangers subroutines  

Figure 3.17 shows the structure of heat exchangers subroutines that can be called to simulate different heat 

exchanger geometries without re-compiling source codes.  These subroutines are sequential stand-alone procedures 

that simu late one heat exchanger having a particular geometry.  The subroutines can be shared by different systems 

with the heat exchangers of same geometries and they can be called recursively when simulating a more complex 

system, which has multiple heat exchangers.  

Based on the relationship between the flow directions of refrigerant and air, there are two kinds of 

algorithms, upstreaming and downstreaming, referring to the refrigerant flow direction.  Simulations always proceed 

downwind, so the upstreaming and downstreaming algorithms apply to overall counter-flow and parallel-flow heat 

exchanger configurations, respectively.   To enable sequential solution of the upstreaming subroutine, refrigerant 

outlet pressure and enthalpy are needed as input because the calculation is started from air inlet (refrigerant outlet) 

point, and the calculated inlets of pressure and enthalpy are returned.  For the downstreaming subroutines, because 

the air and refrigerant are flowing in the same direction, each of their states is assumed to be known.  Then the 

highest and lowest temperatures needed by ε-NTU method are easily decided for each small element, as the 

calculation starts from inlet point and marches downwind and towards the refrigerant outlet.  Calculated outlet 

pressure and enthalpy of refrigerant are the returned values.  Therefore the residual equations simulating these heat 

exchangers are different.  The Figure 3.18 shows the residual equation groups simulating downstreaming and 

upstreaming algorithms for the single stand-alone heat exchanger, respectively.  The most important difference is in 

the first two boldface equations shown in both boxes.   

Finned Tube 

MicroChannel 

Wire-on-Tube 

Etc. 

Downstream Marching 

Finned Tube 

MicroChannel 

Wire-on-Tube 

Etc. 

Upstream Marching 

 
Heat 
Exchangers 
Components  

Call 
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 ‘calc’ outputs  
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Figure 3.18 Downstreaming and upstreaming equations interface 

A user-selected flag is set to s elect either the downstream or the upstream marching algorithm, 

corresponding to overall parallel or counterflow, respectively.  A separate flag is used to select the type of heat 

exchanger in use.  This structure allows the locations of the governing equations to be logically organized within the 

source code.  Because of the sequential nature of the subroutines, the solution method and the assumptions are more 

apparent and understandable to users.   

3.3.3 Combination 
Combination is the final step of the divide-and-conquer algorithm, which reverses the reverse process of 

division.  The programmer reunites the divided modules.   That is, we start from the lowest level of the modules 

(single stand-alone heat exchanger), build the connections and combinations until the highest level to finish the 

simulation of complex component.  The combinations and connections issues among multiple heat exchangers are 

the most important points we need to understand for our simulations.  The connection and combination equations are 

written in residual format, and are listed in the main program and simultaneously solved by Newton-Raphson solver.  

Harshbarger and Bullard (2000) have provided details about complex heat exchanger using finite element 

algorithms.  Here we focus on the connections and combinations among multiple heat exchangers in the same 

component.  Residual equations describing the combination of the former example in ‘division’ step are grouped in 

the later section.  

At the third level, P11, P12 and P13 are the smallest units, which are serially connected.  The links between 

any two serial modules are the inlet and outlet pressures and enthalpies of refrigerant flowing through the whole 

serial structure.  According to their geometries, finite element subroutines are called to simulate them.  At the same 

time, each module has a group of residual equations describing the heat transfer performance.  Figure 3.18 gives the 

equations of individual module for both upstreaming and downstreaming configurations.  Here we focus on the 

combination of these three modules.  Figure 3.19 shows the residual equations and connection equations listed in the 

main program, for the case where air flows parallel to the refrigerant, so the downstreaming algorithm is used to 

simulate the individual modules.  

 Downstreaming Equations: 
 

R(n) = hout – hout_calc 

R(n+1) = pout – pout_calc 

R(n+2) = dp – dp_calc 

R(n+3) = M – M_calc 

R(n+4) = Q – Q_calc 

R(n+5) = Tairout – Tairout_calc 

R(n+6) = Tout – Tout_calc 

Upstreaming Equations: 
 

R(n) = hin – hin_calc 

R(n+1) = pin – pin_calc 

R(n+2) = dp – dp_calc 

R(n+3) = M – M_calc 

R(n+4) = Q – Q_calc 

R(n+5) = Tairout – Tairout_calc 

R(n+6) = Tout – Tout_calc 
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Figure 3.19 Residual equations groups simulating P1 

In order to classify the variables, we append the number to them, such as hout_11, hout_12, which are 

outlet enthalpies of P11 and P12, respectively.  Pout_11 and Pout_12 are outlet pressures of P11 and P12.  Hout_P1 and 

pout_P1 are the outlet enthalpy and pressure of the whole module, P1. We can explain other variables in the same 

way.  

 
Residual equations of P11: 

R(0) = hout_11 – houtcalc_11 

R(1) = pout_11 – poutcalc_11 

R(2) = dp_11 – dpcalc_11 

R(3) = M_11 – Mcalc_11 

R(4) = Q_11 – Qcalc_11 

R(5) = Taout_11 – Taoutcalc_11 

R(6) = Tout_11 – Toutcalc_11 

Residual equations of P12 :  

R(7) = hout_12 – houtcalc_12 

R(8) = pout_12 – poutcalc_12 

R(9) = dp_12 – dpcalc_12 

R(10) = M_12 – Mcalc_12 

R(11) = Q_12 – Qcalc_12 

R(12) = Taout_12 – Taoutcalc_12 

R(13) = Tout_12 – Toutcalc_12 

Residual equations of P13:  

R(14) = hout_13 – houtcalc_13 

R(15) = pout_13 – poutcalc_13 

R(16) = dp_13 – dpcalc_13 

R(17) = M_13 – Mcalc_13 

R(18) = Q_13 – Qcalc_13 

R(19) = Taout_13 – Taoutcalc_13 

R(20) = Tout_13 – Toutcalc_13 

Refrigerant side Connection equations:  

R(21) = w11 – w1 

R(22) = w12 – w1 

R(23) = w13 – w1 

R(24) = pin_11 – pin 

R(25) = hin_11 – hin 

R(26) = hout_11 – hin_12 

R(27) = pout_11 – pin_12 

R(28) = hout_12 – hin_13 

R(29) = pout_12 – pin_13 

R(30) = hout_13 – hout_P1 

R(31) = pout_13 – pout_P1 

R(32) = Q_P1 – Q_11 – Q_12 – Q_13 

R(33) = M_P1 – M_11 – M_12 – M_13 
Air-side equations: 

R(34) =Taout_P1 – Taout_13  

R(35) = Tain – Tain_11 

R(36) = Taout_11 – Tain_12 

R(37) = Taout_12 – Tain_13 
 

P1: w11 w13 w12 

w1 
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Similarly, P3 has two serial stand-alone modules, P31 and P32, which can be simulated by using the same 

groups of residual equations and the connection equations used for P1, as shown in Figure 3.21.  In order to simplify 

this example, we suppose air flows parallel to the refrigerant in all the modules.  P2 is the smallest unit and can be 

simulated as a single module, as shown in Figure 3.20.  

 

 

Figure 3.20 Residual equations simulating P2 

w2 P2: 

w2 

w31 w32 P3: 
w3 

 Residual equations of P2: 

R(0) = hout_21 – houtcalc_21 

R(1) = pout_21 – poutcalc_21 

R(2) = dp_21 – dpcalc_21 

R(3) = M_21 – Mcalc_21 

R(4) = Q_ 21– Qcalc_21 

R(5) = Taout_21 – Taoutcalc_21 

R(6) = Tout_21 – Toutcalc_21 

Refrigerant side connection equations:  

R(7) = w_21 – w2 

R(8) = pin_21 – pin 

R(9) = hin_21 – hin 

R(10) = hout_21 – hout_P2 

R(11) = pout_21 – pout_P2 

R(12) = Q_P2 – Q21 

R(13) = M_P2 – M_21 

Air-side connection equations: 

R(14) =Taout_P2 – Taout_21  

R(15) = Tain – Tain_21 
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Figure 3.21 Residual equations simulating P3 

We built residual equations to simulate these three parallel modules, P1, P2 and P3. We need to turn to the 

combination of these parallels to finalize the combination of the complex component.  Figure 3.22 contains both the 

refrigerant side and air side combination equations.  Total heat transfer and refrigerant charge, Q and M, are 

calculated as well as each air mass fractions, where it is assumed that the air mass flux is identical across the frontal 

areas.  Refrigerant outlet enthalpy results from the mixture of the parallel circuits.  

 Residual equations of P31: 

R(0) = hout_31 – houtcalc_31 

R(1) = pout_31 – poutcalc_31 

R(2) = dp_31 – dpcalc_31 

R(3) = M_31 – Mcalc_31 

R(4) = Q_ 31– Qcalc_31 

R(5) = Taout_31 – Taoutcalc_31 

R(6) = Tout_31 – Toutcalc_31 

Refrigerant side connection equations:  

R(17) = w_31 – w3 

R(18) = pin_31 – pin 

R(19) = hin_31 – hin 

R(20) = hout_32 – hout_P2 

R(21) = pout_32 – pout_P2 

R(22) = w_32 – w3 

R(23) = hout_31 – hin_32 

R(24) = pout_31 – pin_32 

R(25) = Q_P3 – Q_31 – Q_32 

R(26) = M_P3 – M_31 – M_32 

 

Air-side connection equations: 

R(14) =Tain_32 – Taout_31  

R(15) = Tain – Tain_31 

R(16) = Taout_32 – Taout_P3 

Residual equations of P32: 

R(7) = hout_32 – houtcalc_32 

R(8) = pout_32 – poutcalc_32 

R(9) = dp_32 – dpcalc_32 

R(10) = M_32 – Mcalc_32 

R(11) = Q_ 32– Qcalc_32 

R(12) = Taout_32 – Taoutcalc_32 

R(13) = Tout_32 – Toutcalc_32 
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Figure 3.22 Combination equations for parallel modules 

If the air side performance is not parallel but cross flow, the refrigerant side connection equations are the 

same, but air side equations need to be changed.  Figure 3.23 shows the air side connection equations for the cross 

flow configuration.  

 

Figure 3.23 Airside connection equations for cross flow configuration 

By ‘divide-and-conquer’ algorithm, any kind of complex component with multiple heat exchangers with 

any kind of geometries can be simulated.  A simple example, dual-evaporator refrigerator simulation model where 

two evaporators are serially connected, is provided in the Chapter 4.  

 

Refrigerant side connection equations: 

R(0) = w - w1 - w2 - w3 

R(1) = w*hout – w1*hout_P1 – w2*hout_P2  

 – W3 * hout_P3 

R(2) = pout_P1 – pout 

R(3) = pout_P2 – pout 

R(4) = pout_P3 – pout 

R(5) = Q – Q_P1 – Q_P2 – Q_P3 

R(6) = M – M_P1 – M_P2 – M_P3 

Air side connection equations: 

R(7) = Vadot – Vadot_P1 – Vadot_P2 – 

Vadot_P3 

R(8) = Vadot*haout – Vadot_P1*haout_ P1–    

  Vadot_ P2*haout_ P2 – Vadot_ P3*haout_ P3 

R(9) = Vadot_ P1 – Vadot * (Afr_ P1/Afr) 

R(10) = Vadot_ P2 – Vadot*(Afr_ P2/Afr) 

R(11) = Vadot_ P3 – Vadot*(Afr_ P3/Afr) 

Air-side equations: 

R(1) = 3_ PTaoutTaout −  

R(2) = am  - 1_ Pm a  

R(3) = am  - 2_ Pm a  

R(4) = am  - 3_ Pm a  

R(5) = 21 __ PTainPTaout −   

R(6) = 32 __ PTainPTaout −  

R(7) = TainPTain −1_  
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Chapter 4: Dual Evaporator System Modeling 

4.1 Introduction 
Dual evaporator refrigerators were modeled using a computer simulation.  Modifications were made to the 

previously developed code in order to simulate better two evaporators arranged in series, served by a single 

condenser and compressor.  

The model was initially developed for the study of single evaporator refrigerator-freezers at the Air 

Conditioning and Refrigeration Center (ACRC) at the University of Illinois at Urbana-Champaign.  It consists of a 

general Newton-Raphson solver linked to a series of equations and functions that describe the particular 

refrigeration system being modeled (Mullen and Bullard (1994) and Mullen et al. (1998)).  The simulation model for 

refrigerators is called RFSIM.  The model assumes a steady state operation and the single evaporator version is 

described in more detail by Woodall and Bullard (1996).  RFSIM was modified (Stein et al. (1999)) for dual 

evaporator refrigerators by adding a second evaporator in the fresh food section and eliminating air exchange 

between the compartments.  The fresh food evaporator is modeled as a two-phase region and the freezer evaporator 

includes both a two-phase region and a single-phase superheated region.  Additional modifications were needed to 

accurately represent the prototypes tested.  In response to a manufacture’s request, we tried to simulate a parallel-

configured  dual evaporator system by using the single-evaporator version of RFSIM.  One evaporator was 

simulated, supposing the other one idle.  Only a few variables and residual equations need to be modified to simulate 

such a dual evaporator system.  More details can be found in the Appendix B.  

A simulation model with all equations solved simultaneously built by Stein et al. (1999) and Gerlach and 

Newell (2000), for a serially-configured dual-evaporator system. This chapter describes a new simulation model 

with a modular structure.  Every system component has an associated sequential subroutine describing the 

component.  The number of initial guess values is thereby decreased substantially, from 144 to 67.  Moreover, 

structured and independent sequential subroutines can be easily embedded in the simulation system without 

recompiling and changing codes.   

The nomenclature used in Stein et al. (1999) and continued here is that the freezer compartment variables 

are written simply such as “tevap.”  The fresh food variables have an “f” added, e.g. tevapf.  Alternatively, a freezer 

variable is denoted with a “z” added, e.g. tevapz.  In the new model structure, the variable names are kept 

unchanged, but all the variables are categorized into four categories as discussed above and by Harshbarger and 

Bullard (2000).   
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4.2 Sequential simulation 

 

Figure 4.1 New mo del structure of dual evaporator system 

In the new model structure, the dual-evaporator system is divided into several components: compressor, 

condenser, ct-slhx and evaporator.  The evaporator component includes two serial evaporators: fresh food 

evaporator and freezer evaporator.  Each component is associated with a sequential subroutine describing the 

component.  Evaporator component will call sequential subroutine twice, with flags changed and different values 

describing the heat exchanger geometries and inlet conditions.  All the components are serial, so the residual 

equations simulating the connections among the components are created.  The evaporator component only has two 

serial heat exchangers, or subcomponents, which are “connected” by defining the intermediate states in the main 

program.  The connection issue is the main issue to be considered at this point we do not need to be concerned about 

combining flows among the subcomponents since there are no parallel heat exchangers.  More details are provided 

below.  

4.2.1 Compressor 
The compressor subroutine used by the dual evaporator system is based on the manufacturer’s performance 

map specified in the ‘instr.base’ instruction file.  Using these inputs, the compressor subroutine calculates mass flow 

rate through the compressor, power consumed by the compressor; refrigerant-side energy balance about the 

compressor; air-side energy balance about the compressor; and a rate equation describing the heat transfer from the 

compressor shell to the air stream.  The mass flow rate through the compressor and the power consumed by the 

compressor are described by compressor map stored in the system library.  The mass flow rate and power 

consumption are calculated as functions of the saturation temperatures corresponding to the inlet and outlet 

pressures of the compressor.  These relations or data necessary to make them are available from the manufacturers.  

In compressor subroutine, two equations involving the compressor mass flow rate and power consumption appear as 

follows: 

R(comp+0)= beta_Wmap * wf(tsatoutcomp,tsatincomp,CompNum) – w (Eq. 4.1) 

R(comp+1)= beta_Pmap * pcompf(tsatoutcomp, tsatincomp, CompNum) –powercomp  (Eq.4.2) 

 
 

main program:  
NR solver and residual equations 

Condenser 

Sequential condenser 
subroutine 

Fresh food 
evaporator 

Freezer 
evaporator 

Sequential evaporator subroutine 

Compressor 
subroutine 

CT-SLHX 
subroutine 
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Refrigerant-side energy balance equation about the compressor is a classic application of the first law of 

thermodynamics for a control volume: 

R(comp+2)=BTU(powercomp)-w*(houtcomp -hincomp) – qcomp  (Eq. 4.3) 

Similarly, the following is the residual equation to simulate the air-side energy balance: 

R(comp+3)=mdotacond * (ha(tacondfanin) – ha(tacondout)) – qcomp  (Eq. 4.4) 

The rate of heat transfer from the compressor can also be described through the use of a convection heat 

transfer relation, and an empirical relationship also obtained from the manufacturer’s compressor data, expressing 

shell temperature as a linear function of discharge temperature (see Kim and Bullard, 2000).  

Ts=-3.4407+0.88355*t0 

R(comp+4)= hAcomp * (Ts – tacondout) – qcomp  (Eq. 4.5) 

Beta_Wmap, beta_Pmap and CompNum are the compressor inputs from system XK file specified by the 

user.  The basic purpose of beta_Wmap and beta_Pmap is to scale the compressor maps to simulate the effect of a 

change in compressor speed or compressor size.  Tsat0 and tsat11 are variables calculated by the subroutine based 

on pressure inputs: inlet pressure and outlet pressure of the compressor p11 and p0.  Wf and pcompf are functions to 

calculate power and mass flow rate stored in library file.  H0, mdotacond and Ts are calculated variables.  

Tacondout and h11 are inputs variables of compressor subroutine. Qcomp, w, , powercomp, taconfanin and t0 are 

output variables of the subroutine.  

4.2.2 Condenser  
The condenser is modeled as a cross-flow heat exchanger, using a finite-element method in the new model 

structure.  All stand-alone sequential subroutines simulating different geometries (e.g. wire-on-tube) are stored in 

system library.  The special flags and subroutine name are used to call the corresponding sequential subroutine, 

returning the expected calculated outputs needed by the subset of the system residual equations dealing with that 

component.  

The Figure 4.2 shows schematically the interface between the NR solver and the sequential condenser 

subroutine.  The seven NR residual equations are shown within the NR solver box.  Each equation equates an 

interchangeable variable with its corresponding subroutine output variable.  The NR solver performs several 

iterations in determining the solution to a set of equations.  For the condenser (component) simulation, the NR 

solver solves a set of seven simultaneous equations. The solver simultaneously forces the values of each of the seven 

equations, written in residual format, to zero. The number of simultaneous equations is equal to N, the number of 

‘calc’ variables.   
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Figure 4.2 interface of residual equations and condenser sequential subroutine 

 

Figure 4.3 condenser sequential subroutine variable categories 

Each ‘calc’ output of subroutine is the function of inlet state, mass flow rate, inlet conditions and geometry.  

Iteratively, NR solver updates the X variables associated with this component until the system converges to a series 

of solution.  If there are no X variables among the inputs to the subroutine, the calculation will finish in only one 

iteration.  Otherwise, iterations will be necessary, based on good initial guess values for the unknown X variables.  

Figure 4.3 shows the inputs and outputs of the condenser finite-element subroutine.  Variable names are 

defined in Appendix E of TM22.  The inputs include heat exchanger geometry, inlet conditions, mass flow rate of 

refrigerant through the heat exchanger, air mass flow rate and inlet temperature, plus some other necessary XK 

Condenser sequential subroutine 
 

Pout_calc = ocalc(Pin,hin, m& ref,Tairin,etc. ) 
hout_calc = ocalc(Pin,hin, m& ref,Tairin,etc.) 
Qcond_calc = ocalc(Pin,hin, m& m& ref,Tairin,etc.) 
Mcond_calc = ocalc  (Pin,hin, m& ref,Tairin,etc.) 
Tacondout_calc = ocalc  (Pin,hin, m& ref,Tairin,etc.) 
Tout_calc = ocalc  (Pin,hin, m& ref,Tairin,etc.) 
Dpcond_calc = ocalc  (Pin,hin, m& ref,Tairin,etc.) 

Subroutine 
Inputs (Set I) 

Newton-Raphson solver 
 

f(1) = Pout - Pout_calc 
f(2) = hout – hout_calc 
f(3) = Qcond – Qcond_calc 
f(4) = Mcond - Mcond_calc 
f(5) = Tacondout – Tacondout_calc 
f(6) = Tout – Tout_calc 
f(7) = Dpcond – Dpcond_calc 

Subroutine 
Outputs  

‘calc’ Variables 

Condenser 
Subroutine 

Inputs 

Set P 
Lcond, Dcond, AAFC, 
hcondNum, NSECTC, 
RTBCND, crtmult, 
DZC, rough, Etc.  

Set I 
Pin, hin, m& ref, m& air, 
Tairin, haircond, 
alphacond 

Outputs 
Set C 

Qsup, Q2ph, Qsub, 
Asup, A2ph, Asub, 
dpsup, dp2ph, dpsub, 
Acond, vout, Cond2phX 

‘calc’ Variables 
(from set O) 
Qcond_calc, hout_calc, 
Mcond_calc, Pout_calc 
subcool_calc, 
Dpcond_calc, Toutcalc, 
Tacondout_calc 
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variables needed by the subroutine to simulate the condenser.  Usually, haircond is calculated in subroutine by 

library function.  But in this version of the model, haircond is a user-specified input to the subroutine.  The outputs 

include two main parts: Set C and Set O.  The set C consists of calculated variables, which are directly returned back 

to user interface, but not to the NR solver.  The Set O are calculated X variables, needed by NR solver to 

simultaneously solve the set of residual equations associated with the X variables.  From the viewpoint of sequential 

subroutine, the inputs and outputs are not interchangeable.  But at the main program level, the XK variables are 

interchangeable, which is the big advantage of the NR solver.  The number of unknown X variables must be kept 

equal to the number of residual equations.  

4.2.3 Captube-suction line heat exchanger 
The residual equations that describe the behavior of the capillary tube-suction line heat exchanger (ct-slhx) 

are substantially different from the other groups of residual equations.  There are actually two different sets of 

equations, or submodels, that can be used to model the CT-SLHX.  One sub-model is based upon a finite-difference 

solution of the governing equations for refrigerant flow through it.  This method calculates directly the mass flow 

rate and heat transfer that takes place within the component based on published correlations.  The other sub-model is 

a simple method that relies on a user-specified heat transfer effectiveness of the CT-SLHX, instead of performing 

geometry-specific calculation.  In this simple submodel, only two residual equations describe the capillary tube-

suction line heat exchanger.  The first one predicts the amount of the heat transfer from the hot refrigerant in the 

capillary tube to the colder refrigerant in the suction line based upon the user-supplied value of the effectiveness: 

ectslhx, one variable from XK: 

R(cap+0)= ectslhx * (hpt(pincomp,tinexp) – houtE) – (hincomp – houtE)  (Eq. 4.6) 

Where (hincomp – houtE) represents the actual heat transfer and (hpt(pincomp,tinexp) –  houtE) represents the 

maximum heat transfer that could occur when the refrigerant at the suction line outlet reaches the temperature of the 

refrigerant at the capillary tube inlet.  

The second residual equation that describes the capillary tube – suction line heat exchanger in this case is 

the refrigerant-to-refrigerant energy balance for the component.  It is assumed that there is no heat transfer from the 

capillary tube or suction line to the environment:  

R(cap+1) = (hinexp – hinE) – ( hincomp – houtE) (Eq. 4.7) 

This residual equation sets the change in enthalpy across the capillary tube (hinexp – hinE) equal to the change in 

enthalpy across the suction line (hincomp – houtE).  

The other residual equations that are used to simulate the CT-SLHX when the effectiveness-based sub-

model is used are shown below: 

R(cap+2) = CaptubeModel – 1.0 (Eq. 4.8) 

R(cap + 3) = ((0.75*Lin/(Lin+Lhx+Lout))*(pinexp -pcrit)/numDPin – Dpin  (Eq. 4.9) 

R(cap+4) = (tincomp -toutE)/numDTsl – DTsl (Eq. 4.11) 

R(cap+5) = ((2.5d0*Lout/(Lin+Lhx+Lout))*(pinexp -pcrit))/numDPout – Dpout (Eq. 4.12) 

R(cap+6) = pinE - 10.0d0 – pcrit (Eq. 4.13) 
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4.2.4 Evaporator  
Similarly, the evaporator is modeled locally as a cross-flow heat exchanger, using a finite-element method. 

There are two serial evaporators in this component, so the sequential subroutine is called twice from the main 

program with different values to respectively simulate the fresh food evaporator and freezer evaporator.  Figure 4.4 

shows the interface of the subroutine and system residual equations as well as variables categories involving in the 

evaporator component.  

The NR solver will serially call the sequential subroutine, with different geometry and different inlet states.  

Because these two evaporators are serial, the mass flow rates through the evaporators are equal and the outlet 

calculated states from the fresh food evaporator are the input states for the freezer evaporator.  Additional 

connection equations describing the connection force the refrigerant states to equate at the connection point. 

 

Figure 4.4 interface of sequential subroutine, residual equations and variables 

 

Inputs 

Set P 
Levap, Devap, 
AAFE, 
hevapNum, 
NSECTE, 
RTBEVP, 
ertmult, STE, 
rough,  
Etc.  

Set I 
Pin, hin, m& ref, 
m& air, Tairin, 
hairevap, alphaevap 

Evaporator subroutine 
Pout_calc = ocalc(Pin,hin,m& ref,Tairin,etc.) 
hout_calc = ocalc(Pin,hin, m& ref,Tairin,etc.) 
Qevap_calc = ocalc(Pin,hin, m& ref,Tairin,etc.) 
Dpevap_calc = ocalc  
(Pin,hin, m& ref,Tairin,etc.) 
Taevapout_calc = ocalc  
(Pin,hin, m& ref,Tairin,etc.) 
Mevap_calc = ocalc  
(Pin,hin, m& ref,Tairin,etc.) 
Tout_calc = ocalc  (Pin,hin, m& ref,Tairin,etc.) 

Outputs 

‘calc’ Variables 
(from set O) 

Pout_calc, 
hout_calc, 
Qevap_calc,  
Dpevap_calc 
Toutcalc, 
Mevap_calc, 
Taevapout_calc 

Set C 
Qsup, Q2ph,  Asup, 
A2ph, dpsup, dp2ph,  
Aevap,Caevap, vout, 
Evap2phX, 
superheat_calc  

Newton-Raphson solver 
f(1) = Pout - Pout_calc 
f(2) = hout – hout_calc 
f(3) = Qevap – Qevap_calc 
f(4) = Dpevap – Dpevap_calc 
f(5) = Taevapout - Taevapout _calc 
f(6) = Mevap- Mevap_calc 
f(7) = Tout - Tout_calc 

Set O Set P + Set I 

call sequential subroutine 
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Figure 4.5 residual equations associated with evaporator component 

 

Fresh food evaporator equations: 
 
R(1) = Poutfevap - Poutfevap_calc 
R(2) = houtfevap – houtfevap_calc 
R(3) = Qfevap – Qfevap_calc 
R(4) = Dpfevap – Dpfevap_calc 
R(5) = Tafevapout- Tafevapout_calc 
R(6) = Mfevap- Mfevap_calc 
R(7) = Toutfevap- Toutfevap_calc 

Connection equations: 
 
R(8) = poutfevap – pinE 
R(9) = houtfevap – hinE 
R(10) = pinevapf – poutE 
R(11) = hinevapf – houtE 
R(12) = houtevap – hinsl 
R(13) = poutevap - pinsl 

Freezer evaporator equations: 
 
f(14) = PoutE - PoutE_calc 
f(15) = houtE – houtE_calc 
f(16) = Qevap – Qevap_calc 
f(17) = Dpevap – Dpevap_calc 
f(18) = Taevapout - Taevapout_calc 
f(19) = Mevap - Mevap_calc 
f(20) = Toutevap - Toutevap_calc 
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Appendix A: Capillary Tube Suction-Line Heat Exchanger Design Model 

A.1 Design operating condition 
In this section, several capillary tube-suction line heat exchanger (ct-slhx) geometrys are simulated to 

determine mass flow rate and several other performance indicators at the “design” operating condition.  Refrigerator 

is tested at a 90o F, with Te=-12.4F and Tc=105 F, corresponding to high and low side pressures of 149.7 psia and 

15.7 psia, respectively.  To maximize performance of evaporator and condenser, superheat degree and subcooling 

degree are usually set at 5o F and 3o F.  The inside diameter of the suction line is 0.375 inches.  At these conditions 

the design calls for a mass flow rate w=12.4 lbm/hr.  The following summary Table (Table A.1) shows only Lct, 

Lin, Lhx, w, Tsuc and Xcrit.  However, Tsuc is the indicator of effectiveness of the ct-slhx.   

In order to investigate how subcooling affects the mass flow rate and other performance indicators, the 

CTSLHX model is run at 1o, 3o and 6o F subcooling, respectively.  

Simulations were performed for several different total lengths of capillary tube, where possible, the inlet 

length of capillary tube is changed while keeping the heat exchanger and outlet lengths unchanged at 68 inches and 

6 inches, respectively.  For each diameter (0.038, 0.036, 0.034 and 0.032 inches, respectively), from the property 

profile printed on the computer screen, it was found that re-condensation occurred in the following cases: when 

length decreases to 95 inches and 85 inches with ∆Tsub=6o F, there is re-condensation in the heat exchanger part, 

and flashing occurs again in the outlet part; It also occurs in the case where Dct=0.034 inches, and Lct= 90 inches 

with 6o F subcooling;  For Dct= 0.032 inches with only 1o F subcooling,  re-condensation also can be found.  

However, if length decrease to 70 inches with 6o F subcooling degree, the whole capillary tube is almost filled with 

single-phase liquid refrigerant, and there is only one flash point which is located in the adiabatic outlet section.  

The following Table summarizes the results for all geometry simulated: 

Table A.1 Calculated results for several different cases 

Geometry ∆Tsub=1o F ∆Tsub=3o F ∆Tsub=6o F 

Lct 
[inch] 

Lin 
[inch] 

Dct 
[inch] 

Lct 
[inch] 

w 
Lbm/

hr 

Pcrit 
[psia] 

Tsuc 
[F] 

w 
Lbm/

hr 

Pcrit 
[psia] 

Tsuc 
[F] 

w 
Lbm/h

r 

Pcrit 
[psia] 

Tsuc 
[F] 

130 56 0.038 68 15.6 29 69 16.5 30 69 17.7 31 69 
120 46 0.038 68 16.6 30 70 17.6 32 70 19.0 33 70 
110 36 0.038 68 17.9 32 72 19.0 34 71 20.7 36 70 
105 31 0.036 68 16.2 32 73 17.2 34 73 18.8 36 72 
95 21 0.036 68 18.0 36 74 19.2 37 74 21.1 40 73 
85 11 0.036 68 20.6 40 76 22.2 43 75 24.8 47 74 

110 36 0.034 68 13.4 30 73 14.2 31 73 15.4 34 72 
100 26 0.034 68 14.6 33 75 15.6 34 74 17.1 37 73 
90 16 0.034 68 16.5 36 76 17.7 38 75 19.5 41 74 
80 6 0.032 68 15.2 40 79 16.6 43 78 17.6 44 77 
70 10 0.032 54 15.1 40 71 16.3 43 71 18.1 47 69 
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From the above summary table, it is obvious that all the calculated mass flow rates are greater that the 

design target of 12.4 lbm/hr.  If the mass flow rate should meet the design value, the length of capillary tube should 

be extended.  The ct-slhx model was then used to calculate the adiabatic inlet length required to meet the 12.4 

lbm/hr mass flow rate for all capillary diameters situation at 1F, 3F, 6F subcooling.  

Table A.2 Calculated length for different diameters to meet design mass flow 

∆Tsubcooling=1o F ∆Tsubcooling=3o F ∆Tsubcooling=6o F 

Tsuc 
[F] 

Dct 
[inch] 

Lin 
[inch] 

Tsuc 
[F] 

Dct 
[inch] 

Lin 
[inch] 

Tsuc 
[F] 

Dct 
[inch] 

Lin 
[inch] 

65 0.038 104 64 0.038 117 63 0.038 137 
69 0.036 71.2 68 0.036 82.0 66 0.036 97.2 
73 0.034 45.7 71 0.034 54 70 0.034 66.0 
78 0.032 18.8 76 0.032 24.0 74 0.032 32.4 

 
The results suggest that a diameter equal to 0.032 inches would have several advantages.  At Lct=92.8 

inches, the length is the shortest, and it also transfers the most heat from the capillary tube to the suction line, as 

evidenced by the suction inlet temperature.  That should maximize the EER increase contributed by the ct-slhx.  

A.1.1 Effect of low condensing pressure 
It may be possible that the captube exit becomes subsonic at low ambient temperature and ∆Tsub may be 

larger.  The following Table shows us the results.  The subcooling degrees shown in the table are the maximal 

values corresponding to different diameters and lengths, which can be used to calculate the critical pressure by ct-

slhx model.  From the result table, critical pressure is always greater than the evaporator pressure in these special 

situations, so in every case there is no subsonic.  

Table A.3 Effectiveness of low condensing pressure 

Dct=0.038 
[inch] 

Dct=0.036 
[inch] 

Dct=0.034 
[inch] 

Dct=0.032 
[inch] 

Lin 
[inch] 

Pcirt 
[psia] 

Tsub 
[F] 

Lin 
[inch] 

Pcirt 
[psia] 

Tsub 
[F] 

Lin 
[inch] 

Pcrit 
[psia] 

Tsub 
[F] 

Lin 
[inch] 

Pcirt 
[psia] 

Tsub 
[F] 

56 34.1 10 31 40.1 10 36 36.5 10 6 40.1 1 
56 36.5 15 31 41.6 12.5 36 39.6 15 6 42.3 2.5 
56 38.8 20 31 43.0 15.5 36 40.5 17.5 6 44.9 5.0 
46 36.4 10 21 40.3 5.0 26 38.3 7.5 10 45.9 5 
46 39.2 15 21 44.4 10.0 26 40.3 10 10 47.8 8.5 
46 41.3 19 21 45.5 12.0 26 43.0 13.5 10 47.9 9.2 
36 39.3 10 11 43.2 2.5 16 40.8 5 --- --- --- 
36 42.7 15 11 46.9 6.0 16 43.4 7.5 --- --- --- 
36 42.9 16 11 47.8 7.5 16 44.8 9.0 --- --- --- 

 
For the Lct=70 inches case with Dct=0.032 inches, the length of capillary tube is not long enough to keep 

the length of heat exchanger at 68 inches, so the inlet length is set at 10 inches, and deduced the heat exchanger part 

to 54 inches.  
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A.2 Capillary Tube-Suction Line Heat Exchanger Model user’s reference 
The purpose of this section is to acquaint any potential users with the operation of the capillary tube-suction 

line heat exchanger model.  The ct-slhx model calculates the mass flow rate through the capillary tube, the 

temperature rise in the suction line and the exit pressure and quality of the capillary tube.  By using the cold liquid 

refrigerant in the suction line to decrease the enthalpy of the refrigerant in the capillary tube, this equipment can 

increase system capacity with a modest increase in the compressor power.  At the same time, it can make sure that it 

is pure vapor refrigerant to enter into the compressor.  Generally speaking, for the modeling purpose, the capillary 

tube is divided into three sections: adiabatic inlet section, heat exchanger section and the adiabatic outlet section.  

A.2.1 Definition description for variables and parameters 
In the capillary tube-suction line heat exchanger model, the capillary tube is divided into three different 

sections: adiabatic inlet section, followed by heat exchanger section, and the last one is adiabatic outlet section.  The 

following figure (Woodall and Bullard, 1996) defines the main variables and parameters appearing in the XK 

initialization file.  The flashing point is located in the inlet section, however, it can occur in either of the other two 

sections.  At the same time, the refrigerant may re -condense in the heat exchanger section and then re-flash occur in 

the following adiabatic outlet region, which is not shown in the following figure.  

 

Figure A.1 Divisions of capillary-tube suction line heat exchanger 

Definition description for the variables and parameters: 
Dct  Diameter of the capillary tube 

Dsuct Diameter of suction line 

Lin  Adiabatic inlet section length of capillary tube 

Lhx Heat exchanger length of capillary tube 

Lout Adiabatic outlet section length of capillary tube 

w  Mass flow rate through the capillary tube 

subcool Degree of subcooling inlet the capillary tube 

t9 Temperature at inlet of suction line 

t11 Temperature at the exit of suction line 

Xoe, 
t9,p9
 

Subcool 
P4, xoc 

w 

flash point 
Pcrit, xcrit 

C

Suc

liquid 

Lin, Dpin Lhx, DTsl 

Two-phase 

Lout, DPout 

t11, p11 
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p4 Pressure at the exit of condenser 

p9 Pressure at the inlet of suction line 

p11 Pressure at the outlet of suction line 

Pcrit  Critical pressure at the exit of capillary tube 

Xoc Quality at the exit of condenser 

Xoe Quality at the exit of capillary tube 

Xcrit Quality at the exit of capillary tube(choked flow) 

Dpin  Pressure step in the inlet section of capillary tube 

DTsl Temperature step in the suction line heat exchanger section 

Dpout Pressure step in the outlet section of capillary tube 

superheat Degree of superheat at the exit of evaporator 

The procedure that refrigerant flows through capillary tube-suction line heat exchanger is very complicated, 

so this component is a very difficult one to simulate.  Depending on different locations in capillary tube and 

different design conditions, there will be several different processes occurring in the capillary tube.  Generally, the 

total capillary tube is divided into three consecutive three sections, just like the above plot.  

Now, the first adiabatic inlet section is considered.  The entering refrigerant usually has two states: pure 

subcooled liquid or two-phase mixture.  If pure subcooled liquid, the pressure will decrease without changing 

temperature before it reaches the saturation pressure.  However, its pressure decreases when it flows through the 

inlet section.  At the saturation pressure, liquid refrigerant begins to vaporize.  We mark this location as flash point, 

and the remainder length of adiabatic inlet could be modeled as two-phase mixture.  The subcooling degree is large, 

and the inlet section length is not long enough for refrigerant to vaporize and flash.  The total inlet section is single-

liquid flow.  If the entering refrigerant is two-phase mixture, the total capillary tube can be model as two-phase 

condition.  The pressure decreas es with the increase of the quality when it flows through the inlet section.  

Leaving the inlet section, the refrigerant enters into heat exchanger section.  However, the entering state is 

subcooled liquid or two-phase mixture, which is decided by the operating condition and the geometry of inlet 

section.  During flowing through this heat exchanger section, the heat transfer loss will cause decrease of the quality 

and the temperature.  At the same time, the flow friction causes the drop of the pressure.  Unfortunately, the pressure 

drop and the heat loss cause opposite changing on the refrigerant.  The pressure drop of the refrigerant tends to 

increase the quality, however, the heat loss will increase the subcooling tendency or decrease refrigerant’s quality.  

Under such complicated circumstances, the state transition of refrigerant in the heat exchanger will be unpredictable 

and complicated.  Under the effect of the two opposite mechanisms, there will be five different possible scenarios in 

this part (R.J.Woodall and C.W.Bullard,1996): 

(1). The refrigerant enters as two-phase mixture and it stays two-phase; 
(2). The refrigerant enters as two-phase mixture and it recondenses and exits as subcooled liquid; 
(3). The refrigerant enters as subcooled liquid and it stays subcooled; 
(4). The refrigerant enters as subcooled liquid and it flashes and exits as a two-phase mixture; 
(5). The refrigerant enters as subcooled liquid and it flashes and then recondenses downstream and exits 

as a subcooled liquid; 
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The last scenario only can occur in a special situation, where the effect of pressure drop of the refrigerant is 

dominant in the upper stream, however the effect of heat transfer loss is dominant in the downstream of the heat 

exchanger section.  

The last part is adiabatic outlet section.  Just like adiabatic inlet section, there is no heat transfer, only 

pressure drop.  This will also have the same two possible entering states: pure subcooled liquid or two-phase 

mixture.  The situation should be the same as inlet section, except that the exiting state of outlet section should 

always be two-phase mixture at the choked flow condition.  So if the entering state is pure liquid, the refrigerant 

subcooled degree should decrease until the saturation point, then vaporize and increase quality as two-phase 

mixture.  For two-phase entering condition, the refrigerant pressure drops with the increase of the quality under the 

effect of the flow friction.  When the quality increases, the specific volume of the mixture will increase, too.  Since 

the mass flow rate is constant, the increase of the specific volume will cause the increase of the refrigerant flow 

speed.  The velocity of the refrigerant will increase until critical flow is reached at the exit.  At a prescribed 

condenser pressure, further reductions of the evaporator pressure below this point will not increase the mass flow 

rate of the refrigerant.  Therefore, the condition of choked flow at the exit of the outlet section is assumed.  If 

refrigerant is choked at the exit, there will be a discontinuity between the critical pressure at the capillary tube exit 

and the pressure at the inlet to the evaporator (R.J.Woodall and C.W.Bullard, 1996).  

A.2.2 XK file, variables and parameters definition 
The XK file is the primary bridge for communication between the user and the ct-slhx model.  In the XK 

file, variables and parameters can be changed for every case, and the corresponding output calculated by the model 

is written to the output file.  Now, the output name in the ct-slhx model is “s.derek”, whose name can be changed in 

the instruction file.  In the XK file, variables are marked with “X” flags and parameters are marked with “K” flags.  

At the same time, X’s and K’s can be switched without recompiling.  The primary storage location for variables and 

parameters is the XK array, where every element is made “equivalent” to Fortran variables and parameters, which 

appear in the governing equations in the “equation.f” file.  For example, in the XK file of ct-slhx model, XK (1) and 

Dpin variable are “equivalent” and they can be used interchangeably.  In other words, variables and parameters are 

usually referred to by XK# in the solver, while the governing equations and subroutines refer to them by their 

names.  The XK array and “equivalent” Fortran variables and parameters are declared and put in the common block 

in “EQUIVLNT.INC” file, which is usually included in different subroutines and files.  

The following is the XK interface, which can be used to change parameter’s values or switch X’s, and K’s.  

If variable or parameter is needed to appear in the written file, the “output flag” value should be set to 1, otherwise, 

it should be 0.  Parameters are flagged with “K”, which need user-specified values.  However, variables are flagged 

with “X”, which need ideal initial guess value for model’s calculation, and are updated by the model latest results 

appearing in the written file.   

Table.A.4 Sample XK initialization file 

 
** XK initialization file: initializes variable guesses and parameter values. 
** Output Flag specifies if variable is printed to spreadsheet readable file. 
** (1 = Print, 0 = Don't Print ) 
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** Parameters are flagged with "K" and variables are flagged with "X." 
** The units are delimited with '[ ]'. 
** The last number signifies the number of decimal places (0-10). 
** The ORDER of the input lines CANNOT CHANGE without program modification. 
 

 Output Flag  Name XK#  Value  Units  # of digit 
***********   DO NOT DELETE THESE FIRST NINE LINES!    *********** 

0  X  DPin  = XK(  1) =                      4.840 [psia] 3 
0  X  DPout = XK(  2) =                      4.056 [psia] 3 
0  X  DTsl = XK(  3) =                      5.453 [F] 3 
1  X  pcrit  = XK(  4) =                      42.35 [psia] 3 
1  X  w = XK(  5) =                     10.856[lb m/hr] 3 
1  X  xcrit  = XK(  6) =                    0.1025 [ ]  4 
0  K  CaptubeOutput  = XK(  7) =                         2.0 [ ] 1 
1  K  Dct = XK(  8) =                0.002750 [ft] 6 
0  K  Dsuctline = XK(  9) =                  0.02604 [ft]  5 
1  K  Lin  = XK( 10) =                     4.250 [ft] 3 
1  K  Lhx  = XK( 11) =                    5.167 [ft] 3 
1  K  Lout = XK( 12) =                     0.667 [ft] 3 
0  K  numDPin  = XK( 13) =                           4. [ ] 0 
0  K  numDPout = XK( 14) =                           5. [ ]  0 
0  K  numDTsl = XK( 15) =                           6. [ ] 0 
1  K  p4 = XK( 16) =                12 0.400 [psia] 3 
1  K  p9 = XK( 17) =                   42.320 [psia] 3 
1  K  subcool = XK( 18) =                     7.625 [F] 3 
1  K  t9 = XK( 19) =                   37.050 [F] 3 
1  C  superheat = XK( 20) =                   10.000 [F] 3 
0  K  xoc = XK( 21) =                     0.000 [] 3 
0  K  xoe = XK( 22) =                     1.000 [] 3 
1  C  t11 = XK( 23) =                   69.766 [F] 3 
0  K  Cap_clog = XK( 24) =                           1. [ ]  0 
0  K  absR = XK( 25) =       0.0000009708 [ft] 10 

 

The next part is the description for the parameter-variable switch.  Just like interface above, the w(mass 

flow rate) is the variable, and Dct is the parameter.  If w is wanted to be a specified parameter value, and Dct is 

required to be calculated by the ct-slhx model with an initial guess, only the two flags are required to be changed in 

the above XK initialization file.  The corresponding two lines  

1  X  w                      = XK(  5) =                  10.856[lbm/hr]                      3 
1  K  Dct                   = XK(  8) =                    0.002750 [ft]                       6 

would have to be changed to  

1  K  w                      = XK(  5) =                  10.856[lbm/hr]                      3 
1  X  Dct                   = XK(  8) =                    0.002750 [ft]                       6 

 
After forgoing operation, the model will run according to the above description.  When swapping variables 

and parameters, caution must be exercised to ensure that the equations are not made singular or non-independent 

because of the swapping operation.  Since the ct-slhx mode may become more sensitive to initial guess values 

because of the swapping, it is recommended that a solution for original equations be found before swapping, and this 

solution can be set as the initial guess value for the new XK file with parameters and variables swapping.  As far as 

we know, some equations are very sensitive to a particular parameter, a larger change in the particular parameter 
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may make it difficult to get solution.  It maybe is a good idea to achieve the designed change using a series of 

intermediate steps, with each intermediate solution used as updated initial guess value for the XK file.  

Parameters marked with “C” are constant values specified by ct-slhx model.  The flags can not be changed 

without program modification, and in the output file, these parameters can get the results calculated by ct-slhx 

model. 

A.2.3 Sample instruction file 
For different cases, different parameter values may be needed, then the instruction file is needed.  The 

instruction file contains a list of parameters, which are needed to have their values modified, as well as the list of 

values for these parameters.  On the other hand, the number of intermediate steps can also be specified to take 

between solutions.  If the step number is one or more, then instruction file can direct the Newton-Raphson solver to 

linearly interpolate the intermediate solution between the previous specified parameter and the next specified 

parameters.  This method can ensure a smooth transition from previous parameter to the designed value, when the 

model is very sensitive to this particular para meter’s initial guess value.  According to the user’s choice in the XK 

file, the final results will be written into the specified file, however, the intermediate solutions will not be saved.  

The following is the example for the instruction file:  

Table A.5 Instruction file Sample 

Items Description 

MULTIPLE Solve for multiple sets of parameters  
XK Name of XK initialization file  
XK.richard Name of output file 
1,4,8 #of runs, #of parameters to modify, #of intermediate steps  
8   9   10    11 List of parameters to be modified in XK interface file 
0.28  0.03   2.1   5.7 List of specified values for parameters’ modification 

A.2.4 Solver setting file 
The file “SLVERSET” contains settings for various solver parameters, convergence criteria and tolerances, 

and output options.  The following is the sample SLVERSET file.  Some of the output settings, such as printing 

initial, intermediate and final XK and R values, and other settings, are primarily useful for debugging a model, and 

normally the solver setting need not be changed.  However, according to the design value for different case, these 

setting can be changed to meet the design need.  

************************************************ 
******** NEWTON-RAPHSON SETTINGS ******** 
Instruction file name                   : INSTR 

Step factor for partial derivatives     : .0001 
Maximum allowable NR iterations         : 15  
Convergence criteria 1(Maximum residual) : 1.0e-3 

Convergence criteria 2 (RMS residual)   : 1.0e-4 
Selected convergence criteria (1 or 2) : 2 
NR step relaxation parameter    1.0 
Use sparse matrix techniques? : .TRUE. 
Update guesses between runs?            : .TRUE. 
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******** GENERAL OUTPUT SETTINGS ******** 
Send general output to screen?        : .TRUE. 
Send general output to a file?         : .FALSE. 
Print abbreviated solver settings?   : .TRUE. 
Print initial XK values?             : .FALSE. 
Print initial residual values?    : .FALSE. 
Print iteration summaries?         : .TRUE. 
Print intermediate XK values?      : .FALSE. 
Print intermediate residual values?    : .FALSE. 
Print final XK values?                 : .FALSE. 
Print final residual values?         : .FALSE. 
Print a final summary                            : .TRUE. 
 
******** SOLUTION OUTPUT SETTINGS ******** 
Save XK values in input file format?   : .FALSE. 
Save XK values in spreadsheet format?   : .TRUE. 
Output digits 0-10 (-1 = as in XK file) :  -1 
 

Using the solver setting file, the operating conditions and desired formation can be set.  According to 

different need, special flags can realize different solution output appearances.  At the same time, special values can 

be input to change model’s initial information.  For example, if file format like XK formation is needed, then logic 

value in “SOLUTION OUTPUT SETTINGS” section should be switched as “TRUE”, otherwise, it should be 

“FALSE”.   
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Appendix B: Dual Evaporator Simultaneous System Modeling 

B.1 Introduction 
Dual evaporator refrigerators are modeled most accurately using the modular system simulation approach 

described in Chapter 4.  This Appendix describes a crude intermediate method for using a single-evaporator model 

to simulate a dual evaporator system.  This model is now obsolete, having been superceded by the version described 

in Chapter 4.  However, it is documented here for archival purpose.  Modifications were made to the previously 

developed single-evaporator code in order to simulate better the refrigerators in this study.  

The ACRC refrigerator simulation model was initially developed for the study of single evaporator 

refrigerator-freezers at the Air Conditioning and Refrigeration Center (ACRC) at the University of Illinois at 

Urbana-Champaign.  It consists of a general Newton-Raphson solver linked to a series of equations and functions 

that describe the particular refrigeration system being modeled (Mullen (1994) and Woodall (1996)).  The 

simulation model for refrigerators is called RFSIM.  The model assumes a steady state operation.  The single 

evaporator model is described in more detail in Woodall and Bullard (1996).  RFSIM was modified (Stein, 1999) 

and refined by Gerlach (2000) for dual evaporator refrigerators by adding a second evaporator in the fresh food 

section and eliminating the equation describing air exchange between the compartments.  The fresh food evaporator 

was mo deled as a two -phase region and the freezer evaporator includes both a two-phase region and a single-phase 

superheated region.   

Additional modifications were needed to accurately represent the prototypes tested.  Based upon the request 

of the sponsor, we tried to simulate the dual evaporator system separately by running the single-evaporator model 

alternately, first simulating one evaporator, supposing the other one idle.  A few variables and residual equations 

were modified to simulate the dual evaporator system and its separate refrigerated compartment.  This approximate 

approach is not recommended, but is described in Sec.B.2 for those who prefers to use the simultaneous instead of 

the modular version of the RFSIM.  

Chapter 4 describes the simulation model with new modular structure for simulating dual-evaporator 

refrigerators.  Every system component has an associated sequential subroutine describing the component.  The 

number of initial guess values substantially decreases, also structured and independent sequential subroutines were 

easily embedded in the simulation system without recompiling and changing codes.   

The nomenclature used in Stein (1999) and continued here is that the freezer compartment variables are 

written simply such as “tevap.”  The fresh food variables have an “f” added, e.g. tevapf.  Alternatively, a freezer 

variable is denoted with a “z” added, e.g. tevapz.  In the new model structure, the variables name are kept 

unchanged, but all the variables are categorized into four categories as discussed in Harshbarger and Bullard (2000).   

B.2 Simultaneous system 
This simultaneous system is built upon the original RFSIM, using one-evaporator system to simulate dual-

evaporator system.  Suppose we run the dual evaporators separately, that means one time we run fresh food 

compartment, and the other time we run the freezer compartment.  In the single evaporator RFSIM model, we ignore 
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the heat transfer between these two compartments through the mullion, but in dual evaporator model, it is an issue 

we need to pay attention to.  The UA of the mullion is a new variable added into the XK variable list.  

We simulate fresh food and freezer compartments concurrently in single evaporator system.  Variables ‘fz’ 

and ‘runtime’ are describing the running conditions.  In order to simulate dual-evaporator system using the single-

evaporator approach, we need to focus on one compartment at one time.  Variable ‘fz’ is a specified K value, which 

is switched between 0 and 1 for fresh food case and freezer case, respectively.  For fresh food case, fz is specified to 

zero, meaning that no air flows into freezer compartment; On the other hand, fz is equal to one in the freezer case, 

where all air flows into freezer compartment instead.   

For freezer simulation, the Figure 4.1 shows us the specified inputs for freezer compartment case, which is 

a little different from the original RFSIM evaporator system.  

Governing equations for the freezer case are shown below.  They have been modified from the original 

RFSIM system model since new heat transfer boundary is considered in the modified simulation model. 

The following residual equation simulates the total heat transfer balance of the freezer compartment.  The 

mullion heat transfer between fresh food and freezer compartments has been added.  The heat transfer sources 

include heat transfer between ambient and freezer compartment, heat transfer from heater, heat transfer between 

fresh food and freezer compartments and heat transfer of liquid line (post-condenser loop for heating the door gasket 

areas), all of which is assumed to enter the freezer compartment.   

R(cab+0) = BTU(UAz)*(tamb - tafrez) + BTU(FrezHeater)  + qliqline 
+BTU(UAm)*(tafrig - tafrez) – Qfrez  (Eq. B.1) 

 

 

Figure B.1 Freezer component simulation: no air flows into fresh food compartment 
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The second residual equation describes the total heat transfer balance of the fresh food compartment 

without air flowing through since Fz is specified 1.0.  This is the running condition we suppose.  The heat transfer 

sources include heat transfer between two compartments, heat transfer from ambient and heater.  

R(cab+1) = BTU(UAf)*(tamb - tafrig) + BTU(FrigHeater) - BTU(UAm)* 
(tafrig - tafrez) - Qfrig (Eq. B.2) 

The following residual equation is used to calculate the time that the system has to run to remove all the 

heat added to the freezer compartment in order to keep the constant temperature in the compartment.  

R(cab+2) = (mdotaevap*fz*(ha(tafrez)-ha(taevapfanout)))*Runtime – Qfrez (Eq. B.3) 

where the fz is equal to 1.0.  When simulating the freezer, the other residual equation that is modified to simulate the 

running condition is the one calculating the fresh food compartment heat transfer ‘Qfrig’.  Since we know there is no 

air flowing into this compartment, variable ‘Qfrig’ is forced to be equal to zero all the time in this case.  

R(cab+3) = Qfrig – 0.0  (Eq. B.4) 

The residual equation that is not listed above but in the original system is still kept to help the simulation.  

We should keep in mind that during the whole simulation, the fresh food compartment temperature should 

constantly keep 41 °F, so the heat transfer between ambient and fresh food compartment should be equal to the heat 

transfer from fresh food compartment to freezer part.  In order to make the equation valid, we need to keep UAf as a 

‘X’ variable.  Similarly, when we simulate the fresh food compartment, we need exchange UAz and UAf: UAf is K 

parameter, but UAz is allowed to float to some artificial value.   We can do the simulation in another way, keeping 

the variable fz float to some artificial value instead and specifying the UAz or UAf alternately.  In our current 

model, we specify and switch fz between 1 and 0, keeping UAz or UAf float in order to balance the heat transfer in 

fresh and freezer compartments.  

We use similar way to simulate the fresh food compartment, but this time fresh food evaporator is active 

and total air flows into fresh food compartment.  Variable fz is specified to zero.  During the simulation, freezer 

compartment temperature, -4 °F, is constantly kept.  At the same time, just as discussed about, variable UAz is 

allowed to  float in order to satisfy the heat transfer between freezer compartment, fresh food compartment and 

ambient.  The Figure B.2 shows us the relationship around the fresh food compartment.  

Similarly, some residual equations as below are modified to simulate the running condition from the 

original RFSIM residual equations.  

The first residual equation is to describe the heat transfer balance of the freezer compartment.  Heat transfer 

between ambient and freezer compartment, heat transfer from heater and liquid line and heat transfer between these 

two compartments are considered in this equation.  

R(cab+0) = BTU(UAz)*(tamb - tafrez) + BTU(FrezHeater)  + qliqline 
+BTU(UAm)*(tafrig-tafrez)- Qfrez (Eq B.5) 
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Figure B.2 Fresh food compartment simulation 

The second residual equation modified is the equation simulating the heat transfer balance of the fresh food 

compartment.  

R(cab+1) = BTU(UAf)*( tamb – tafrig ) + BTU( FrigHeater ) - BTU( UAm)* 
   (tafrig-tafrez ) - Qfrig  (Eq. B.6) 

The following is the residual equation used to calculate the fraction time the system uses to remove the heat 

added to this compartment in order to keep temperature balanced.  

R(cab+2)=(mdotaevap*(1.0d0-fz)*(ha(tafrig)-ha(taevapfanout)))*RunTime-Qfrig  (Eq. B.7) 

The last residual equation needing attention is to specify the heat transfer balance of the freezer 

compartment.  The variable ‘Qfrez’ is forced to zero since there is no air flowing in and the evaporator is idle now.  

R(cab+3) = Qfrez – 0.0  (Eq. B.8) 

In conclusion, we can use single evaporator system model to simulate the dual evaporator refrigerator 

components separately, but the simulation method can not provide exact results for us.  Previously, when this dual 

evaporator system is stable, the Figure B.3 shows the states of refrigerant at different connection points.  

 

Figure B.3 stable refrigerant states of dual evaporator system 

 
Fresh compartment: 
 
Tafrig = 41 Fo 
 

Freezer compartment: 
 
Fz = 0.0 

Tafrez = -4 Fo 

 
Qm =UAm*(Tafrig-Tafrez) 

Q = UAz * (Tamb – Tafrez) 

Fresh 
Evaporator 

Q = UA f * (Tamb -Tafrig) 

compressor 
ct-slhx 

Condenser 

Fresh food evaporator Freezer evaporator 

pinE, hinE poutfE, houtfE 
poutE, houtE 

pinC, hinC 
 

poutC, houtC 
 



 52 

For fresh food evaporator, the inlet states of refrigerant are hinE and pinE from expansion device.  The outlet 

states of refrigerant are poutfE and houtfE.  Since these two evaporators are serial, poutfE and houtfE are inlet states of 

the freezer evaporator with the outlet states of poutE and houtE.  The other main state points are marked above.  

In our running cases, we simulate the dual evaporators separately, using the single evaporator system.  

When we simulate the fresh food evaporator case, the refrigerant states are described below in figure B.4.  

The combination of compressor, condenser and expansion device is the same as the figure above, but the 

freezer evaporator is removed from the dual-serial-evaporator system and assumed idle during the simulation.  

Several steps are used to analyze the process.  We supposed that the combination of compressor, condenser and 

expansion device provides the same inlets and outlets states of refrigerant as above, then fresh food evaporator has 

the inlet states, pinE and hinE.  Secondly, the evaporator provides the same outlet states as before, houtfE and 

poutfE.  Now poutfE and houtfE are inlet states of the compressor, but not poutE and houtE any more.  With the 

different inputs, the combination changes its outputs to fresh food evaporator in the next round, different from hinE 

and pinE.  At this time, the whole system is under unstable state.  When the whole system becomes stable again, the 

system has different refrigerant states at the connection points in the figure.  The fresh food evaporator has input 

states, hinE1 and pinE1, and output states, poutE1 and houtE1.  With the same specified variables, the system 

definitely has different performance now, not as expected in the original figure B.3.  

 

Figure B.4 Refrigerant states of single fresh food evaporator case 

Similarly, in the freezer evaporator simulation, the evaporator gets the inlet states, hinE2 and pinE2, and outlet 

states, houtE2 and poutE2, which are different from expected values: hinE, pinE, poutE and houtE, respectively.   

 

Figure B.5 Refrigerant states at connection points of freezer simulation 
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Appendix C: Residential A/C System Modeling 

C.1 Introduction 
The ACRC air conditioner system simulation model was developed by Mullen et al. (1998).  Instead of 

solving the equations with a successive substitution algorithm, the ACRC solver utilizes a Newton-Raphson 

algorithm to solve the governing equations simultaneously.  The solver allowed the input parameters and output 

variables to be interchanged without the need to reprogram the model.  

Recently, the system simulation model was improved by Andrade and Bullard (1999).  Equations were 

added that allowed the simulation of split type a/c units in addition to the window units.  Improvements were made 

to the evaporator heat and mass transfer equations, implementing a study by Kirby, Bullard and Dunn (1998).  

Equations simulating sensible and latent loads of a house were also added, to simulate the system’s ability to reduce 

indoor humidity for a given set of outdoor conditions and air infiltration rates.  

The system simulation model has proved an accurate and sophisticated design tool.  However, the program 

had two prominent limitations.  Modern and future heat exchanger designs were exposing the limitations with the 

conventional modeling techniques.  This became apparent when Kirkwood and Bullard (1999) modified the model 

to simulate microchannel heat exchanger geometries in a multizone framework, where a finite element approach 

would have been more appropriate.  Additionally, for the ACRC solver to calculate a solution, accurate initial 

guesses must be known for each output variable.  Many initial guesses were required, sometimes for obscure values, 

which caused great burden on the user.  Furthermore, sponsoring companies were expressing interest in individual 

component models.  With a large set of interrelated equations, component simulations were difficult to isolate and 

export from the system simulation program. 

To address these limitations, Harshbarger and Bullard (2000) have developed a new structure to be 

implemented into the system simulation model.  Finite element solutions of the heat exchangers were developed for 

the condenser and evaporator.  The finite element structure allows the simulation of complex geometries that were 

not possible with conventional methods.  The finite element solutions were integrated into the system model in a 

manner that reduced the number of required init ial guesses and therefore, the burden on the user.  

To further the capabilities of the model, a modular structure was adopted.  Using a structure similar as 

TRNSYS (Klein et al., 1976), each component in the system is solved in a self-contained manner.  Therefore, each 

component simulation can easily be isolated and/or integrated into a simultaneous set of system-level equations. 

C.2 Model description 
The RACMOD system model consists of components models for the condenser, evaporator, compressor 

and capilla ry tube, as well as simulation equations for system, component connections and charge calculation.  We 

built sequential subroutines for each component and the details describing the modeling strategies and algorithms 

used in the subroutines are provided. 

C.2.1 Condenser 
The air conditioner condenser is modeled as a crossflow heat exchanger with uniform inlet air temperature 

and velocity.  A stand-alone sequential subroutine is used to simulate this component, where the finite element 
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algorithm is used.  The first part of the condenser geometry has two refrigerant circuits and both are defined as 

identical and parallel modules.  We simulate one module, and multiply by the number of parallel modules to 

calculate the total heat transfer performance and areas for different heat transfer zones.   

 

Figure C.1 Condenser geometry 

Along the refrigerant flow direction, the circuit is equally divided into many small elements.  Each small 

element has the same length, so they have the same air-side and refrigerant-side heat transfer areas during 

simulation.  This is a cross flow configuration, where each element has the same air input temperature and we 

assume air mass flux is identical everywhere. As shown above in Figure C.1, air flows vertically into page from the 

outside.  The difference is the input refrigerant state of each element since they are divided along the refrigerant 

flow.  

The condenser includes two parts: the first part has two identical parallel circuits, which join together in the 

middle.  The second part only has one circuit.  In old 3-zone modeling framework, the circuit number is assumed 1.5 

to calculate an approximate mass flux for all three zones.  However, in the new simulation model, each small 

element uses the exact circuit number and mass flux for the calculation.  Mass flux is calculated locally as well as 

heat transfer area, pressure drop, refrigerant and air properties and local heat transfer.   

 

Figure C.2 Condenser module structure 
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In Figure C.2, we suppose we have two identical parallel modules in the first part; the second part only has 

one module.  Finite element algorithm is used to simulate each module.  Heat transfer correlations and pressure drop 

correlations are also calculated in each small element in order to exactly simulate the real heat transfer.  Each 

element in three heat transfer areas – superheat, two-phase and subcooling – is modeled using effectiveness-NTU 

heat transfer rate equations.   

At the end of the subroutine, we accumulate the heat transfer, mass charge, heat transfer areas, pressure 

drop of the refrigerant, and calculate the air temperature.  The Figure C.3 shows the flow chart of the condenser 

subroutine.  Because the difference of the circuit numbers in simultaneous and new models, we get different UA and 

areas for three zones as well as the mass charge in subcooling zone.  However, the total heat transfer is almost the 

same because air-side heat transfer coefficient is always the dominant one. 

C.2.1.1 State transition 
There is another point we need to put attention to, which is the state transition point in the middle of each 

element.  At the beginning of each element, we decide the current state of the refrigerant.  However, there is 

possibility the refrigerant changes the state among superheat, two-phase and subcooling in the middle of simulation 

on the element.  We have two methods to deal with these elements: we can divide the whole heat exchanger into 

small enough elements, where we suppose there is no transition.  Because the element is small enough, the result is 

also acceptable.  Another method is that we calculate the transition point inside the element, and then divide the 

element into two smaller elements.  We calculate these two elements sequentially.  In our current model, we use the 

latter method to decide the transition point, then call the subroutines with the exact lengths to exactly simulate the 

smaller elements although the difference between these two results is negligible.   

C.2.1.2 Subroutine description 
In the condenser main program, named condenser.f, there is a logical variable to decide which algorithm 

should be called to simulate it: 

 If (downstream) then 
  Call dwnstmCond(Pincond, hincond,houtC_calc,poutC_calc, 
     &                  QtotC_calc,AtotC_calc,heightC_calc,AfrC_calc, 
     &   massC_calc,QsupC,Q2phC,QsubC,AsupC,A2phC,AsubC, 
     &   T2phin,T2phout,P2phin,P2phout,TphinC,TphoutC) 
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Figure C.3 Flow chart for condenser subroutine 
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 Else 
   Call  upstmCond(Poutcond,houtcond,hinC_calc,pinC_calc, 
     &     QtotC_calc,AtotC_calc,heightC_calc, 
     &                    AfrC_calc,massC_calc,QsupC,Q2phC,QsubC,AsupC, 
     &      A2phC,AsubC,T2phin,T2phout,P2phin,P2phout, 
     &      TphinC,TphoutC) 
 Endif 

 

Consequentially, two different groups of residual equations are used separately to simulate these two 

algorithms, which are listed in the main program: 

If (downstream) then 

10 R(cond+0) = MtotC - massC_calc 
  goto 5000 

20 R(cond+2) = Acond - AtotC_calc 
  goto 5000 

30 R(cond+1) = Qcond - QtotC_calc 
  goto 5000 

40 R(cond+3) = AfrC - AfrC_calc 
  goto 5000 

50 R(cond+4) = heightC - heightC_calc 
  goto 5000 

60 R(cond+5) = Poutcond - PoutC_calc 
  goto 5000 

70 R(cond+6) = houtcond - houtC_calc 
  goto 5000 

80 R(cond+7) = degsubcool - degsubcool_calc 
  goto 5000 
 else 

100 R(cond+0) = MtotC - massC_calc 
  goto 5000 

200 R(cond+1) = Acond - AtotC_calc 
  goto 5000 

300 R(cond+2) = Qcond - QtotC_calc 
  goto 5000 

400 R(cond+3) = AfrC - AfrC_calc 
  goto 5000 

500 R(cond+4) = heightC - heightC_calc 
  goto 5000 

600 R(cond+5) = hincond - hinC_calc 
  goto 5000 

700 R(cond+6) = Pincond - PinC_calc 
  goto 5000 

800 R(cond+7) = degsubcool - degsubcool_calc 
  goto 5000 
 endif 
 
The variables affixed with ‘calc’ are returned from the sequential subroutine called above.  All the residual 

equations are sent to the ACRC solver, which simultaneously solves them and updates the variables in each iteration 

until the final solution is reached. 

When the sequential subroutine is called, the main program transmits the input values to it.  In each 

component, there is a file named ‘XK.update’, shared by the system.  It gives a way for the component to access the 
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initial guess values for X variables, specified interchangeable variables and parameters.  The flow process inside the 

sequential subroutine is described below.  First of all, there is a logical to indicate whether the element configuration 

has already been read from the file, ‘condenser.txt’, which defines the total number of the elements, the number of 

parallel circuits in each element, and total number of tube passes, etc.  In order to avoid recompiling, the logical 

variable is used to indicate whether subroutine already has initialized the arrays, which store the information listed 

above.  If this information has already been read, this input step will be skipped.  

 if (.not. elementread) then 

  call Readelem(NelpassC,ElperpassC,ModstartC,airinputC, 

     &      NparamodC,NcircuitC,'condinput.txt') 

  elementread = .true. 

 endif  

The logical variable, elementread, is initialized as ‘False’, causing the information to be loaded before the 

calculation.  After the first iteration, elementread is set to ‘true’.  

The next step is to calculate the condenser geometry.  Each element has the same length.  Refrigerant-side 

and air-side heat transfer areas for each circuit are calculated as well as other variables used in further calculation in 

this subroutine, which is named FTcondgeom.  

 call FTcondgeom(DinC,DoutC,NtubesperslabC,VtubedistC,WidthC, 

     &                       height,LRtrnBndC,FinthC,FinPtchC, 

     &                       TuberowsC,HtubedistC,NelpassC,ElperpassC, 

     &                       thickC,DLC,Afr,VRtrnBndC,DcC,AffC,AairC, 

     &         coilfactC,Volume,Area,AadivAffC,CSareaC)  

The next part is the core of the finite element simulation.  We use downstream algorithm to simulate this 

condenser, so we start from the refrigerant inlet and the air inlet.  The first step is to decide whether the current 

numbered element is over the boundary of the maximal element number by the ‘do-while’ control loop.  If so, we 

will skip the loop to return the calculated variables to condenser main program.  Otherwise, calculation will be 

continued until the last element.  

do while (element .le. (NelpassC * ElperpassC)) 

   … 

   … 

 enddo 

At the beginning of each element, we decide the current inlet status of the refrigerant: superheated, two 

phase or subcooled based on the element inlet, pressure and enthalpy: 

hsatv = hpx(pin,1.0) 
   hsatl = hpx(pin,0.0) 
   if (hin .ge. hsatv)then 
    vapor = .true. 
    twoph = .false. 
    liquid = .false. 
   else if (hin .ge. hsatl) then 
    vapor = .false. 
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    twoph = .true. 
    liquid = .false. 
   else  
    vapor = .false. 
    twoph = .false. 
    liquid = .true. 
   endif 

We have three subroutines to deal with vapor, liquid or two-phase, respectively, which are named supeldwnstmC, 

tpheldwnstmC, subeldwnstmC.   

 if (vapor) then 
  call supeldwnstmC(hin,Pin,wlocal, 
     &               Tairout(airinputC(element)),mdot,DLC,Area,Volume, 
     &               AaDivAffC,AffC,coilfactC,DcC,hout,Pout, 
     &  Tairout(element),Qsup,Q2ph,Asup,A2ph,Vapor,twoph, 
     &  liquid,mass,hsupC) 

else if (twoph)then 
  call tpheldwnstmC(hin,Pin,wlocal, 
     &               Tairout(airinputC(element)),md ot,DLC,Area,Volume, 
     &               AadivAffC,AffC,coilfactC,DcC,hout,Pout, 
     &  Tairout(element),Qsub,Q2ph,Asub,A2ph,Vapor,twoph, 
     &  liquid,mass,h2phC,U2phClocal) 

else if (liquid)then 
  call subeldwnstmC(hin,Pin,wlocal, 
     &               Tairout(airinputC(element)),mdot,DLC,Area,volume, 
     &  AadivAffC,AffC,coilfactC,DcC,hout,pout, 
     &  Tairout(element),Qsub,Asub,mass,hsubC) 
 endif  

The local refrigerant mass flow rate, wlocal, is calculated for each circuit in the module as well as the air mass flow 

rate by the following equations.  

  wlocal = (w/dble(NparamodC(element)))/dble(NcircuitC(element)) 

  mdot = (MdotaC/AfrC)*(DLC*VtubeDistC) 

Where NparamodC is the array to store the numbers of the parallel modules of the current element and NcircuitC is 

the array to store the number of circuits in the current element, which are all initialized at the beginning of the 

sequential subroutine by calling the text file, ‘condenser.txt’.  

In each subroutine simulating the small element, the traditional ε-NTU method is used to calculate the heat 

transfer of the element.  The governing equations used in the finite element are the same as the simultaneous models.  

After simulating each element, we accumulate the designed variables from each element as shown below: 

Qsuptot = Qsuptot + Qsup*dble(NcircuitC(element)) 
  Q2phtot = Q2phtot + Q2ph*dble(NcircuitC(element)) 
  Qsubtot = Qsubtot + Qsub*dble(NcircuitC(element)) 
  Asuptot = Asuptot + Asup*dble(NcircuitC(element)) 
  A2phtot = A2phtot + A2ph*dble(NcircuitC(element)) 
  Asubtot = Asubtot + Asub*dble(NcircuitC(element)) 
  masstot = masstot + mass*dble(NcircuitC(element)) 
  mtotalC = mtotalC + mdot*dble(NcircuitC(element)) 
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When the subroutine finishes the final element, it skips out of the ‘do-while’ loop.  The variables above are the final 

values describing the performance of the component, which are returned to the main program (design variables) or 

the user interface (calculated variables).  

Within an element there may be a transition between superheat and two-phase, or between two phase and 

subcooled.  There are two methods to deal with this problem: the first is to ignore the transition since we usually 

divide the heat exchanger into small enough elements that the difference is negligible; the other method is to 

calculate the real transition location inside the element, and then divide the current element into two elements, with 

each of them calling the corresponding subroutine with the real lengths.  We use the latter method to deal with 

problem currently.  

The calculated variables are returned by the sequential subroutine to the main program, where they appear 

in the residual equations.  The residual equations are sent to ACRC solver and are simultaneously solved.   

C.2.2 Expansion device 
The ACRC finite difference adiabatic capillary tube model developed by Peixoto and Bullard (1994) has 

been implemented in RACMOD.  This model is integrated into the whole RACMOD system without rewriting.  A 

captube option is selected by appropriately setting the parameter “CapTubeSelect”.  Setting CapTubeSelect =1 

specifies the ACRC captube and CapTubeSelect=2 specifies the ASHRAE captube.  If CapTubeSelect is a negative 

number, then the design model is chosen and user needs to specify the amount of the evaporator superheat.  

C.2.3 Compressor 
A manufacturer-supplied compressor map is used to predict the compressor mass flow rate and power 

consumption as a function of condensing and evaporating temperatures.  Bridges and Bullard (1994) provided 

details about this component.  

C.2.4 Evaporator 
Like the condenser, the residential air conditioner evaporator model assumes a crossflow heat exchanger 

with uniform inlet air temperature and velocity.  There is also a stand-alone subroutine to simulate this heat 

exchanger, where the finite element algorithm is used.  Inside the sequential subroutine, modular concept is used to 

simplify the simulation.  There are six parallel circuits, and each one is considered identical module.   We only need 

to simulate one of them, dividing the mass flow by the number of the modules.  Then the total heat transfer and mass 

charge result from timing the number by the performance of single module.   The whole module is equally divided 

into hundreds of small elements, and heat transfer coefficients, pressure drop, heat transfer and mass charge are also 

calculated locally and accumulated together to simulate the total heat transfer performance. Each element is solved 

by a series of heat transfer equations that utilize an ε-NTU method sequentially. Two regions of the heat exchanger 

require unique governing equations. The two regions are the superheated and two-phase refrigerant zones. With the 

finite element approach, a few elements will likely experience a zone change within their volume. In the model, the 

element is either totally two-phase or superheated and the error introduced by this assumption is negligible if the 

element is small enough.  The inlet enthalpy of each element is checked to determine if it is in two-phase or 

superheated zone.  
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Evaporator subroutine shares the same flow chart as the condenser subroutine.  The big difference is that 

we need to deal with dehumidification since there is water condensed from the hot air.  Depending upon the 

circumstances of the operating condition, an evaporator may operate with totally dry surface, totally wet surface or 

partially dry / partially wet surface.  Due to circuiting, it may happen that the refrigerant rejects heat to the air if the 

upwind element is colder. So if the air inlet temperature to an element is lower than the refrigerant inlet temperature, 

the element is assumed to be totally dry because the refrigerant is rejecting heat instead of absorbing heat.  

If the refrigerant inlet temperature to an element is higher than the air inlet dew point temperature, the 

element is assumed to be totally dry and we do not need to calculate the mean fin temperature at the leading edge. 

Otherwise, the mean fin temperature at the leading edge has to be calculated to determine the surface condition. 

In partial or total wet element, Log mean enthalpy method is introduced to calculate the total heat transfer, 

including both sensible and latent heat transfers.  The mean air enthalpy difference is given by 

LMhDAUQ awot ,=
 Eq. C.1 
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 Eq. C.2 

Where mwb ,  is evaluated at the mean surface temperature of the water film on the fin. wF ,η  is the fin 

efficiency for wet surface.  

We have to separate the sensible and latent capacity for enthalpy potential method after the total capacity is 

obtained.  We use the traditional ε-NTU method to calculate the sensible heat transfer, and then deduct it from the 

total heat transfer to get the latent part.  

C.2.4.1 Totally dry, partially wet or fully wet 
Depending upon the circumstances of the operating condition, an evaporator may operate with totally dry 

surface, totally wet surface or partially dry / partially wet surface.  Figure C.4 describes the process we use in the 

current model. 
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Figure C.4 Process of determining surface condition 

If the refrigerant inlet temperature to an element is higher than the air inlet dew point temperature, the 

element is assumed to be totally dry and we do not need to calculate the mean fin temperature at the leading edge. 

Otherwise, the mean fin temperature at the leading edge has to be calculated to determine the surface condition. 

Assuming that the surface is initially dry and the refrigerant temperature is constant on a small element, we 

can write the 1-D heat transfer rate equation 

( ) ( )rarprr ttUAttAh −=−  Eq C.3 

Where pt  is the tube surface temperature. 
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We also have 

( ) ( )pafmfa tttt −=− η,   Eq C.5 

Where mft ,  is the fin mean temperature. 

( )







−








−−= ra

rr
famf tt

Ah
UA

tt 1, η   Eq C.6 

If the mean fin temperature at the leading edge is lower than the air inlet dew point temperature, the surface 

is totally wet. If the mean fin temperature at the leading edge is higher than the air inlet dew point temperature, we 

have to determine if the surface is totally dry or not. Recall that when the fin mean temperature is equal to the air 

inlet dew point temperature, condensation begins. We have 
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The heat transfer area needed to make mean fin temperature equal to the air inlet dew point temperature is 

obtained by 

( ) LMTDUAttcm dryoaiaapa =− ,,,    Eq C.8 

Where 
( ) ( )

roa

ria

roaria

tt
tt

tttt
LMTD

−
−

−−−
=

,

,

,,

ln
 Eq C.9 

If dryUA is larger than UA , the surface is totally dry. If dryUA is smaller than UA , the surface is partially 

dry and the ratio of dryUA  over UA  is the dry fraction of the whole heat transfer area. 

C.2.4.2 Subroutine description 
The Figure C.5 describes the real flow chart in the sequential subroutine called by the evaporator main 

program.  The structure of the evaporator is very similar with the condenser, but the main difference is that we have 

more lines to deal with the dehumidification since some water will condense from the water air, more details are 

shown above. 
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Figure C.5 Evaporator subroutine flow chart 
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Similar to the condenser component, we have two finite element algorithms to deal with the simulation: 

downstream marching algorithm and upstream marching algorithm.  We have logical variable to call the right 

subroutine for the simulation in the evaporator main program, ‘EVAPORATOR.F’.  Consequentially, we have two 

groups of residual equations for different algorithms, shown below. 

If (downwind) then 

  Call dwnstmevap(Pinevap, hinevap,houtE_calc,poutE_calc, 
     &                 QtotE_calc,Qsns_calc,Qlat_calc,AtotE_calc, 
     &  f2phwet,A2ph,heightE_calc,AfrE_calc,massE_calc, 
     &  T2phout,P2phout,TphoutE,MWR_calc) 
 

Goto (10,20,30,40,50,60,70,80,90,100), EQNUM 
 

10 R(evap+0) = MtotE - massE_calc 
 goto 5000 
20 R(evap+1) = Aevap - AtotE_calc 
 goto 5000 
30 R(evap+2) = Qevap - QtotE_calc 
 goto 5000 
40 R(evap+3) = AfrontE - AfrE_calc 
 goto 5000 
50 R(evap+4) = heightE - heightE_calc 
 goto 5000 
60 R(evap+5) = Poutevap - PoutE_calc 
 goto 5000 
70 R(evap+6) = houtevap - houtE_calc 
 goto 5000 
80 R(evap+7) = pwrfanE -PwrfanE_calc 
 goto 5000 
90 R(evap+8) = MWR -MWR_calc 
 goto 5000 
100 R(evap+9) = degsup - degsup_calc 
 goto 5000 

else 
 call upstmevap(Poutevap,houtevap,hinE_calc,pinE_calc, 
     &              QtotE_calc,Qsns_calc,Qlat_calc,AtotE_calc, 
     &                            f2phwet,A2ph,heightE_calc,AfrE_calc,massE_calc, 
     &                       T2phout,P2phout,TphoutE,MWR_calc) 

  Goto (110,120,130,140,150,160,170,180,190,200) , EQNUM 
 

110  R(evap+0) = MtotE - massE_calc 
    goto 5000 

120  R(evap+1) = Aevap - AtotE_calc 
    goto 5000 

130  R(evap+2) = Qevap - QtotE_calc 
    goto 5000 

140  R(evap+3) = AfrontE - AfrE_calc 
    goto 5000 

150  R(evap+4) = heightE - heightE_calc 
  goto 5000 
160  R(evap+5) = Pinevap - PinE_calc 

    goto 5000 
170  R(evap+6) = hinevap - hinE_calc 
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    goto 5000 
180  R(evap+7) = pwrfanE -PwrfanE_calc 

    goto 5000 
190  R(evap+8) = MWR -MWR_calc 

    goto 5000 
200  R(evap+9) = degsup - degsup_calc 

    goto 5000 
endif 
 
When we call the evaporator subroutine, the inputs are passed into the subroutine.  The ‘XK.update’ file are 

shared by the whole workspace, so the initial guess values for unknown variables and parameters can be accessed in 

any file if the ‘XK.update’ is included in the declaration.  During the iterations, all of the residual equations are sent 

to the Newton-Raphson solver with the calculated variables from the sequential subroutine.  

At the beginning of the sequential subroutine, there is also a logical variable, elementread, designed to 

indicate whether the geometry configuration has been transmitted from the text file, ‘evaporator.txt’, to the arrays, 

‘modstartE(maxmod)’, ‘airinputE(maxNelem)’, ‘NparamodE(maxNelem)’, ‘NcircuitE(maxNelem)’, used by the 

subroutine for the simulation.  Otherwise, the subroutine written to initialize the arrays is called.  

if (.not. elementread) then 
  call Readelem(NelpassE,ElperpassE,ModstartE,airinputE, 
     &    NparamodE,NcircuitE,'evapinput.txt') 
  elementread = .true. 
endif 

After the geometry initialization, the subroutine designed for the element geometry calculation is called.  

This calculation is performed for each circuit, including the refrigerant-side and air-side heat transfer area, volume 

of element, frontal area, frontal height, wall thickness and the ratio of air-side heat transfer area to refrigerant-side, 

which are used in the calculation in each element.  

Call FTevapgeom(DinE,DoutE,NtubesperslabE,VtubedistE,WidthE, 

     &                     height,LRtrnBndE,FinthE,FinPtchE, 

     &                     TuberowsE,HtubedistE,NelpassE,ElperpassE, 

     &                     thickE,DLE,Afr,VRtrnBndE,DcE,AffE,AairE, 

     &       coilfactE,Volume,Area,AadivAffE,CSareaE,Ar) 

The next step is to initialize the variables, including refrigerant state inputs, air state inputs and both 

refrigerant and air mass flow rates for local element.  Then we start to simulate the heat exchanger element.  A ‘Do-

while’ loop is introduced to decide whether we are in the range of the maximal element number. 

 do while (currentelement .le. maxelement) 

  …… 

  …… 

 end do 

At the beginning of each element simulation, we decide the refrigerant inlet status: two phase or superheat, 

then call different subroutines for the simulation.  

hsatv = hpx(pin,1.0) 
  hsatl = hpx(pin,0.0) 
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  if (hin .ge. hsatv)then 
   vapor = .true. 
   twoph = .false. 
  else if (hin .ge. hsatl) then 
   vapor = .false. 
   twoph = .true. 
  endif 
 
The refrigerant and air mass flow rates are calculated using following equations: 

  wlocal = (w/dble(NparamodE(element)))/dble(NcircuitE(element)) 
  mdot = (MdotaE/Afr)*(DLE*VtubeDistE) 
 
The subroutines are called depending on the input status: 

if (vapor) then 
 call supeldwnstmE(hin,Pin,wlocal, Tairout(airinputE(element)), 
     &          RHout(airinputE(element)),mdot,DLE,Area,Volume, 
     &                    AaDivAffE,AffE,Afr,coilfactE,DcE,hout,Pout, 
     &                     Tairout(element),Qsup,Asup,Vapor,twoph,mass, 
     &         RHout(element)) 
 
else if (twoph)then 
 call tpheldwnstmE(hin,Pin,wlocal, Tairout(airinputE(element)), 
     &          RHout(airinputE(element)),mdot,DLE,Area,Volu me, 
     &                     AadivAffE,AffE,Afr,coilfactE,DcE,Qflux,hout,Pout, 
     &          Tairout(element),RHout(element),Qdry,Qsns,Qlat, 
     &          Adry,Awet,Vapor,twoph,mass,MWRel,Ar) 
endif 
 
In the subroutine called to simulate the element in two -phase state, we check whether there is water 

condensing from the warm air onto the evaporator surface, by comparing the surface temperature and dew point 

temperature.  As a result, there are three possibilities: totally dry surface, partially wet surface and fully wet surface.  

If (fully dry) then 
 call drysection(hin,Pin,wlocal,G,Tairin,RHin,mdot,Cair, 
     &             Volume,AadivAffE,AffE,Afr,coilfactE,DcE,Qflux, 
     &             Tairout,RHout,Qdry,Area) 
 
else if (partially wet) then 
 call Pwetsection(hin,pin,Tdew,wlocal,G,Tairout,Tairout,RHout, 
     &             mdot,Cair,Volume,AadivAffE,AffE,Afr,coilfactE,DcE, 
     &             Qflux,Tairout,RHout,Qsns,Qlat,(Area-Adry),MWRel) 
 
else if (fully wet) then 
 call wetsection(hin,pin,Ts,wlocal,G,Tairin,Tairin,RHin, 
     &             mdot,Cair,Volume,AadivAffE,AffE,Afr,coilfactE,DcE, 
     &             Qflux,Tairout,RHout,Qsns,Qlat,Awet,MWRel,1,Ar)  
endif 
 
Inside the subroutines, the ε-NTU method is used to calculate the heat transfer.  The governing equations 

used to calculate the heat transfer coefficients and pressure drop are the same as simultaneous models.  The locally 

calculated variables are accumulated to describe the performance of the evaporator like below: 

Qsnstot = Qsnstot + (Qsns+Qdry)*dble(NcircuitE(element)) 
Qlattot = Qlattot + Qlat*dble(NcircuitE(element)) 
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Qsuptot = Qsuptot + Qsup*dble(NcircuitE(element)) 
Asuptot = Asuptot + Asup*dble(NcircuitE(element)) 
A2phdrytot = A2phdrytot + Adry*dble(NcircuitE(element)) 
A2phwettot = A2phwettot + Awet*dble(NcircuitE(element)) 
masstot = masstot + mass*dble(NcircuitE(element)) 
MWRtot = MWRtot + MWRel*dble(NcircuitE(element)) 
 
When the calculation skips out of the loop, all the calculated variables above will be returned back to the 

evaporator main program used in the residual equations.  If they do not match the final solution, the residual 

equations are sent to the Newton-Raphson solver for further iterations.  Newton-Raphson solver updates the input 

variables for sequential subroutine, which is called until reaching the final solution.  

C.3 Residual equations 
We greatly reduce the number of residual equation as well as the number of the initial guess values.  The 

Figure C.6 shows us the residual equations, associated to each component and connection point between 

components.  

 
 

Compressor residual equations 
 
R(comp+0) = houtcomp – houtcomp_calc 

R(comp+1) = mcomp – mcomp_calc 

R(comp+2) = Qcomp – Qcomp_calc 

R(comp+3) = powercomp – powercomp_calc 

R(comp+4) = Massfrac – Massfrac_calc 

R(comp+5) = Tsatincomp – Tsatincomp_calc 

R(comp+6) = Tsatoutcomp – Tsatoutcomp_calc 

 

Compressor 
subroutine 

Call subroutine 

Return ‘calc’ 
variables 

Connection residual equations 

R(line+0) = poutcomp – pddisline - pinC 

R(line+1) = houtcomp – hinC – QDL/w 

Capillary tube residual equations 
 
R(cap +0) = houtexp – houtexp_calc 

R(cap +1) = Poutexp – Poutexp_calc 

R(cap +2) = Mcap – Mcap_calc 

R(cap +3) = Xcritcap – Xcritcap_calc 

R(cap +4) = Pcritcap – Pcritcap_calc 

R(cap +5) = DeltaP – DeltaP_calc 

R(cap +6) = Vcap – Vcap_calc 

 

Capillary 
tube 

subroutine 

Call subroutine 

Return ‘calc’ 
variables 
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Condenser residual equations 
 
R(cond +0) = houtC – houtC_calc 

R(cond +1) = PoutC – PoutC_calc 

R(cond +2) = Qcond – Qcond_calc 

R(cond +3) = TaoutC – TaoutC_calc 

R(cond +4) = Mcond – Mcond_calc 

R(cond +5) = degsub – degsub_calc 

R(cond +6) = Acond – Acond_calc 

 

Condenser 
subroutine 

Call subroutine 

Return ‘calc’ 
variables 

Connection residual equations 

R(line+2) = PoutC – PinLL 

R(line+3) = houtC – hinLL 

R(line+4) = hinexp – houtLL 

R(line+5) = pinexp – poutLL  

Connection residual equations 

R(line+6) = Poutexp – Pinevap 

R(line+7) = houtexp – hinevap 

Evaporator residual equations 
 
R(evap +0) = houtE – houtE_calc 

R(evap +1) = PoutE – PoutE_calc 

R(evap +2) = Mevap – Mevap_calc 

R(evap +3) = TaoutE – TaoutE_calc 

R(evap +4) = Qevap – Qevap_calc 

R(evap +5) = degsup – degsup_calc 

R(evap +6) = MWR – MWR_calc 

R(evap + 7) = PwrfanE – PwrfanE_calc 

R(evap + 8) = Aevap – Aevap_calc 

 

Evaporator 
subroutine 

Call subroutine 

Return ‘calc’ 
variables 

Connection residual equations 

R(line+8) = PoutE – PinSL 

R(line+9) = houtE – hinSL 

R(line+10) = hincomp – hinSL – QSL/w 

R(line+11) = pincomp – pinSL + pdsuctline 
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Figure C.6 System residual equations 

System residual equations 
 
R(sys +0) = SHR – SHR_calc 

R(sys +1) = COP – COP_calc 

R(sys +2) = Mtotal – Mtotal_calc 

R(sys +3) = EER – EER_calc 

R(sys +4) = LoadSen – LoadSen_calc 

R(sys +5) = mainf – mainf_calc 

R(sys +6) = LoadLat – Loadlat_calc 

R(sys + 7) = Load – Load_calc 

R(sys + 8) = OnTime – OnTime_calc 

R(sys + 9) = Woutdoor – woutdoor_calc 

R(sys +10) = Ach – Ach_calc 

R(sys +11) = Tdpoutdoor – Tdpoutdoor_calc 

R(sys +12) = LoadSHR – LoadSHR_calc 

 

System 
subroutine 

Call subroutine 

Return ‘calc’ 
variables 


