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Abstract

A general framework is proposed for simulating complex heat exchanger geometriesin a manner suitable
for sequential solution of the refrigerant- and air-side equations for mass, momentum and energy. The sequential
solution enables the algorithm to be applied to a single module of a complex heat exchanger, and then integrated
with other modules within a simultaneous equation solver employing a Newton-Raphson approach. This report also
describes the integration of component subroutines into system simulation models for air conditioners and
refrigerators. The modular approach isillustrated by describing its application to a dual-evaporator refrigerator

simulation.
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Chapter 1: Introduction

1.1 Background
Earlier versions of the ACRC refrigerator and a/c simulation models consisted of an equation solver and a

set of governing equations that simulated the components. The ACRC solver utilized a Newton-Raphson algorithm
to simultaneously solve the system governing equations. The biggest advantage of the solver isthat it allowsthe
input parametersand output variables to be interchangeabl e without the need to reprogram the model. The room air
conditioning simulation model developed by Bridges and Bullard (1995), was summarized by Mullenet al. (1998),
and its development and validation are described in Mullen, Bridges and Bullard (1998), Kirkwood and Bullard
(1999). Woodall and Bullard (1996) developed the RFSIM simulation model. Kirkwood and Bullard (1999)
developed the split system model with microchannel heat exchangers, and Stott and Bullard (1999) validated it.
Recently, Stein, Bullard and Newell (2000) began to develop the dual evaporator simulation model and Gerlach and
Newell (2000) finalized it.

Although the system simulation model was proved an accurate and sophisticated design tool, the program
had two prominent limitations. The NR algorithm requires the user to provide accurateinitial guesses for all output
variablesin order to ensure convergence. For many obscure output variables, this proved difficult and frustrating.
Reducing the number of required initial guesses was therefore identified as an important goal in the devel opment of
the next generation of simulation programs. That approach was described by Harshbarger and Bullard (2000) and
included another desirable feature: the ability to simulate modern heat exchanger designs, particularly exchangers
having complex circuiting, or consisting of multiple slabsin the airflow direction. The geometry of each heat
exchanger module may be the same or different from others.

Another limitation of the original version was that it could only simulate one system with specified
geometry. To simulate different systems, it was necessary to rewrite the governing equations. Thisled to a
proliferation of distinct models, with the need to keep updating all of them. This report describes the implementation
of the modular system simulation models, which also accommodates systems having multiple evaporators or
multiple condensers systems (e.g. dual evaporator refrigerator and minivan system).

A new model structure was created to implement the modular simulation approach. Finite element solutions
of the heat exchangers were devel oped for the condenser and evaporator, allowing simulation of complex
geometries that were not possible with conventional methods. The finite element solutions were integrated into the
system model in a manner that reduced the number of required initial guesses and therefore, the burden on the user.
In thismodular structure, each component in the system simulated by a stand-al one subroutine, solved sequentially
in aself-contained manner. Therefore, each component simulation can easily be isolated and/or integrated into a
simultaneous set of system-level equations.

This kind of modeling technique allows the simulation of complex heat exchanger designs while
mai ntaining the interchangeability of the inputs and outputs; and also reduces the burden on the user to provide
many initial guesses. A further advantage of this algorithm isthat the initial guesses are restricted to readily known

quantities. The enhanced algorithm uses a novel approach by simultaneously employing a NR solver for the system



and a sequential simulation for each component. This kind of modeling technique also gives us a easier way to build
general structured framework for simulating multi-evaporator or multi-condenser systems.

Chapter 2 of this report details the general framework of the modular simulation model. The mathematics
of the new algorithm is discussed in general terms, along with the process of interfacing a sequential simulation
within a Newton-Raphson solution. Chapter 3 explains the mechanics and implementation of the new algorithm for
multiple heat exchangers. Chapter 4 describes the modular structure of the dual evaporator simulation model.
Appendix A explains the captube-suction line heat exchanger model design. Appendix B explains how one could
use the single evaporator simulation model to simulate a dual evaporator refrigerator. Appendix C concisely
describes the a/c modular sirrulation model, and provides details of component subroutines and algorithms to

simulate the complex heat exchangers.



Chapter 2: General Model Description

The structure of the ACRC refrigerator and air-conditioner models is versatile and the models are accurate
for simulating various types of systems and components. The principal advantage isthat the structureis
independent of the user’ s selection of dependent and independent variables. Thisisunlike conventional models
employing the method of successive substitution in which the model structure istied uniquely to an apriori selection
of input and output variables.

At the same time, the limitations of thiskind of structure are obvious and frustrating. The biggest
disadvantage is that user and programmer need to provide a set of internally consistent and reasonably accurate
initial guess valuesfor all unknown variables. Otherwise, the system model and its Newton-Raphson solution
algorithm will not converge to asolution. Practically, it has proved to be very difficult and a big burden to
programmers and users, for example when switching refrigerants and therefore needing to alter the initial guess
values of enthalpies, subcooled areas, etc. Now, reducing the number of system initial guess valuesis an important
goal, because heat exchanger geometries are becoming more complex. A single heat exchanger can have very
complex circuiting or many slabs, or each component can have multi-exchangers. A good design model structureis
needed to simulate the more complicated heat exchangers and systems.

Harshbarger and Bullard (2000) have suggested a new model structure to simulate the a/c systems. In order
to address the limitations described above, finite element solutions of the heat exchangers were devel oped for the
condenser and evaporator. The finite element structure allows the simulation of complex geometries that were very
hard within the conventional N-R framework. The finite element solutions were integrated into the system model in
amanner that reduced the number of required initial guesses and therefore, the burden on the user. To further the
capabilities of the model, a modular structure was adopted. Using a structure similar as TRNSY S (Kleinet a.,
1976), each component in the system is solved in a self-contained subroutine. Therefore, each component
simulation can easily be isolated and/or integrated into a simultaneous set of system-level equations.

Thiskind of modeling technique allows the simulation of complex heat exchanger designs while
mai ntaining the interchangeability of the inputs and outputs, because the core part of original model, NR solver, is
still used in the new model simulation. It also reduces the burden on the user to provide many initial guesses; the
user canrestrict initial guesses to a subset of variables that can be easily known or measured.

The new model structure uses anovel approach by simultaneously employing a NR solver and a series of
sequential simulations. Newton-Raphson solver is still the core inthe main program, which simultaneously solves
all theresidual equations simulating the system. NR solver also provides new updated guess values of unknown (X)
variables for the next iteration until the system converges to the final solution. A finite-element approach isused in
sequential component to simulate the complex heat exchangers.

All the component-specific sequential subroutines can stand alone, providing more flexibility for
programmersto integrate different stand-alone subroutinesinto themodel. They also facilitate simulation of multi-
heat exchanger systems, which are becoming more common. The corresponding subroutines can be integrated into
the system without rewriting any code. A detailed discussion of mechanics, structures and implementationswill be

introduced in the following sections.



2.1 Model structure
In the original Newton-Raphson simulation model developed by Mullenet al. (1998), all the residual

equations are stored in asinglefile. The new model uses sequential subroutines to simulate each system component.
In the hx subroutines, afinite-element approach isintroduced to simulate more complicated geometries. This
technique greatly reduces the number of residual equationsin the main program, which connects the components
together to define the system. The sequential subroutine transmits the cal culated output variables back to the main
program, so the Newton-Raphson solver can solve the residual equations simultaneously. From the user
perspective, only the component models are visible. The NR equations and solver operate in the background,
returning after each iteration a set of updated inputsto each of the component subroutines.

The user initiates the simulation after selecting and providing values for the known independent variables
(K’s), unknown output variables (X’s), and known parameters (P's). Theinternal relationships within the model
complete the simulation. The calculated values of the output variables (X’s), and the informative variables (C's) are
returned to the user, along with the known parameters (K’ s) and the input parameters P that the user supplied to help
specify components.

Different systems may have different condenser or evaporator geometries (e.g. finned tube; microchannel;
wire-on-tube, etc). If we have already built self-contained subroutines for those types of geometries, the main
program can just call the subroutines for components that are used in the simulated system, without necessity to
rewrite the codes. The same compressor subroutine is used in different systems, but different compressor maps
(curvefits) are chosen to calculate the mass flow rate and power consumption. The new model structure is shown
below.
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Figure 2.1 General model structure

In the general simulation model structure, which includes main program (NR solver is the core part),

system components are simulated within their sequential subroutine. This new model structure has two kinds of



calculations: simultaneous and sequential. In main program, with the returns of calculated variables from sequential
subroutines, NR solver simultaneously solves all residual equations, and in every iteration submits updated inputs
unknown (X) variablesto sequential subroutines.

Theinternal structure of the subroutines was defined by the need to solve sequentially. To accomplish this,
the programmer pre-selected a subset of variablesto be subroutine inputs. This subroutine structure is transparent to
the user, who is free to switch independent and dependent (X’sand K’s) at the overall structure’ s user interface.
Whenever one of the subroutine inputsis “unknown” to the user and the main program, the current or initial guess
value for that variable is supplied as the input to the subroutine.

Inside the sequential subroutine, the dependent and independent variable inputs (X’sand K’s) and
parameters (P’ s) are provided by main program. A finite-element approach is used to sequentially simulate the heat
exchangers and capillary tube based upon the geometry, running condition and inlet states. The outputs from
subroutine include two parts: 1) calculated variables suffixed with *_calc’ and returned to the main program and 2)
calculated variables (Cs) that are not needed by the NR solver, but provide valuable information to the user and to
programmers who wish to know about the system running condition. For example, in HX subroutine, the total heat
transfers are decided by two phase part, therefore the input or output enthalpies. So the calculated heat transfer or
enthal py variables can not give us too much information, but subcooled or two-phase arearatios can tell uswhat is
going on inside the subroutines, which is very useful in debugging procedure. So generally, the whole calculation
procedure involves simultaneous and sequential simulation.

Not only the heat exchanger geometries are becoming more and more complicated, so also are a/c and
refrigerator systems, as multiple evaporators are being served by a single condensing unit. We are employing a
finite-element approach to match the needs for individual heat exchangers. For systems having multiple evaporators
or compressors, a more general idea about the model structure is needed. Figure 2.2 shows the more general
structures used in simulating cases where evaporator or condenser component is actually a combination of serial
and parallel heat exchangers. This may include a/c heat exchangers having multiple layers (slabs) or arefrigerator
with freezer and food compartment evaporatorsin series. We need to pay attention to the mass flow rates and inlet
states of each heat exchanger as well as air flow directions because air flow directions decide which algorithm we
should call to simulate the HX. For serial cases, the outlet states values are equal to theinlet values of the coming
heat exchanger with the equal mass flow rate. But for parallel ones, each heat exchanger has the same inlet state
values, but these mass flow rates are not necessary equal although their sum should be equal to the whole system
mass flow rate. More details about inlet states and mass flow rate distribution will be provided in the later

discussion.
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Figure 2.2 New general model structure

2.1.1 Main program
In main program, the NR solver isthe essential part. It operates in the same manner asatraditional NR

algorithm. The solver simultaneously determines the solution to agiven set of N equations, the same number as
system variables (Xsin XK file). The algorithm starts with an initial guess value for the ‘X’ variables from the user
interface. By utilizing first order derivative information, the NR solver iteratively improves the guess values until
the solver convergesto asolution. During the solution of the simultaneous equations, the solver communicates with
the sequential subroutines, submitting subroutine inputs, receiving calculated variables suffixed with *_calc’. This
communication isinternal to the model and is transparent to the user.

Firstly, the user initializes the system with providing values for parameters P, independent variablesK and
initial guesses for the dependent variables X. The main program transmits these initial guess values and parameters
needed by sequential subroutine. Based on the inputs, subroutine sequentially calculates the output results: the
output-calculated variables marked with “_calc” and the informative variables (Cs). Csare sent back to the user
interfaceand ‘ _calc’ variables are sent back to system equations that are solved simultaneously by Newton-Raphson
Solver.

The residual equations and the connections equations between major components are listed in the main
program. After the main program calls each sequential subroutine, which return component output “_calc” variables
which are then used by NR solver to simultaneously solve residual governing eguations, one associated with each

_calc” output from the component subroutines.



If thereisno X variablein inputs of subroutines, the simulation will be finished just in one iteration.
Because of the interchangeability between Xsand Ks at the user interface, Xs can be inputsto the subroutinein
some cases. Then, NR updates theinput X variableswith new calculated valuesin each iteration. Main program
iteratively calls components subroutines with new updates inputs until the NR solver converges to a solution.

2.1.2 Sequential subroutines
The sequential subroutine contains all the information needed to simulate a component, solving all the

governing equations. Without the force of NR solver, the subroutine will only solve a component for a certain set of
specified input variables, parameters and geometry. Theinputs and outputs of the sequentially solved subroutine are
not interchangeabl e.

Harshbarger and Bullard (2000) built a new concept to divide the global set of subroutine inputs and
outputs into four subsets: Set I, Set P, Set C and Set O, which are very helpful for our discussion. Both Set | and Set
P comprise the subroutine inputs, while outputsinclude Set C and Set O. Set | is asubset of the interchangeable
variables (X’s and K’s) from the main program. Usually the sequential subroutine requires the inlet refrigerant and
air states, mass flow rates for the air and refrigerant, and a set of variables that describe the heat exchanger
geometry. Unless the user happensto specify all these subroutine inputs as independent variables (K’s), the whole
calculation needs more than one iteration. Any Xscontained in the Set | isimproved by NR solver in every
iteration. Set Pisasubset of Psneeded by this subroutine, which are specified in XK file and not changed during
the whole calculation.

The subroutine outputs include a new category of variable, denoted a‘calc’ variable. The subroutine does
not output actual value of the interchangeable variables. Instead, the subroutine outputs ‘calc’ variables that
represent the same quantities as interchangeable variables. The‘calc’ variables are suffixed with ‘calc’ in order to
distinguish them from their corresponding interchangeable variables. All interchangeable variables (X'sand K's)
not input to the subroutine correspond to subroutine outputs, which areincluded in set O. The‘calc’ variables
correspond to the interchangeable variablesin Set O. Together sets O and | include all M interchangeable variables
(X’sand K’s), that is|E O = XE K = M (Harshbarger and Bullard, 2000). Generally, the sequential structure of the
subroutine involves solving for the heat exchanger outlet refrigerant and air states, performance variables (heat
transfer, pressure drop and mass charge), and the remaining geometry values that simulate and describe the running
conditions.

Each sequential subroutineis called from the main program for simulating the associated component.
Iteratively using new updated inputs from main program, subroutines cal cul ate outputs suffixed with ‘calc’, and
return them to main program. NR solver uses the new calculated outputs from subroutines to simultaneously solve
the governing equations until converging to asolution. If inputsto subroutinesare all Ksand include no X
variables, the calculation will be finished in one iteration because the inputs and outputs are specified and not

interchangeable. Otherwise, more iterations may be needed.
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Figure 2.3 Evaporator subroutine structure

Figure 2.3 shows the structure of asimple dry evaporator sequential subroutine: theinputs (Set | and Set P)
and the outputs (Set C and Set O). All the outputs are functions of the inputs and can be sequentially calculated.

In the subroutine, afinite-element approach is introduced to simulate heat exchangers having different
geometries. Within the family of cross-flow heat exchangers, there are two possible configurations: the cross-
parallel flow case where the bulk refrigerant flow istravelling in the same direction as the air and the cross-counter
flow case where the bulk refrigerant travels in the opposite direction of the airflow. When the air and refrigerant
streams flow in the same direction, the outlet variables for air and refrigerant are calculated for each element. By
marching downstream in the refrigerant flow direction, the states of both refrigerant and air are exactly determined.
The outlet states from former element are the incoming states of the latter element. The algorithm always marches
in the downwind direction, to successively calculate the air temperatures. When the bulk refrigerant and air flow in
opposite directions, the algorithm again marches downwind, but in the upstream direction relative to the refrigerant
flow. In this (cross-counterflow) case, the subroutine inputs must include the refrigerant outlet states.

For all kinds of cross-flow heat exchangers, there are three kinds of regions we need to consider:
superheated, two-phase and subcool ed refrigerant states, respectively. Where a phase transition occursinside a
single finite element, the algorithms are able to handle this situation by solving an implicit equation to break the
element into two parts. Threelogic flags variables are defined: supheat, twoph and subcool. When they are true, the
refrigerant is superheated, two-phase or subcooled, respectively. At onetime, only one of them can be true. Along
the flow direction of refrigerant, the heat exchanger is divided into the specified number of small elements. Serially,
each element is simulated by a group of sequentially solved governing equations.

Because all elements are solved in numerical order and the outputs of one element are the inputs of the next
element, only afew of them have state transitions and most of them just keep the state. If the refrigerant isin the

superheated state, we only need to watch for the transition into two-phase. Whenever its enthalpy isless than



saturated enthal py calculated by library function with current pressure and quality equal to 1.0 (hpx(plocal,1.0d0)),
this element changes its state from superheated into two-phase. Then different governing equations are used to
simulate the following elements. When the refrigerant isin two phases, we need to watch for the transitions to both
subcooled and superheat. If the enthal py decreases, we watch for it to become less than the cal culated enthal py with
local pressure and quality equal to 0 (hpx(p,0.0d0), where the element is changing to a subcooled state. If the local
enthalpy is greater or equal to the calculated enthal py, hpx(plocal, 1.0d0), the following element will be in superheat
states. Each element is solved by using the governing equations associated with the appropriate states. Within the
subroutine, arrays with same number as elements are defined to store local refrigerant heat transfer, pressure drop
and refrigerant mass. Based on the overall energy balance, we also can calculate the air inlet or outlet temperature
of the heat exchanger. Finally, the arrays containing local heat transfer, pressure drop and refrigerant mass are used
to calculate the subroutine output variables. Then these calculated variables (Set O) are returned back to residual

eguations in main program.

Refrigerant Refrigerant
superheat inlet subcooled outlet
Padld TV T T T T T
Airflow P T T T T T T
11 1T T T \ State transition 2

State transition 1 Elements

Figure 2.4 Condenser parallel flow configurations

For cross-flow case, we have two kinds of configurations: parallel airflow and counter airflow.
Harshbarger and Bullard (2000) have developed two algorithms, respectively: downstreaming for the cross-parallel
configuration, and upstreaming for the cross-counterflow configuration. The above Figure 2.4 shows the transitions
in condenser parallel flow case. In either algorithm, the calculation begins from theinlet end of the air. Thereare
two transition pointsin the heat exchanger along the flow direction of the refrigerant: oneis from superheat to two-
phase, the other oneis from two-phase to subcooled. In total, five conditions may exist for any given element. They
are superheated vapor, two-phase refrigerant, subcooled liquid, transition between superheated vapor and two-phase
refrigerant, and transition between two-phase refrigerant and subcooled liquid. Each element is capable of deciding
which conditionsit isin and uses exact governing equations to simulate the element. The upstreaming algorithm is
similar to the downstreaming algorithm. The only difference isthe inputs: downstreaming needs refrigerant inlet
states (inlet pressure and inlet enthalpy) as inputs and calcul ates the outlet states (outlet pressure and outlet
enthal py); upstreaming algorithm needs refrigerant outlet states (outlet pressure and outlet enthal py) as inputs and
calculates refrigerant inlet states as outputs. This allows both algorithms to begin the calculation with theinlet air.



2.2 Communications
Because the new model structure divides the whole system into individual stand-alone components, the

communications between main program and sequential subroutines are very important issues. There are three main
kinds of communications in the new model structure: 1) communication between main program (NR solver) and
each sequential subroutine; 2) communication between main program and supportive files; and 3) communication
between sequential subroutines. The communication between sequential subroutinesalso includes two kinds of
situations: serial connection or parallel connection. More details will be provided in the following section.

2.2.1 Communication between main program and sequential subroutine
Each subroutine uses the same way to communicate with main program: getting inputs from main program

and transmitting calcul ated variables back to main program. All calculated variables are functions of the subroutine
inputs, so they can be sequentially calculated. Thereisaset of residual equationsin the main program, associated
with each component simulated by the sequential subroutine. 1n asystem simulation, NR solver simultaneously
solvesthe residual equations corresponding to all the system components, using the calculated variablesfrom all the
sequential subroutines. The same general structure can be used to simulate individual components.

For component simulations the NR main program is smaller because its residual equations correspond to
the “calc” output variables from only one component subroutine. Main calls the subroutine while allowing the user
tointerchange X’sand K’s. As an example, Figure 2.4 shows the communication configurations between main
program and refrigerator evaporator subroutine.

The NR solver performs several iterations in determining the solution to a set of equations. For the simple
evaporator (component) simulation, the NR solver solves a set of seven simultaneous residual equations. The solver
simultaneously forces the values of each of the seven equations, written in residual format, to zero. The number of
simultaneous equations is equal to the number of ‘calc’ variables from the evaporator sequential subroutine. The
seven NR residual equations are shown within the NR solver box. Each equation equates an interchangeable

variable with its corresponding subroutine output variable.
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Newton-Raphson solver
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Figure 2.4 main program/sequential subroutine communications

At each iteration of the NR solver, the simultaneous equation set in Figure 2.4 is solved for new improved
values of the ‘X’ variables. The process involves solving Equation 2.1, where [J] is the Jacobian matrix, {f} isthe

vector of NR residual equation values, and { DX} isthe vector used to update the values of the ‘X’ variables
(Harshbarger and Bullard, 2000).

{ox} =[] 4} (2.1)

The Jacobian, shown in Figure 2.5, consists of derivatives of the NR equations, f, with respect to the * X’
variables. The derivativesin the Jacobian are approximated numerically, using Equation 2.2. Thefirst step in this
processisto evaluate the NR eguations using the known parameters (K’s) and the current iteration’ s guess values
for the unknown variables (X’s). Theresults are seven scalar values for the NR residuals. These values are nonzero
for each iteration until asolution isachieved. The next step isto slightly alter the value of an individual ‘X’ value
and recalculate the values of the seven NR equations. The derivativeisthen approximated by the change of the NR
residual equation divided by the change in the altered * X’ variable. This processisrepeated for each ‘X’ variable.
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Figure 2.5 Jacobian matrix
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(2.2)

Indirectly, the evaporator sequential subroutine is used to cal culate the Jacobian. For each evaluation of the

NR equations, the condenser subroutineis solved for new values of the ‘calc’ variables. The new values of the

‘calc’ variables alter the value of the NR residuals for the next iteration. More details about the fundamental

mathematical algorithmcan be found in Harshbarger and Bullard (2000).

If none of the inputs to the sequential subroutine were designated unknown (X) variables by the user, the

calculation will befinished in oneiteration. Otherwise, if any X variables appear among the subroutine inputs, more

than one iteration can be needed to finish the calculation. In every iteration, initial guesses and current values of X

variables are improved based upon the Jacobian Matrix by Eq 2.1.

All variables and parametersin XK file are categorized into four groups, marked with X, K, Pand C,

respectively. Xsare unknown interchangeable variables that are to be calculated by the model. All theinitial values

are guesses provided by the user. The number of the Xs should be equal to the number of the residual equations. Ks

are the subset of interchangeabl e variables that are specified by user, whose values are not changed during the

calculation. Ks are interchangeabl e with Xs because in different simulations, users want to calculate different

variables. Psare parametersthat are always known by users, including the flags to select heat transfer and pressure

drop correlations, provide values such as ambient air pressure or other parameters describing the refrigerant and air.

Ps are noninterchangeabl e and cannot be changed during the calculation. Cs are informative variables calculated by

the sequential subroutines, based on the inputs (Ps, Xsand Ks). Csare not essential variables needed by the

simulation system, but they are helpful for understanding the system or transmitting information to user and

programmer.

Based on the variable categories, it is easier to understand the communication between main program and

sequential subroutines. Generally speaking, the system communication is the transmission of the system variables.

The input and outputs of the sequential subroutine are divided into four sets: Set |, Set P, Set O and Set C. The

following Figure 2.6 shows the relationship among these four subsets.
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Figure 2.6 Subroutine Subsets Description

It isimportant to understand the implications of each variable subset prior to sorting the variables. Inputs
include Set Pand Set I. Set P contains only known parameters. But Set | can include both Ks and Xs, both of them
are interchangeable variables. In outputs, Set C only includes Cs variables, which are not used by NR solver. Just
likeset I, set O includes both Xsand Ks. The interchangeable variables that are inputs to the subroutine (set 1) are
not present in any simultaneousequation for a single component simulation. However, each interchangeable
variablein set O does appear in aNR equation. For each NR equation thereisone ‘X’ variable that requires an
initial guess. Therefore, the number of variablesin set O will be the number of required initial guessesin thefinal
simulation. By placing vaguely known variablesinto sets P and C, initial guesses can be limited to readily known
quantities.

2.2.2 Communication between main program and supportive files
The communication between main program and supportive filesis al'so an important issue, which isvery

helpful for running the simulation model correctly. Besides the NR solver and sequential subroutines simulating the
system components, the model contains separate supportive files and subroutines for model initialization, checking
and solution output. Although the checking files can be used as pre- or post-processors, their primary purposeisto
provide a means of checking the values of variables and parameters before or after the solution.

The checking that takes place before solving is used to set logical flagsthat are used within thelist of
governing equations and subroutines. For example, the “before” checking will determine, based upon the
parameters and theinitial guesses of the variables, which kind of expansion device or heat exchanger is used, and a
logical flag will be set accordingly. Thisflag will cause the NR solver to evaluate the correct set of governing
equationsrelated the correct device. For an example of “before” checking, the logical flag, CTSLHXSIM, indicates
whether or not the capillary tube-suction line heat exchanger (ct-slhx) model is going to be used in the simulation. If
the XKflag of CaptubeModel isa“K”, then the ct-sshx model will be used and CTSLHXSIM is given avalue of
“true”. The XKflag of the effectiveness of the ct-slhx (ectslhx) is given avalue of “C” sinceit will be calculated in

the subroutine. If the XKflag of CaptubeModel isan “X”, then the ct-slhx model will not be used in the system and

13



CTSLHXSIM isgiven avalue of “false”. The XKflag for the effectiveness of the ct-slhx is given avalue of “K”,
and the value of the effectivenessis entered.

The “after” checking is used to seeif the values of certain variables are within allowable ranges (e.g.
evaporating and condensing temperatures for the compressor maps).

Inthe model directory, afile named “XK” serves asthe input for the model, providing the desired values of
the parameters and the initial guess valuesfor all the variablesin thisfile. All the variables are global variables.
Their memory addresses can be reached by all the system files during the cal culation, to update the values of the X
variables and calculated variables. During the NR iterations, the user-specified Ks and Ps remain constant, but Xs
and Cswill be updated in each iteration by sequential subroutines and NR solver.

Other files allow the user to control the operation of the Newton-Raphson solver, and the overall operation
of the program. Thefiles*SLVERSET” and “INSTR” specify the solver options and the type of model run desired,
respectively. Thefile SLVERSET containsthe settings for various Newton-Raphson parameters such asthe
convergence criteria and maximum number of iterations, and it also contains information specifying the type of
model output. The INSTR filetellsthe NR solver whether to perform a“SINGLE”, “MULTIPLE”,
“SENSITIVITY”, or “UNCERTAINTY” analysis, and it also contains new specified K values different from the
valuesin XK file. Output file name and compressor map used by the model are also indicated in the INSTR file.

2.2.3 Communication between sequential components
The basic simulation system is divided into four main components connected in the order of compressor,

condenser, expansion device and evaporator. To clarify and understand the connection between componentsisvery
important. Compared with traditional systems, condenser and evaporator in modern systems may be the
combination of multiple heat exchangersin serial or parallel format. The detailed communicationsinside the
condenser or evaporator will be described in alater section.

In a multi-component system, certain variables describe the communication between components. These
links between subsystems must be identified and included in a specific manner. Refrigerant isthe link between
componentsin the system. The pressure and enthalpy of the refrigerant are picked to describe the connections
between components. Within the simulation system, each component is described by a subset of the residual
governing equations. There are also sets of residual equations linking componentsin the main program. The
following Figure 2.7 shows the connections of two serial components in the simulation system. Oneis simulating

the evaporator and the other one is simulating the compressor.

Evaporator | Compressor

PoutEvap PinComp
houtEvap hinComp

Figure 2.7 Components connection configuration
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The links between these two components are the outlet pressure and enthal py of evaporator and the inlet
pressure and enthal py of compressor. An essential aspect of the relationship between componentsis the definition
of one state point by two variables. In thisexample, the outlet pressure of the evaporator is one variable while the
inlet pressure to the compressor is another. While these variables are physically the same pressure, the mathematics
of the system simulation dictate that two variables be used. Variables representing the same state point will be
equated in aNR equation at the system level (Harshbarger and Bullard, 2000).

For afull system simulation, both components must be solved together by the NR solver. The NR
equations from each individual component are included in the full set of NR equations. Additionally, NR equations
that equate the linking variables areincluded. Figure 2.8 shows the full set of NR equations for the example system.
These equations ensure that each component converges to a solution consistent with the remaining components.

By introducing two variables that describe a single state point, several advantages are obtained. Themain
advantage is the system simulation is allowed to converge. Another advantage is the user can easily understand the
significanceto avariable based upon its name. Introducing variablesin this manner allows each component to be
contained within its own modular solution. Because of the modular construction, components can be linked in

various combinations with minimal reprogramming.

NR solver

Evaporator residual equations:

R(evap+0) = poutevap - poutevapcal Sat P+ Set | :
Ege\/ap+g = goutevap(s houte\al/apcal » Evaporator Sequential
evap+2) = Qevap— Qevapc o Subroutine
‘_

Equations linking components:
R(n-1) = poutevap — pincomp
R(n) = houtevap - hincomp

Compressor residual equations:

R(comp+0) = w — wcac Set P+ Set |

R(comp+1) = power — powercalc »| Compressor

R(comp+2) = qcomp — qcompcalc i i
(comp+2) = gcomp — gcomp: calc veriables Sequential Subroutine

Figure 2.8 System residual equations for component connection
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Chapter 3: Heat Exchanger Algorithms

3.1 Description
Harshbarger and Bullard (2000) employed a“module” algorithm to correctly simulate more complex

individual heat exchanger geometriesin finite-element method. “Module” is defined generally as portion, or sub-
heat exchanger, part of alarger complex heat exchanger. The essential quantities defining amodule are the
refrigerant flow configuration and the number of tubes within the module. A heat exchanger can be defined by any
number of modules.

Recently, the condenser and evaporator components are becoming more and more complicated
geometrically and companies are showing more interest in simulating multi-heat exchanger systems cases, such as
dual evaporator refrigerators and a/c systems, including minivan air-conditioning systems. An algorithm dealing
with multiple complex condensers or evaporatorsin single simulation system is needed now. An algorithm,
“divide-and-conquer”, is proposed here to simulate modern comp lex systems, which have multiple heat exchangers
in serial or parallel. The name of the algorithm is borrowed from computer science. This approach dividesthe
problem into several modules that are smaller but similar to the original one, solves the modules recursively, and
then combines these solutions to create a solution to the original problem. The divide-and-conquer paradigm
involvesthree steps.

Thefirst step istodivide the whole component into a number of modules. Just like electronic circuit
analysis, the whole evaporator or condenser component is a complex combination of parallel and serial
configurations. Parallel and serial configurations are basic structures of the simulated system. When we start the
division from the original component (first level), the number of modules is the number of the parallel modules at
thislevel and each of these modules might consist of several serial smaller modules (second level). The smaller
modules of second level can be serially divided into a number of modules. At each level, the structure can be
recursively divided into many levels until each module is single stand-alone heat exchanger. In Harshbarger and
Bullard (2000), this smallest element was called a“module”, and each of those modules was simulated using afinite
element algorithm.

The second step isto conquer the modules by solving them sequentially, starting with the smallest
modules. Harshbarger and Bullard (2000) showed how to solve complex single heat exchanger using finite element
algorithms. Thisstep isfinalized in the sequential subroutines, calling finite element algorithms.

The third and final step isto combine the module solutions into the solution for the upper level component,
until the original component solution is obtained. It reversesthe dividing process. Newton-Raphson residual
equations in the main program describe the connections among the modules. If the current modules are in series, the
outlet states of the refrigerant from former module are the inlet statesto the latter module. Each module shares the
same mass flow rate but may have different air and refrigerant states. Otherwise if the current modules are parallel,
refrigerant mass flow rates through each module must be determined by solving the equations simultaneously, by
setting their exit pressures equal. For each module, running condition and heat exchanger geometry potentially

decide the mass flow rate, and the sum of air and refrigerant flow rates of each parallel module should be equal to

16



the next upper level mass flow rate. The direction of combining isjust opposite to the dividing process. More
details about the combining process are provided in later sections of this chapter.

Finite element algorithm gives us away to simulate complex geometry of heat exchangers, but the divide-
and-conquer algorithm gives us away to deal with modern complex system with any number and combination of
heat exchangers. Figure 3.1 shows the general structure in evaporator component with multiple heat exchangers.
All the heat exchangers are serially or parallel arranged. Details are provided to describe how we simulate this

complex structure in three steps according to divide-and-conquer algorithm.

Evaporators
pinevap Wis Wiz Wis poutevap
hinevap houtevap
w w
Tan Taout
VdotE R m >
W3 I W3

Figure 3.1 Evaporator component configurations

3.2 Heat exchanger configurations

The modern evaporator and condenser components may be the combination of serial and parallel heat
exchanger geometries. There are several issues that we should pay attention to: mass flow rate distribution, air and
refrigerant states, air flow direction over each heat exchanger, connections between serial and parallel heat
exchangers (this connection still includes air-side), and special geometries of heat exchangers. The advantage that
each heat exchanger is stand-alone gives us great flexibility to model complex combinations of serial and parallel
heat exchangers. We only need to indicate correct flagsto call already-built sequentially -solved subroutines that
reside in the system library. In main program, residual equations that connect each stand-alone heat exchanger are
built to finalize the simulation of multiple-heat exchanger system.

Parallel and serial configurations are two fundamental configurations, which are defined by the refrigerant
flow direction. Any complex system can be divided into these two fundamental configurations. Parallel
configuration consists of two or more heat exchangers at the same level, having identical input states but maybe
different output states, depending on geometries and air-side input states. Each parallel heat exchanger does not
necessarily have the exactly same geometry for general cases. If each parallel heat exchanger has the same
geometry and the same air and refrigerant inlet states, they will carry the same massflow rate faction. Otherwise,
these heat exchangers may carry different mass flow fractions because of different geometries or air-side input states
or both, which will be simultaneously determined by the Newton-Raphson solver in the main program. The Figure

3.2 and Figure 3.3 show examples of the parallel and serial heat exchanger configuration, respectively.
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Figure 3.2 Parallel heat exchanger configuration
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Figure 3.3 Serial heat exchanger configuration

Notethat P, or S can be a stand-alone heat exchanger module (smallest unit under discussion here), or they can be
combinations of several heat exchangers, since we recursively divide every complex component into many different
levelsin order to simulate it.

Before we turn into complex structure, these two basic elements, parallel and serial configurations, need to
be clearly understood. In either configuration, mass flow rate of refrigerant is the most important issue because we
define thesetwo configurations based on their refrigerant flow patterns. At the sametime, the air-side flow
determines the different kinds of algorithms we use to simulate the heat exchanger: e.g. counter flow, parallel flow
or cross-flow, which describe the heat transfer based on airflow directions.

3.2.1 Parall€l refrigerant flow
For parallel configuration, the whole mass flow rate of refrigerant is divided into the number of parallel

modules, with a fraction of the mass flowing through each corresponding parallel module. Each heat exchanger may
have different geometries and different air and refrigerant states might be specified. The mass flow fractions can
then be calculated; they may not be equal. The following mass, momentum energy equations must apply to the
parallel configuration:

M=z M (=1, 2..N) Eq. 3.1
M+ hout=& Mi*hout i (=1 2...N) Eqg. 3.2
Pi=F ", (i,j=1, 2...N) Eq. 3.3

Where T ; is the mass flow rate through each of the N parallel modules; M isthe sum of each mass flow rate
through all modules; hy jisthe outlet enthalpy of the i"™ module; hout is the mixed outlet enthal py from all modules;
P and P; are outlet pressures of i and jth modules, respectively. The mass flowing through each circuit may have a
different experience, asit encounters different geometries and heat transfer. At the starting point, al refrigerant has

the same inlet thermodynamics state. But at outlet point of the configuration, flows from each circuit, each with a
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potentially different flow rate and heat transfer experience, combine together as shown in Figure 3.2. The outlet
states detected by the component outside of the configuration, hout and pout, result from the combinations of these
mass flows, shown in the equations above.

Generally, aparallel refrigerant configuration can have three air flow patterns, as shown in the Figures 3.4,
Figure 3.5 and Figure 3.6, respectively: cross/parallel, parallel/parallel and counter/parallel configurations, each
requiring adifferent algorithm to simulate. Actually the governing equations for Figure 3.5 and Figure 3.6 are
identical. However, they require two different solution algorithms. Both march downwind, but one requires the

refrigerant inlet states asinput, while the other requires the refrigerant outlet statesin order to begin the sequential
finite element algorithm.

Tain, madot Air
H
hin - hout
pin P1: hin, pin, w; pout
w NN w
> P2: hin, pin, w, »
Refrigerant N N N I
Pn: hin, pin, w,
i 1
T T T T T T Toom
Figure 3.4 Cross/parallel flow configuration
Taout
——— hin P1: hin, pin, w; hout
pin Z pout_______
. W
Tain " P2: hin, pin, w; i
madot — — -Nin.pin, e BE— T
Pn: hin, pin, w,
Air
Figure 3.5 Parallel/parallel flow configuration
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Taout madot
P1: hin, pin, w hout
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— w

|

it

Pn: hin, pin, wy
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Figure 3.6 Counter/parallel flow configuration
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For the cross/parallel flow configuration, air flows across each parallel module one-by-one. Each module
encounters the same airflow rate, but with a different inlet temperature. The outlet temperature from former module
serves astheinlet temperature for the next one. The following residual equations are included in the main program
to specify the connections among the modules on both air and refrigerant sides. The equationsin the main program,

which includes the subroutine calls, are solved simultaneously solved by the Newton-Raphson solver.

Air-sideequations: Refrigerant side equations:

R(1) = Tain 1 - Tan R(p+1) = Quot - SQealc |
R(2) = Tain 2 — Taoutcalc_1 R(p+2) = Mtot - SMcalc i

R(3) = Tain_3 — Taoutcalc_2

®) - - R(p+3) = w*hout - Sw_i*houtcalc _i
R(p+4) = pout - Spoutcalc i
R(n) = Taoutcalc_n - Taout R(p+5) = w - Swedc_i

Figure 3.7 Residual equations of cross/parallel configuration

For parallel/parallel and counter/parallel configurations, each module may not encounter the whole air mass
flow rate. They may have equal or unequal air flow fractions, and the sum of their fractions should be equal to the
whole airflow rate. They are calculated fromthe frontal areas of each heat exchanger, where the current version of
the model assumes that the air mass flux and pressure drop are identical for each air flow fraction. Just like
refrigerant outlet thermodynamics states, the outlet enthal py of the air results from the mixture of each mass flow
fraction through each heat exchanger. Theresidual equationsin Figure 3.8 are used to simulate these
configurations, where ‘madot’ isthe sum of air flow, madot_i is air fraction flowing through the i" module, haout is
mixed outlet enthal py of the combined air flows; haout_i is the outlet enthal py of the air fraction flowing through the
ith module; Afr_i isthe frontal area of theith module and Afr isthe total frontal area of the whole configuration.

The outputs of the finite element subroutines return the results from each modul e to the main program,
where the modul €' s governing equations and the “ connection equations’ describing the serial or parallel
configurations are cal culated simultaneously by the Newton-Raphson solver. Generally, the model can not converge
in only one iteration because we can not specify the mass fractions or the input air temperatures for all modulesin
cross/parallel configuration except the first one. Thereis no difference between parallel/parallel and counter/parallel

flows since they share the same residual connection equations.
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Air-sideequations: Refrigerant side equations:
R(1) =madot* haout-Smadot_i*haout_i R(2) =
madot - S madot i

R(3) = madot_i — (Afr_i/Afr)* madot

R(p+1) = Qtot - SQcalc i
R(p+2) = Mtot - SMcalc i

R(p+3) = w*hout - Sw_i*houtcalc _i
R(p+4) = pout - poutcalcC i

R(p+5) =w - Swcalc_i

Figure 3.8 Equations of counter/parallel and parallel/parallel configurations

3.2.2 Serial refrigerant flow
Compared to parallel configuration, it is easier to analyze and simulate the serial configuration because all

the refrigerant has the same experience, asit flows serially through all modulesin this configuration. The main
issue we need to consider hereisthe sequence in which the modules are connected. States of connection points
between any two serial modules (for example, numbered m and m+1) are described by two groups of variables: one
isthe outlet state from the former module and the other oneistheinlet state of the latter one. Corresponding
residual equationsthat are created to describe the connections are shown in Figure 3.9. Details about connections

between parallel and serial configurationswill be provided in the specified example in the following section.

R(n) = hout,, — hinpuy
R(n+1) = pouty, — poUt 1

R(N+2) = Wy — W

Figure 3.9 Residual equations describing connection

Asin the case of parallel configurations, we have equations describing connection of refrigerant states
between serial modules. We also need to pay attention to the airside flow situations. We also have three kinds of
configurations: cross/serial flow, parallel/seria flow and counter/serial flow, shown in Figures 3.10, 3.11 and 3.12,
respectively.
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Figure 3.12 Counter/serial flow configuration

For the cross/serial flow case, all the modules have the same inlet air states, but maybe different air mass
fractionsif they do not have the exactly same geometries. The following residual equationsin Figure 3.13 simulate

this configuration.



Air-side equations: Refrigerant-side Equations:

R(1) = ma haout- Sma_i haout i R(n)=Q_i—Q_icalc
_ R(n+1)=M_i —M icac
R(2) = Ma- SMa_l R(n+2) = hout_i — hout_icalc

R(3) = Ma_i - (Afr_i/Afr) ma R(n+3) = Pout_i — Pout_icalc
R(n+m) = hout_i —hin_i+1
R(n+m+1) = pout_i —pin_i+1
R(n+m+2) =w_i—w
R(n+m+3) = hout — hout_ncalc
R(n+m+4) = pout — pout_ncalc
R(n+m+5) = Mtot- SM_i

R(4) = Taout _i - Taoutcalc i

Figure 3.13 Residual equations describing cross/serial configuration

For the counter/serial and parallel/serial configurations, refrigerant side has the same residual equations as cross
flow configuration, and has easier air side equations because all the air passes each heat exchanger sequentially, and
undergoes the same heat transfer experience. Both configurations are governed by almost the same residual
equationsin the main program, but the sequentially -solved finite element subroutines for each module require
specification of inlet refrigerant enthal py and pressure for the parallel/serial configuration, and the refrigerant outlet
state for the counter/serial configuration. The boldface equationsin Figures 3.14 highlight the difference between

these two configurations.

Air-side equations: Refrigerant-side Equations:
R(1) = Taout - Taout _n R(N)=Q_i— Q icac

R(n+1) = M_i —M_icalc

R(n+2) = hout_i — hout_icalc
R(n+3) = Pout_i — Pout_icalc

R(Z) = Maj - ma_l
R(3)=Taout _i- Tain_i+1
R(4) = Tain _1- Tain

R(5) = Taout _i- Taoutcalc i R(n+m) = hout._i — hin_i+1

R(n+m+1) = pout_i —pin_i+1
R(n+m+2) =w_i —w

R(n+m+3) = hout — hout_ncalc
R(n+m+4) = pout — pout_ncalc
R(n+m+5) = Mtot- SM_i

Figure 3.14 Residual equations describing parallel/serial configuration
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3.3 Complex component analysis and simulation
An example, which shows a general structure of acomplex component, is used to illustrate the use of the

divide-and-conquer algorithm, which is designed to deal with the multiple-heat exchanger component. As described
above, three steps are needed to simulate the complex structure.
3.3.1 Division

Division isthefirst step of the divide-and-conquer algorithm and we start from the original complex
components consisting of multiple condensers or evaporators. The division will continue at consecutive levels until
every moduleis an individual stand-alone heat exchanger, where the finite element method can be used for its
simulation. Residual equations describing the connections and combinations among different heat exchangers are
also listed in main program. The following paragraphs describe the procedure of dividing the complex structure
shown in Figure 3.1.

Division is executed at different levels and the original component isthefirst level. The original
component consists of three parallel heat exchangers, which are second level elements. At each level, we focusfirst
on any parallel configuration. Without parallel elements, we then turn to serial configurations. A detailed view of

the second level is shown below:

W1
P Wir ] wp W13
W2
Po: W2
W3
Ps: W31 — W3

Figure 3.15 Second level elements

W =w; + w, + ws wherew is the mass flow rate of refrigerant of the whole system and w;, w, and ws are
the mass flow rates of refrigerant through Py, P, and Ps, respectively. At the sametime, wy isequal to wiq Wiz W3
and w3 is egual to wa;, W3, since the modules are serial. W11 Wi, and wig are mass flow rates through the three
serial modulesin P, and ws;, ws, are mass flow rates through the two serial modulesin Ps.

Two of the second level heat exchangers P, (i=1,2,3) are serial. Therefore we continue the division because
there are still heat exchangers that are not single modules. In this example, the first heat exchanger P; includes
three smaller modules, which are serially connected and share the same mass flow rate of refrigerant, w;. P; has two

serial modules, which share the mass flow rate of refrigerant, ws,
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P, isdivided into three smaller modules at the third level:

Pr1: ] Wiy |
PlZ: — W12 R
Pis. — Wiz —

Wy = Wy1=Wi2 =Wi3
Figure 3.16 Third level modules

P11, P12, P13 are all individual stand-alone modules, which are the smallest units of thisalgorithm, and can

not be divided any more. Similarly, P3 also can be divided into two third-level modules:

P31 — 1w I

P32

_ W —

where P3; and Ps, share the same mass flow rate ws since they are serially connected stand-alone heat exchangers
and do not need further division any more.

Now all the modules are individual stand-alone heat exchangers, which can be simulated by calling
sequential finite element subroutines. Many such stand-al one subroutines for simulating different geometries are
aready stored in the main library of the simulation system. In the main program, one just needsto select the right
subroutine names and flags for different heat exchangers. These kinds of stand-al one subroutines give us great
flexibility in simulating different heat exchangers without rewriting codes and redesigning algorithms.

Briefly, all parallel configurations share the sameinlet refrigerant states, and their outlet pressures must be
identical, but not necessarily their refrigerant outlet enthal pies, or their air inlet and outlet states. As discussed
above, the outlet pressure and enthal py result from the combination of all parallel outlets. All serial configurations
share same mass flow rates of refrigerant. That isthe criterion we use to divide the complex components. On the air
side, we need to pick up different residual equations to simulate the connections among heat exchangers defined by
different airflow directions. In order to simulate a single stand-alone heat exchanger, airflow directions still define
corresponding algorithms we should use in simulation. The detailswill be provided in the latter sections of this
chapter.

3.3.2 Conquer

Conquer isthe second step of the divide-and-conquer algorithm, whose purpose is to simulate every
smallest module, stand-alone single heat exchanger. Sequential stand-al one subroutines have been built and are
available within ACRC for many different geometries. These subroutines are stored in library of the simulation

system.
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Within conquer process, we focus on simulating every single heat exchanger with different geometries.
Harshbarger and Bullard (2000) already have developed “module” algorithms to simulate complex single heat

exchangers, even multi-slab counterflow and parallel flow designs such as those shown in Figure 3.17.

Call Downstream Marching Upstream Marching
subroutines
Heat Finned Tube Finned Tube
Exchangers
Components MicroChannel MicroChannel
‘calc’ outputs
Wire-on-Tube Wire-on-Tube
Etc. Etc.

Figure 3.17 Overall structures of heat exchangers subroutines

Figure 3.17 shows the structure of heat exchangers subroutines that can be called to simulate different heat
exchanger geometries without re-compiling source codes. These subroutines are sequential stand-alone procedures
that simulate one heat exchanger having a particular geometry. The subroutines can be shared by different systems
with the heat exchangers of same geometries and they can be called recursively when simulating a more complex
system, which has multiple heat exchangers.

Based on the relationship between the flow directions of refrigerant and air, there are two kinds of
algorithms, upstreaming and downstreaming, referring to the refrigerant flow direction. Simulations always proceed
downwind, so the upstreaming and downstreaming algorithms apply to overall counter-flow and parallel-flow heat
exchanger configurations, respectively. To enable sequential solution of the upstreaming subroutine, refrigerant
outlet pressure and enthal py are needed as input because the calculation is started from air inlet (refrigerant outlet)
point, and the calculated inlets of pressure and enthalpy are returned. For the downstreaming subroutines, because
the air and refrigerant are flowing in the same direction, each of their statesis assumed to be known. Then the
highest and lowest temperatures needed by e NTU method are easily decided for each small element, asthe
calculation starts from inlet point and marches downwind and towards the refrigerant outlet. Calculated outlet
pressure and enthal py of refrigerant are the returned values. Therefore the residual equations simulating these heat
exchangers are different. The Figure 3.18 shows the residual equation groups simulating downstreaming and
upstreaming algorithms for the single stand-alone heat exchanger, respectively. The most important differenceisin

thefirst two bol dface equations shown in both boxes.
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Downstreaming Equations: Upstreaming Equations:

R(n) = hout — hout_calc R(n) = hin — hin_calc

R(n+1) = pout — pout_calc R(n+1) = pin — pin_calc
R(n+2) = dp—dp_cac R(n+2) = dp—dp_cac

R(n+3) =M -M_calc R(n+3) =M —-M_cac

R(n+4) = Q—-Q_cac R(n+4) = Q-Q _calc

R(n+5) = Tairout — Tairout_calc R(n+5) = Tairout — Tairout_calc
R(n+6) = Tout— Tout calc R(n+6) = Tout— Tout_calc

Figure 3.18 Downstreaming and upstreaming equations interface

A user-selected flag is set to select either the downstream or the upstream marching algorithm,
corresponding to overall parallel or counterflow, respectively. A separate flag is used to select the type of heat
exchanger inuse. This structure allows the locations of the governing equations to be logically organized within the
source code. Because of the sequential nature of the subroutines, the solution method and the assumptions are more
apparent and understandable to users.

3.3.3 Combination
Combination isthe final step of the divide-and-conquer algorithm, which reverses the reverse process of

division. The programmer reunites the divided modules. That is, we start from the lowest level of the modules
(single stand-alone heat exchanger), build the connections and combinations until the highest level to finish the
simulation of complex component. The combinations and connections i ssues among multiple heat exchangers are
the most important points we need to understand for our simulations. The connection and combination equations are
written in residual format, and are listed in the main program and simultaneously solved by Newton-Raphson solver.

Harshbarger and Bullard (2000) have provided details about complex heat exchanger using finite element
algorithms. Here we focus on the connections and combinations among multiple heat exchangersin the same
component. Residual equations describing the combination of the former examplein ‘division’ step are grouped in
the later section.

At thethird level, P;1, P1, and Py are the smallest units, which are serially connected. The links between
any two serial modules are the inlet and outlet pressures and enthal pies of refrigerant flowing through the whole
serial structure. According to their geometries, finite element subroutines are called to simulate them. At the same
time, each module has a group of residual equations describing the heat transfer performance. Figure 3.18 givesthe
equations of individual module for both upstreaming and downstreaming configurations. Here we focus on the
combination of these three modules. Figure 3.19 shows the residual equations and connection equations listed in the
main program, for the case where air flows parallel to the refrigerant, so the downstreaming algorithm is used to

simulate the individual modules.
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Pi: Wi1 Wio

Wi3

Residual equations of Py;:

R(0) = hout_11 — houtcalc_11
R(1) = pout_11 — poutcalc_11
R(2) =dp_11—dpcalc_11
R(3)=M_11—-Mcac 11

R(4) =Q_11-Qcalc_11

R(5) =Taout_11 —Taoutcalc_11
R(6) = Tout_11—Toutcalc_11

Residual equations of Py,

R(7) = hout_12— houtcalc_12
R(8) = pout_12 — poutcalc_12
R(9) =dp_12—dpcalc_12

R(10) =M_12—-Mcalc_12

R(11) =Q 12— Qcac 12

R(12) = Taout_12 — Taoutcalc_12
R(13) = Tout_12 — Toutcalc_12

Residual equations of Py3:

R(14) = hout_13 — houtcalc_13
R(15) = pout_13 — poutcalc_13
R(16) = dp_13 —dpcalc_13

R(17) = M_13—Mcalc_13

R(18) = Q_13 - Qcdc_13

R(19) = Taout_13 - Taoutcalc_13
R(20) = Tout_13 —Toutcalc_13

Air-side equations:

R(34) =Taout_P, — Taout_13
R(35) = Tain—Tain_11

R(36) = Taout_11-Tain_12
R(37) = Taout_12—Tain_13

Refrigerant side Connection equations:

R(21) =wll-w1l

R(22) = w12 -w1l

R(23) =w13-wl

R(24) = pin_11- pin

R(25) = hin_11 - hin

R(26) = hout_11—hin_12

R(27) = pout_11 —pin_12

R(28) = hout_12 —hin_13

R(29) = pout_12 —pin_13

R(30) = hout_13 — hout_P;

R(31) = pout_13 — pout_P;
R(B32=QP-0Q11-Q 12-Q 13
R(33)=M_P-M_11-M_12-M_13

Figure 3.19 Residual equations groups simulating P1

In order to classify the variables, we append the number to them, such as hout_11, hout_12, which are
outlet enthalpies of P;; and Py, respectively. Pout_11 and Pout_12 are outlet pressures of P;; and P1,. Hout_P; and

pout_P; are the outlet enthal py and pressure of the whole module, P;. We can explain other variablesin the same

way.

28



Similarly, P; hastwo serial stand-alone modules, P3; and Ps;, which can be simulated by using the same
groups of residual equations and the connection equations used for Py, as shown in Figure 3.21. In order to simplify
this example, we suppose air flows parallel to the refrigerant in all the modules. P, isthe smallest unit and can be

simulated as a single module, as shown in Figure 3.20.

W

P: W2

P3: W31 F— W32

Residual equations of P2: Refrigerant side connection equations:
R(0) = hout_21 — houtcalc_21 R(7)=w_21-w2

R(1) = pout_21 — poutcalc_21 R(8) = pin_21 —pin

R(2) = dp_21—dpcalc_21 R(9) = hin_21 — hin

R(3) =M_21-Mcalc_21 R(10) = hout_21 — hout_P2

R(4) = Q_21-Qcalc_21 R(11) = pout_21 — pout_P2

R(5) = Taout_21 —Taoutcalc_21 R(12) = Q P,-Q21

R(6) = Tout_21—Toutcalc_21 R(13)=M P.—M_21

Air-side connection equations:

R(14) =Taout_P2 — Taout_21
R(15) = Tain—Tain_21

Figure 3.20 Residual equations simulating P,
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Residual equations of P3;:

R(0) = hout_31 — houtcalc_31
R(1) = pout_31 — poutcalc_31
R(2) =dp_31—dpcalc_31

R(3) =M_31—-Mcalc_31

R(4) = Q_31-Qcalc_31

R(5) = Taout_31 —Taoutcalc_31
R(6) = Tout_31—Toutcalc_31

Residual equations of P3;:

R(7) = hout_32 — houtcalc_32
R(8) = pout_32 — poutcalc_32
R(9) =dp_32-—dpcalc_32

R(10) = M_32—-Mcac_32

R(11) = Q_ 32— Qcalc_32

R(12) = Taout_32 - Taoutcalc_32
R(13) = Tout_32 — Toutcalc_32

Air-side connection equations:
R(14) =Tain_32 - Taout_31

R(15) = Tain—Tain_31
R(16) = Taout_32— Taout_P3

Refrigerant side connection equations:
R(17) =w_31-w3

R(18) = pin_31-pin
R(19) = hin_31-hin

R(20) = hout_32 —hout_P,
R(21) = pout_32 — pout_P»
R(22) =w_32 - w3

R(23) = hout_31—hin_32
R(24) = pout_31 — pin_32
R(25) =Q P;—Q 31-Q 32
R(26)=M_P;—M_31-M_32

Figure 3.21 Residual equations simulating P3

We built residual equationsto simulate these three parallel modules, P;, P, and P;. We need to turn to the
combination of these parallels to finalize the combination of the complex component. Figure 3.22 contains both the
refrigerant side and air side combination equations. Total heat transfer and refrigerant charge, Q and M, are
calculated as well as each air mass fractions, where it is assumed that the air mass flux is identical across the frontal

areas. Refrigerant outlet enthal py results from the mixture of the parallel circuits.



Refrigerant side connection equations: Air side connection equations:
R(0) =w-w1-w2-w3 R(7) = Vadot — Vadot_P;, — Vadot_P, —
R(1) = w*hout — w;* hout_P; —wy*hout_P» Vadot_P;

—W3* hout_P; R(8) = Vadot* haout — Vadot_Py*haout_ P;—
R(2) = pout_P1 - pout Vadot_ P,*haout_ P, — Vadot_ P;*haout_ P;
R(3) = pout_P2 — pout R(9) = Vadot_ P, — Vadot * (Afr_ P/Afr)
R(4) = pout_P3 — pout R(10) = Vadot_ P, — Vadot* (Afr_ P,/Afr)
R(5)=Q-QP-QP-QP; R(11) = Vadot_ P; — Vadot* (Afr_ Py/Afr)
R(6)=M-M _P.-M_P,—M_P;

Figure 3.22 Combination equations for parallel modules

If the air side performanceis not parallel but cross flow, the refrigerant side connection equations are the
same, but air side equations need to be changed. Figure 3.23 showsthe air side connection equations for the cross

flow configuration.

Air-side equations:

R(1) = Taout - Taout _P,
R(Z) = ma - ma_ Pl

R(3) =Ma- ma_ P2

R(4) =Ma- ma_ PS

R(5) = Taout _PR, - Tain_P,
R(6) = Taout _P, - Tain_P,

R(7)=Tain _P, - Tain

Figure 3.23 Airside connection equations for cross flow configuration

By ‘divide-and-conquer’ algorithm, any kind of complex component with multiple heat exchangers with
any kind of geometries can be simulated. A simple example, dual-evaporator refrigerator simulation model where

two evaporators are serially connected, is provided in the Chapter 4.
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Chapter 4: Dual Evaporator System Modeling

4.1 Introduction
Dual evaporator refrigerators were modeled using a computer simulation. Modifications were made to the

previously developed code in order to simulate better two evaporators arranged in series, served by asingle
condenser and compressor.

The model was initially developed for the study of single evaporator refrigerator-freezers at the Air
Conditioning and Refrigeration Center (ACRC) at the University of Illinois at Urbana-Champaign. It consistsof a
general Newton-Raphson solver linked to a series of equations and functions that describe the particul ar
refrigeration system being modeled (Mullen and Bullard (1994) and Mullenet al. (1998)). The simulation model for
refrigeratorsis caled RFSIM. The model assumes a steady state operation and the single evaporator versionis
described in more detail by Woodall and Bullard (1996). RFSIM was modified (Steinet al. (1999)) for dual
evaporator refrigerators by adding a second evaporator in the fresh food section and eliminating air exchange
between the compartments. The fresh food evaporator is modeled as atwo-phase region and the freezer evaporator
includes both a two-phase region and a single-phase superheated region. Additional modifications were needed to
accurately represent the prototypes tested. In response to a manufacture’ s request, we tried to simulate a parallel-
configured dual evaporator system by using the single-evaporator version of RFSIM. One evaporator was
simulated, supposing the other oneidle. Only afew variables and residual equations need to be modified to simulate
such adual evaporator system. More details can be found in the Appendix B.

A simulation model with all equations solved simultaneously built by Steinet al. (1999) and Gerlach and
Newell (2000), for a serially-configured dual-evaporator system. This chapter describes a new simulation model
with amodular structure. Every system component has an associated sequential subroutine describing the
component. The number of initial guess valuesisthereby decreased substantially, from 144 to 67. Moreover,
structured and independent sequential subroutines can be easily embedded in the simulation system without
recompiling and changing codes.

The nomenclature used in Steinet al. (1999) and continued here is that the freezer compartment variables
arewritten simply such as “tevap.” Thefresh food variables have an “f” added, e.g. tevapf. Alternatively, afreezer
variable is denoted with a“z” added, e.g. tevapz. In the new model structure, the variable names are kept
unchanged, but all the variables are categorized into four categories as discussed above and by Harshbarger and
Bullard (2000).
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4.2 Sequential simulation

Sequential condenser

subroutine
Condenser
main program:
CT-SLHX NR solver and residual equations e
subroutine u & Comprr
subroutine
Fresh food Freezer "i

Sequential evaporator subroutine

Figure 4.1 New model structure of dual evaporator system

In the new model structure, the dual-evaporator system is divided into several components: compressor,
condenser, ct-slhx and evaporator. The evaporator component includes two serial evaporators: fresh food
evaporator and freezer evaporator. Each component is associated with a sequential subroutine describing the
component. Evaporator component will call sequential subroutine twice, with flags changed and different values
describing the heat exchanger geometries and inlet conditions. All the components are serial, so the residual
equations simul ating the connections among the components are created. The evaporator component only has two
serial heat exchangers, or subcomponents, which are “connected” by defining the intermediate statesin the main
program. The connection issue isthe main issue to be considered at this point we do not need to be concerned about
combining flows among the subcomponents since there are no parallel heat exchangers. More details are provided
below.

4.2.1 Compressor

The compressor subroutine used by the dual evaporator system is based on the manufacturer’s performance
map specified in the ‘instr.base’ instruction file. Using these inputs, the compressor subroutine cal cul ates mass flow
rate through the compressor, power consumed by the compressor; refrigerant-side energy balance about the
compressor; air-side energy balance about the compressor; and a rate equation describing the heat transfer from the
compressor shell to the air stream. The mass flow rate through the compressor and the power consumed by the
compressor are described by compressor map stored in the system library. The mass flow rate and power
consumption are calculated as functions of the saturation temperatures corresponding to the inlet and outlet
pressures of the compressor. These relations or data necessary to make them are available from the manufacturers.
In compressor subroutine, two equations involving the compressor mass flow rate and power consumption appear as

follows:
R(comp+0)= beta Wmap * wf(tsatoutcomp,tsatincomp,CompNum) — w (Eq. 4.1)

R(comp+1)= beta Pmap * pcompf(tsatoutcomp, tsatincomp, CompNum) —powercomp (Eq.4.2)



Refrigerant-side energy bal ance equation about the compressor is a classic application of the first law of

thermodynamics for a control volume:

R(comp+2)=BTU(powercomp)-w* (houtcomp -hincomp) — gcomp (Eq. 4.3)

Similarly, the following is the residual equation to simulate the air-side energy balance:

R(comp+3)=mdotacond * (ha(tacondfanin) — ha(tacondout)) — gcomp (Eq. 4.4)

Therate of heat transfer from the compressor can also be described through the use of a convection heat
transfer relation, and an empirical relationship also obtained from the manufacturer’ s compressor data, expressing
shell temperature as alinear function of discharge temperature (see Kim and Bullard, 2000).

Ts=-3.4407+0.88355*t0
R(comp+4)=hAcomp * (Ts— tacondout) — gcomp (Eq. 4.5)

Beta Wmap, beta Pmap and CompNum are the compressor inputs from system XK file specified by the
user. The basic purpose of beta Wmap and beta_ Pmap isto scale the compressor maps to simulate the effect of a
change in compressor speed or compressor size. TsatO and tsat1l are variables calculated by the subroutine based
on pressure inputs: inlet pressure and outlet pressure of the compressor p11 and p0. Wf and pcompf are functions to
calculate power and mass flow rate stored in library file. HO, mdotacond and Ts are calculated variables.
Tacondout and h11 are inputs variables of compressor subroutine. Qcomp, w, , powercomp, taconfanin and tO are
output variables of the subroutine.

4.2.2 Condenser

The condenser is modeled as a cross-flow heat exchanger, using afinite-element method in the new model
structure. All stand-alone sequential subroutines simulating different geometries (e.g. wire-on-tube) are stored in
system library. The special flags and subroutine name are used to call the corresponding sequential subroutine,
returning the expected cal culated outputs needed by the subset of the system residual equations dealing with that
component.

The Figure 4.2 shows schematically the interface between the NR solver and the sequential condenser
subroutine. The seven NR residual equations are shown within the NR solver box. Each equation equates an
interchangeable variable with its corresponding subroutine output variable. The NR solver performs several
iterationsin determining the solution to a set of equations. For the condenser (component) simulation, the NR
solver solves a set of seven simultaneous eguations. The solver simultaneously forces the values of each of the seven
equations, written in residual format, to zero. The number of simultaneous equationsis equal to N, the number of

‘calc’ variables.



Newton-Raphson solver

f(1) = Pout - Pout_calc

f(2) = hout — hout_calc

f(3) = Qcond — Qcond_calc

f(4) = Mcond - Mcond_calc

f(5) = Tacondout — Tacondout_calc
f(6) = Tout— Tout_calc

f(7) = Dpcond — Dpcond_calc

| | Condenser sequential subroutine A

Subroutine Subroufi
ubroutine
Inputs (Set 1) Pout_calc = ogac(Pin,hin, mref,Tairin,etc. ) 1 Outputs
hout_calc = ogc(Pinhin, Mref,Tairin,etc.) | ‘calc’ Variables
Qcond_calc = 0gc(Pinhin, m M1 ref, Tairinetc.)

Mcond_calc = 0g4¢ (Pin,hin, Mref,Tairin,etc.)
Tacondout_calc = 0 (Pin,hin, mref,Tairin,etc.)
Tout_calc = 0y (Pinhin, mref,Tairin,etc.)
Dpcond_calc = 0y (Pinhin, mref, Tairin,etc)

Figure 4.2 interface of residual equations and condenser sequential subroutine

Set P ' 1 Qsup, Q2ph, Qsub, :
Lcond; Dcond; AAEC, ™ | Asup, A2ph, Asub, i
hcondNum, NSECTC, i dpsup, dp2ph, dpsub,
RTBCND, crtmult, ' ! !

Condenser
Subroutine

‘calc’ Variables !
(from set O) :

DZC, rough, Etc.

....................

- — o ——— ————

! i Mcond_calc, Pout_calc
: 1 subcool_calc,
| ' Dpcond_calc, Toutcalc,

k ................. / Q acondout_calc j

Figure 4.3 condenser sequential subroutine variable categories
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Each ‘calc’ output of subroutine is the function of inlet state, mass flow rate, inlet conditions and geometry.
Iteratively, NR solver updates the X variables associated with this component until the system convergesto a series
of solution. If there are no X variables among the inputs to the subroutine, the calculation will finish in only one
iteration. Otherwise, iterationswill be necessary, based on good initial guess values for the unknown X variables.

Figure 4.3 shows the inputs and outputs of the condenser finite-element subroutine. Variable names are
defined in Appendix E of TM22. Theinputsinclude heat exchanger geometry, inlet conditions, mass flow rate of

refrigerant through the heat exchanger, air mass flow rate and inlet temperature, plus some other necessary XK



variables needed by the subroutine to simulate the condenser. Usually, haircond is calculated in subroutine by
library function. But in thisversion of the model, haircond is a user-specified input to the subroutine. The outputs
include two main parts; Set C and Set O. The set C consists of calculated variables, which are directly returned back
to user interface, but not to the NR solver. The Set O are calculated X variables, needed by NR solver to
simultaneously solve the set of residual equations associated with the X variables. From the viewpoint of sequential
subroutine, the inputs and outputs are not interchangeable. But at the main program level, the XK variables are
interchangeable, which is the big advantage of the NR solver. The number of unknown X variables must be kept
equal to the number of residual equations.

4.2.3 Captube-suction line heat exchanger
Theresidual equations that describe the behavior of the capillary tube-suction line heat exchanger (ct-slhx)

are substantially different from the other groups of residual equations. There are actually two different sets of
eguations, or submodels, that can be used to model the CT-SLHX. One sub-model is based upon afinite-difference
solution of the governing equations for refrigerant flow through it. This method calculates directly the mass flow
rate and heat transfer that takes place within the component based on published correlations. The other sub-model is
asimple method that relies on a user-specified heat transfer effectiveness of the CT-SLHX, instead of performing
geometry-specific calculation. In this simple submodel, only two residual equations describe the capillary tube-
suction line heat exchanger. The first one predicts the amount of the heat transfer from the hot refrigerant in the
capillary tube to the colder refrigerant in the suction line based upon the user-supplied value of the effectiveness:
ectslhx, one variable from XK:

R(cap+0)= ectslhx * (hpt(pincomp,tinexp) — houtE) — (hincomp — houtE) (Eq. 4.6)
Where (hincomp — houtE) represents the actual heat transfer and (hpt(pincomp,tinexp) — houtE) represents the
maximum heat transfer that could occur when the refrigerant at the suction line outlet reaches the temperature of the
refrigerant at the capillary tubeinlet.
The second residual equation that describes the capillary tube — suction line heat exchanger in this caseis
the refrigerant-to-refrigerant energy balance for the component. It is assumed that there is no heat transfer from the

capillary tube or suction line to the environment:

R(cap+1) = (hinexp— hinE) — ( hincomp — houtE) (Eq. 4.7)
Thisresidual eguation sets the change in enthal py across the capillary tube (hinexp— hinE) equal to the change in
enthal py across the suction line (hincomp— houtE).

The other residual equationsthat are used to simulate the CT-SLHX when the effectiveness-based sub-

model is used are shown below:

R(cap+2) = CaptubeModel — 1.0 (Eq. 4.8)
R(cap + 3) = ((0.75*Lin/(Lin+Lhx+Lout))* (pinexp -pcrit)/numDPin — Dpin (Eq. 4.9
R(cap+4) = (tincomp -toutE)/numDTsl — DTSl (Eg. 4.11)
R(cap+5) = ((2.5d0* Lout/(Lin+L hx+L out))* (pinexp -pcrit))/numDPout — Dpout (Eq. 4.12)
R(cap+6) = pinE - 10.0d0 — pcrit (Eg. 4.13)



4.2.4 Evaporator

Similarly, the evaporator is modeled locally as a cross-flow heat exchanger, using afinite-element method.

There are two serial evaporatorsin this component, so the sequential subroutineis called twice from the main

program with different valuesto respectively simulate the fresh food evaporator and freezer evaporator. Figure 4.4

shows the interface of the subroutine and system residual equations aswell as variables categoriesinvolving in the

evaporator component.

The NR solver will serially call the sequential subroutine, with different geometry and different inlet states.

Because these two evaporators are serial, the mass flow rates through the evaporators are equal and the outlet

calculated states from the fresh food evaporator are the input states for the freezer evaporator. Additional

connection equations describing the connection force the refrigerant states to equate at the connection point.

call sequential subroutine

Set P+ Set |

Newton-Raphson solver

f(1) = Pout - Pout_calc

f(2) = hout —hout_calc

f(3) = Qevap— Qevap_celc

f(4) = Dpevap — Dpevep_calc

f(5) = Taevapout - Taevapout _calc
f(6) = Mevap- Mevap_calc

f(7) = Tout- Tout_calc

o

~_~
;

hevapNum,
NSECTE,
RTBEVP,
ertmult, STE,
rough,

Set |
Pin, hin, I ref,
I air, Tairin,
hairevap, aphaevap

Evaporator subroutine
Pout_calc = 0 (Pin,hin, M ref, Tairin,etc.)
hout_calc = o (Pinhin, M ref, Tairin,etc.)
Qevap_calc = 0uc(Pin,hin, M ref, Tairin,etc.)
Dpevap_calc = 0¢y¢

(Pin,hin, M ref, Tairin,etc.)

Taevapout_calC = Ocy

Figure 4.4 interface of sequential subroutine, residual equations and variables

(Pinhin, I ref, Tairin,etc.)
Mevap_calc = Ogyc

(Pinhin, T ref,Tairin,etc.)
Tout calc = O (Pinhin, M ref Tairin,etc.)

/Outputs

(from set O)
Pout_calc,
hout_calc,
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Fresh food evaporator equations:

R(1) = Poutfevap - Poutfevap_calc
R(2) = houtfevap — houtfevap_calc
R(3) = Qfevap— Qfevap calc

R(4) = Dpfevap— Dpfevap_calc
R(5) = Tafevapout- Tafevapout_calc
R(6) = Mfevap- Mfevap_calc

R(7) = Toutfevap- Toutfevap_calc

Connection equations:

R(8) = poutfevap — pinE
R(9) = houtfevap— hinE
R(10) = pinevapf — poutE
R(11) = hinevapf — houtE
R(12) = houtevap — hinsl
R(13) = poutevap - pinsl

Freezer evaporator equations:

f(14) = PoutE - PoutE_calc

f(15) = houtE — houtE_calc

f(16) = Qevap— Qevap_calc

f(17) = Dpevap — Dpevap _calc
f(18) = Taevapout - Taevapout_calc
f(19) = Mevap - Mevap_calc

f(20) = Toutevap - Toutevap calc

Figure 4.5 residual equations associated with evaporator component
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Appendix A: Capillary Tube Suction-Line Heat Exchanger Design Model

A.1 Design operating condition
In this section, several capillary tube-suction line heat exchanger (ct-slhx) geometrys are simulated to

determine mass flow rate and several other performance indicators at the “design” operating condition. Refrigerator
istested at a90° F, with Te=12.4F and Tc=105 F, corresponding to high and low side pressures of 149.7 psiaand
15.7 psia, respectively. To maximize performance of evaporator and condenser, superheat degree and subcooling
degree are usually set at 5° Fand 3° F. Theinside diameter of the suction lineis 0.375 inches. At these conditions
the design calls for a mass flow rate w=12.4 Ibm/hr. The following summary Table (Table A.1) showsonly Lct,
Lin, Lhx, w, Tsuc and Xcrit. However, Tsuc istheindicator of effectiveness of the ct-slhx.

In order to investigate how subcooling affects the mass flow rate and other performance indicators, the
CTSLHX model isrun at 1°, 3 and 6° F subcooling, respectively.

Simulations were performed for several different total lengths of capillary tube, where possible, the inlet
length of capillary tube is changed while keeping the heat exchanger and outlet lengths unchanged at 68 inches and
6 inches, respectively. For each diameter (0.038, 0.036, 0.034 and 0.032 inches, respectively), from the property
profile printed on the computer screen, it was found that re-condensation occurred in the following cases: when
length decreases to 95 inches and 85 inches with DTsub=6° F, there is re-condensation in the heat exchanger part,
and flashing occurs again in the outlet part; It also occursin the case where Dct=0.034 inches, and Lct= 90 inches
with 6° F subcooling; For Dct= 0.032 inches with only 1° F subcooling, re-condensation also can be found.
However, if length decrease to 70 inches with 6° F subcooling degree, the whole capillary tube is almost filled with
single-phase liquid refrigerant, and there is only one flash point which islocated in the adiabatic outlet section.

The following Table summarizes the results for all geometry simulated:

Table A.1 Calculated results for several different cases

Geometry DTsub=1° F DTsub=3"F DTsub=6" F
Lct Lin Dct Lct w Pcrit Tsuc w Pcrit | Tsuc w Pcrit Tsuc
[inch] | [inch] [inch] [ [inch] | Lbm/ | [psia] [F] Lbm/ | [psia] [F] Lbm/h | [psia] [F]
hr hr r
130 56 0.038 68 15.6 29 69 16.5 30 69 17.7 31 69
120 46 0.038 68 16.6 30 70 17.6 32 70 19.0 33 70
110 36 0.038 68 17.9 32 72 19.0 34 71 20.7 36 70
105 31 0.036 68 16.2 32 73 17.2 34 73 18.8 36 72
95 21 0.036 68 18.0 36 74 19.2 37 74 211 40 73
85 11 0.036 68 20.6 40 76 22.2 43 75 24.8 47 74
110 36 0.034 68 13.4 30 73 14.2 31 73 15.4 34 72
100 26 0.034 68 14.6 33 75 15.6 34 74 17.1 37 73
90 16 0.034 68 16.5 36 76 17.7 38 75 19.5 41 74
80 6 0.032 68 15.2 40 79 16.6 43 78 17.6 44 77
70 10 0.032 54 15.1 40 71 16.3 43 71 18.1 47 69




From the above summary table, it is obvious that all the calculated mass flow rates are greater that the
design target of 12.4 Ibm/hr. If the mass flow rate should meet the design value, the length of capillary tube should
be extended. The ct-slhx model was then used to calculate the adiabatic inlet length required to meet the 12.4

Ibm/hr mass flow rate for all capillary diameters situation at 1F, 3F, 6F subcooling.

Table A.2 Calculated length for different diameters to meet design mass flow

DTsubcooling=1° F DTsubcooling=3° F DTsubcooling=6’ F
Tsuc Dct Lin Tsuc Dct Lin Tsuc Dct Lin
[F] [inch] [inch] [F] [inch] [inch] [F] [inch] [inch]
65 0.038 104 64 0.038 117 63 0.038 137
69 0.036 71.2 68 0.036 82.0 66 0.036 97.2
73 0.034 457 71 0.034 54 70 0.034 66.0
78 0.032 18.8 76 0.032 24.0 74 0.032 324

Theresults suggest that a diameter equal to 0.032 inches would have several advantages. At Lct=92.8
inches, the length is the shortest, and it also transfers the most heat from the capillary tube to the suction line, as
evidenced by the suction inlet temperature. That should maximize the EER increase contributed by the ct-sihx.

A.1.1 Effect of low condensing pressure
It may be possible that the captube exit becomes subsonic at low ambient temperature and DTsub may be

larger. Thefollowing Table shows ustheresults. The subcooling degrees shown in the table are the maximal
values corresponding to different diameters and lengths, which can be used to calculate the critical pressure by ct-
slhx model. From theresult table, critical pressure is always greater than the evaporator pressure in these special

situations, so in every case thereis no subsonic.

Table A.3 Effectiveness of low condensing pressure

Dct=0.038 Dct=0.036 Dct=0.034 Dct=0.032
[inch] [inch] [inch] [inch]
Lin Pcirt Tsub Lin Pcirt Tsub Lin Pcrit Tsub Lin Pcirt Tsub
[inch] | [psia] [F] [inch] [psia] [F] [inch] [psia] [F] [inch] [psia] [F]
56 34.1 10 31 40.1 10 36 36.5 10 6 40.1 1
56 36.5 15 31 41.6 12.5 36 39.6 15 6 42.3 2.5
56 38.8 20 31 43.0 155 36 40.5 17.5 6 44.9 5.0
46 36.4 10 21 40.3 5.0 26 38.3 7.5 10 45.9 5
46 39.2 15 21 44.4 10.0 26 40.3 10 10 47.8 8.5
46 41.3 19 21 45.5 12.0 26 43.0 13.5 10 47.9 9.2
36 39.3 10 11 43.2 2.5 16 40.8 5
36 42.7 15 11 46.9 6.0 16 43.4 7.5 ---
36 42.9 16 11 47.8 7.5 16 44.8 9.0

For the Lct=70 inches case with Dct=0.032 inches, the length of capillary tube is not long enough to keep
the length of heat exchanger at 68 inches, so theinlet length is set at 10 inches, and deduced the heat exchanger part
to 54 inches.
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A.2 Capillary Tube-Suction Line Heat Exchanger Model user’s reference
The purpose of this section isto acquaint any potential users with the operation of the capillary tube-suction

line heat exchanger model. The ct-slhx model calcul ates the mass flow rate through the capillary tube, the
temperature rise in the suction line and the exit pressure and quality of the capillary tube. By using the cold liquid
refrigerant in the suction line to decrease the enthal py of the refrigerant in the capillary tube, this equipment can
increase system capacity with amodest increase in the compressor power. At the sametime, it can make sure that it
is pure vapor refrigerant to enter into the compressor. Generally speaking, for the modeling purpose, the capillary
tubeis divided into three sections: adiabatic inlet section, heat exchanger section and the adiabatic outlet section.

A.2.1 Definition description for variables and parameters
In the capillary tube-suction line heat exchanger model, the capillary tube is divided into three different

sections: adiabatic inlet section, followed by heat exchanger section, and the last one is adiabatic outlet section. The
following figure (Woodall and Bullard, 1996) defines the main variables and parameters appearing in the XK
initialization file. The flashing point islocated in the inlet section, however, it can occur in either of the other two
sections. At the sametime, the refrigerant may re-condensein the heat exchanger section and then re-flash occur in

the following adiabatic outlet region, which is not shown in the following figure.

flash point Pcrit, xcrit
w
C

Subcool L]
P4, xoc Xoe,
11, p1l _ | Suc < t9,p9

I
Lin, Dpin Lhx, DTsl Lout, DPout
liquid Two-phase

Figure A.1 Divisions of capillary-tube suction line heat exchanger

Definition description for the variables and parameters:

Dct Diameter of the capillary tube

Dsuct Diameter of suction line

Lin Adiabatic inlet section length of capillary tube
L hx Heat exchanger length of capillary tube

Lout Adiabatic outlet section length of capillary tube
w Mass flow rate through the capillary tube

subcool  Degree of subcooling inlet the capillary tube
t9 Temperature at inlet of suction line

t11 Temperature at the exit of suction line

&



p4 Pressure at the exit of condenser

p9 Pressure at theinlet of suction line

pll Pressure at the outlet of suction line

Pcrit Critical pressure at the exit of capillary tube

Xoc  Quality at the exit of condenser

Xoe  Quality at the exit of capillary tube

Xcrit  Quality at the exit of capillary tube(choked flow)
Dpin  Pressure step in theinlet section of capillary tube
DTsl Temperature step in the suction line heat exchanger section
Dpout Pressure step in the outlet section of capillary tube
superheat  Degree of superheat at the exit of evaporator

The procedure that refrigerant flows through capillary tube-suction line heat exchanger is very complicated,
so this component is avery difficult one to simulate. Depending on different locations in capillary tube and
different design conditions, there will be several different processes occurring in the capillary tube. Generally, the
total capillary tubeisdivided into three consecutive three sections, just like the above plot.

Now, the first adiabatic inlet section is considered. The entering refrigerant usually has two states: pure
subcooled liquid or two-phase mixture. |f pure subcooled liquid, the pressure will decrease without changing
temperature before it reaches the saturation pressure. However, its pressure decreases when it flows through the
inlet section. At the saturation pressure, liquid refrigerant beginsto vaporize. We mark thislocation as flash point,
and the remainder length of adiabatic inlet could be modeled as two-phase mixture. The subcooling degreeislarge,
and the inlet section length is not long enough for refrigerant to vaporize and flash. Thetotal inlet sectionissingle-
liquid flow. If the entering refrigerant is two-phase mixture, the total capillary tube can be model astwo-phase
condition. The pressure decreases with the increase of the quality when it flows through the inlet section.

Leaving the inlet section, the refrigerant entersinto heat exchanger section. However, the entering state is
subcooled liquid or two-phase mixture, which is decided by the operating condition and the geometry of inlet
section. During flowing through this heat exchanger section, the heat transfer loss will cause decrease of the quality
and the temperature. At the sametime, the flow friction causes the drop of the pressure. Unfortunately, the pressure
drop and the heat |oss cause opposite changing on the refrigerant. The pressure drop of the refrigerant tends to
increase the quality, however, the heat loss will increase the subcooling tendency or decrease refrigerant’ s quality.
Under such complicated circumstances, the state transition of refrigerant in the heat exchanger will be unpredictable
and complicated. Under the effect of the two opposite mechanisms, there will be five different possible scenariosin
this part (R.J.Woodall and C.W.Bullard,1996):

(). Therefrigerant enters as two-phase mixture and it stays two-phase;

(2). Therefrigerant enters as two-phase mixture and it recondenses and exits as subcooled liquid;

(3). Therefrigerant enters as subcooled liquid and it stays subcool ed;

(4). Therefrigerant enters as subcooled liquid and it flashes and exits as a two-phase mixture;

(5). Therefrigerant enters as subcooled liquid and it flashes and then recondenses downstream and exits
asasubcooled liquid;



Thelast scenario only can occur in aspecial situation, where the effect of pressure drop of the refrigerant is
dominant in the upper stream, however the effect of heat transfer loss is dominant in the downstream of the heat
exchanger section.

Thelast part is adiabatic outlet section. Just like adiabatic inlet section, there is no heat transfer, only
pressure drop. Thiswill also have the same two possible entering states: pure subcooled liquid or two-phase
mixture. The situation should be the same asinlet section, except that the exiting state of outlet section should
always be two-phase mixture at the choked flow condition. So if the entering state is pure liquid, the refrigerant
subcool ed degree should decrease until the saturation point, then vaporize and increase quality as two-phase
mixture. For two-phase entering condition, the refrigerant pressure drops with the increase of the quality under the
effect of the flow friction. When the quality increases, the specific volume of the mixture will increase, too. Since
the mass flow rate is constant, the increase of the specific volume will cause the increase of the refrigerant flow
speed. Thevelocity of the refrigerant will increase until critical flow isreached at the exit. At a prescribed
condenser pressure, further reductions of the evaporator pressure below this point will not increase the mass flow
rate of therefrigerant. Therefore, the condition of choked flow at the exit of the outlet section is assumed. If
refrigerant is choked at the exit, there will be a discontinuity between the critical pressure at the capillary tube exit
and the pressure at the inlet to the evaporator (R.J.Woodall and C.W.Bullard, 1996).

A.2.2 XK file, variables and parameters definition
The XK fileisthe primary bridge for communication between the user and the ct-slhx model. In the XK

file, variables and parameters can be changed for every case, and the corresponding output cal culated by the model
iswritten to the output file. Now, the output name in the ct-slhx model is“s.derek”, whose name can be changed in
theinstruction file. Inthe XK file, variables are marked with “X” flags and parameters are marked with “K” flags.
At the sametime, X’sand K’ s can be switched without recompiling. The primary storage location for variables and
parametersisthe XK array, where every element is made “equivalent” to Fortran variables and parameters, which
appear in the governing equationsin the “equation.f” file. For example, in the XK file of ct-slhx model, XK (1) and
Dpin variable are “equivalent” and they can be used interchangeably. In other words, variables and parameters are
usually referred to by XK# in the solver, while the governing equations and subroutines refer to them by their
names. The XK array and “equivalent” Fortran variables and parameters are declared and put in the common block
in “EQUIVLNT.INC” file, which isusually included in different subroutines and files.

Thefollowing isthe XK interface, which can be used to change parameter’ s values or switch X’'s, and K’s.
If variable or parameter is needed to appear in the written file, the “ output flag” value should be set to 1, otherwise,
it should be 0. Parameters are flagged with “K”, which need user-specified values. However, variables are flagged
with “X” , which need ideal initial guess value for model’ s calculation, and are updated by the model latest results
appearing in the written file.

Table.A.4 Sample XK initialization file

** XK initialization file: initializes variable guesses and parameter values.
** Qutput Flag specifiesif variable is printed to spreadsheet readablefile.
** (1 ="Print, 0= Don't Print)



** Parameters are flagged with "K" and variables are flagged with " X."

** Theunitsare delimited with [ ]".

** The last number signifies the number of decimal places (0-10).

** The ORDER of theinput lines CANNOT CHANGE without program modification.

Output Flag Name XK# Vaue Units # of digit
rrRxFxAxFxxFx DO NOT DELETE THESE FIRST NINE LINES!  ***x**xskxsx
0 X DPin =XK( 1) = 4.840 [psia] 3
0 X DPout =XK( 2) = 4.056 [psia] 3
0 X DTHd =XK( 3) = 5.453 [F] 3
1 X perit =XK( 4) = 42.35 [psial 3
1Xw =XK( 5) = 10.856[Ib m/hr] 3
1 X xcrit =XK( 6) = 0.1025] ] 4
0 K CaptubeOutput =XK( 7)= 207] 1
1 K Dct =XK( 8) = 0.002750 [ft] 6
0 K Dsuctline =XK( 9) = 0.02604 [ft] 5
1 K Lin =XK(10) = 4.250 [ft] 3
1 K Lhx =XK(11) = 5.167 [ft] 3
1 K Lout =XK(12) = 0.667 [ft] 3
0 K numDPin =XK(13) = 4.1] 0
0 K numDPout =XK(14) = 5[] 0
0 K numDTdl = XK(15) = 6.1 0
1K p4 =XK(16) = 12 0.400 [psia] 3
1 K p9 =XK(17) = 42.320 [psia) 3
1 K subcool =XK(18) = 7.625 [F] 3
1 K19 =XK(19)= 37.050 [F] 3
1 C superheat = XK(20) = 10.000 [F] 3
0 K xoc =XK(21) = 0.0001] 3
0 K xoe =XK(22) = 1.000] 3
1Ctill =XK(23) = 69.766 [F] 3
0 K Cap_clog =XK(24) = 1.[] 0
0 K absR =XK(25)=  0.0000009708 [ft] 10

The next part isthe description for the parameter-variable switch. Just like interface above, the w(mass
flow rate) isthe variable, and Dct is the parameter. If w iswanted to be a specified parameter value, and Dct is
required to be calculated by the ct-slhx model with an initial guess, only the two flags are required to be changed in
the above XK initialization file. The corresponding two lines

1Xw =XK( 5= 10.856[1bm/hr] 3

1 K Dct =XK( 8) = 0.002750 [ft] 6
would have to be changed to

1Kw =XK( 5) = 10.856[1bm/hr] 3

1 X Dct =XK( 8) = 0.002750 [ft] 6

After forgoing operation, the model will run according to the above description. When swapping variables
and parameters, caution must be exercised to ensure that the equations are not made singular or non-independent
because of the swapping operation. Since the ct-slhx mode may become more sensitive to initial guess values
because of the swapping, it is recommended that a solution for original equations be found before swapping, and this
solution can be set as the initial guess value for the new XK file with parameters and variables swapping. Asfar as

we know, some equations are very sensitive to a particular parameter, alarger change in the particular parameter



may make it difficult to get solution. It maybeisagood ideato achieve the designed change using a series of
intermediate steps, with each intermediate solution used asupdated initial guess value for the XK file.

Parameters marked with “C” are constant values specified by ct-slhx model. The flags can not be changed
without program modification, and in the output file, these parameters can get the results calculated by ct-slhx
model.

A.2.3 Sampleinstruction file
For different cases, different parameter values may be needed, then the instruction fileis needed. The

instruction file contains alist of parameters, which are needed to have their values modified, aswell as the list of
values for these parameters. On the other hand, the number of intermediate steps can also be specified to take
between solutions. If the step number is one or more, then instruction file can direct the Newton-Raphson solver to
linearly interpolate the intermediate solution between the previous specified parameter and the next specified
parameters. This method can ensure a smooth transition from previous parameter to the designed value, when the
model isvery sensitive to this particular parameter’sinitial guessvalue. According to the user’s choicein the XK
file, thefinal results will be written into the specified file, however, the intermediate solutions will not be saved.

The following isthe example for theinstruction file:

Table A5 Instruction file Sample

ltems Description

MULTIPLE Solve for multiple sets of parameters

XK Name of XK initialization file

XK.richard Name of output file

14,8 #of runs, #of parameters to modify, #of intermediate steps
8 9 10 11 List of parameters to be modified in XK interface file

0.28 0.03 2.1 5.7 List of specified values for parameters’ modification

A.2.4 Solver setting file
Thefile“*SLVERSET” contains settings for various solver parameters, convergence criteria and tolerances,

and output options. Thefollowing isthe sample SLVERSET file. Some of the output settings, such as printing
initial, intermediate and final XK and R values, and other settings, are primarily useful for debugging a model, and
normally the solver setting need not be changed. However, according to the design value for different case, these

setting can be changed to meet the design need.
kkhkhkkkhhkkhkkhhkkhkkhhkkhkhhkhhhkkhhhkkhhkhhhkhhhkkhhhdhhkhhkhkhhkdkkhdkxkx*x

#xxxxxsx NEWTON-RAPHSON SETTINGS ** %+ %

Instruction file name :INSTR
Step factor for partial derivatives :.0001
Maximum allowable NR iterations 115
Convergence criteria 1(Maximum residual) :1.0e-3
Convergence criteria2 (RMSresidual) :1.0e-4
Selected convergence criteria (1 or 2) 12

NR step relaxation parameter 1.0
Use sparse matrix techniques? . .TRUE.
Update guesses between runs? . .TRUE.



skesiis GENERAL OUTPUT SETTINGS *### sk

Send general output to screen? . .TRUE.
Send general output to afile? : .FALSE.
Print abbreviated solver settings? . . TRUE.
Print initial XK values? . .FALSE.
Print initial residual values? . .FALSE.
Print iteration summaries? .. TRUE.
Print intermediate XK values? . .FALSE.
Print intermediate residual values? . .FALSE.
Print final XK values? . .FALSE.
Print final residual values? . .FALSE.
Print afinal summary . .TRUE.
raxkxxkx SOLUTION OUTPUT SETTINGS *#**x %%

Save XK valuesin input file format? . .FALSE.
Save XK values in spreadsheet format? : . TRUE.
Output digits0-10 (-1 = asin XK file) s -1

Using the solver setting file, the operating conditions and desired formation can be set. According to
different need, special flags can realize different solution output appearances. At the same time, special values can
be input to change model’sinitial information. For example, if file format like XK formation is needed, then logic
valuein “SOLUTION OUTPUT SETTINGS’ section should be switched as“ TRUE”, otherwise, it should be
“FALSE".

47



Appendix B: Dual Evaporator Simultaneous System Modeling

B.1 Introduction
Dual evaporator refrigerators are modeled most accurately using the modular system simulation approach

described in Chapter 4. This A ppendix describes a crude intermediate method for using a single-evaporator model
to simulate adual evaporator system. This model is now obsolete, having been superceded by the version described
in Chapter 4. However, it is documented here for archival purpose. Modifications were made to the previously
devel oped single-evaporator code in order to simulate better the refrigeratorsin this study.

The ACRC refrigerator simulation model was initially developed for the study of single evaporator
refrigerator-freezers at the Air Conditioning and Refrigeration Center (ACRC) at the University of Illinois at
Urbana-Champaign. It consists of ageneral Newton-Raphson solver linked to a series of equations and functions
that describe the particular refrigeration system being modeled (Mullen (1994) and Woodall (1996)). The
simulation model for refrigeratorsis called RFSIM. The model assumes a steady state operation. The single
evaporator model is described in more detail in Woodall and Bullard (1996). RFSIM was modified (Stein, 1999)
and refined by Gerlach (2000) for dual evaporator refrigerators by adding a second evaporator in the fresh food
section and eliminating the equation describing air exchange between the compartments. The fresh food evaporator
was modeled as atwo -phase region and the freezer evaporator includes both atwo-phase region and a single-phase
superheated region.

Additional modifications were needed to accurately represent the prototypes tested. Based upon the request
of the sponsor, we tried to simulate the dual evaporator system separately by running the single-evaporator model
aternately, first simulating one evaporator, supposing the other oneidle. A few variables and residual equations
were modified to simulate the dual evaporator system and its separate refrigerated compartment. This approximate
approach is not recommended, but is described in Sec.B.2 for those who prefers to use the simultaneousinstead of
the modular version of the RFSIM.

Chapter 4 describes the simulation model with new modular structure for simulating dual-evaporator
refrigerators. Every system component has an associated sequential subroutine describing the component. The
number of initial guess values substantially decreases, also structured and independent sequential subroutines were
easily embedded in the simulation system without recompiling and changing codes.

The nomenclature used in Stein (1999) and continued here is that the freezer compartment variables are
written simply such as “tevap.” Thefresh food variables have an “f” added, e.g. tevapf. Alternatively, afreezer
variableis denoted with a“z” added, e.g. tevapz. In the new model structure, the variables name are kept

unchanged, but all the variables are categorized into four categories as discussed in Harshbarger and Bullard (2000).

B.2 Simultaneous system
This simultaneous system is built upon the original RFSIM, using one-evaporator system to simul ate dual-

evaporator system. Suppose we run the dual evaporators separately, that meansone time we run fresh food

compartment, and the other time we run the freezer compartment. In the single evaporator RFSIM model, we ignore



the heat transfer between these two compartments through the mullion, but in dual evaporator model, it is an issue
we need to pay attention to. The UA of the mullion is anew variable added into the XK variable list.

We simulate fresh food and freezer compartments concurrently in single evaporator system. Variables‘fz’
and ‘runtime’ are describing the running conditions. In order to simulate dual-evaporator system using the single-
evaporator approach, we need to focus on one compartment at onetime. Variable ‘fz’ isaspecified K value, which
is switched between 0 and 1 for fresh food case and freezer case, respectively. For fresh food case, fz is specified to
zero, meaning that no air flows into freezer compartment; On the other hand, fz is equal to one in the freezer case,
where all air flowsinto freezer compartment instead.

For freezer simulation, the Figure 4.1 shows us the specified inputs for freezer compartment case, whichis
alittle different from the original RFSIM evaporator system.

Governing equations for the freezer case are shown below. They have been modified from the original
RFSIM system model since new heat transfer boundary is considered in the modified simulation model.

Thefollowing residual equation simulates the total heat transfer balance of the freezer compartment. The
mullion heat transfer between fresh food and freezer compartments has been added. The heat transfer sources
include heat transfer between ambient and freezer compartment, heat transfer from heater, heat transfer between
fresh food and freezer compartments and heat transfer of liquid line (post-condenser loop for heating the door gasket
areas), all of which isassumed to enter the freezer compartment.

R(cab+0) = BTU(UAZ2)* (tamb - tafrez) + BTU(FrezHeater) + gligline
+BTU(UAmM)* (tafrig - tafrez) — Qfrez (Eg. B.2)

Q=UA,* (Tamb— Tafrez)

Freezer compartment:

Fz=1.0 Freezer
Tafrez = -4 P° Evaporator

///

! ! ! Qm=UA*(Tafrig-Tafrez)

Fresh compartment:

Tafrig=41PF

Q=UA* (Tamb-Tafrig)

Figure B.1 Freezer component simulation: no air flowsinto fresh food compartment
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The second residual equation describes the total heat transfer balance of the fresh food compartment
without air flowing through since Fz is specified 1.0. Thisisthe running condition we suppose. The heat transfer
sourcesinclude heat transfer between two compartments, heat transfer from ambient and heater.

R(cab+1) = BTU(UAf)*(tamb - tafrig) + BTU(FrigHeater) - BTU(UAmM)*
(tefrig - tafrez) - Qfrig (Eqg. B.2)

Thefollowing residual equation is used to calculate the time that the system hasto run to remove all the

heat added to the freezer compartment in order to keep the constant temperature in the compartment.

R(cab+2) = (mdotaevap* fz* (ha(taf rez)-ha(taevapfanout)))* Runtime — Qfrez (Eq. B.3)
wherethefzisequal to 1.0. When simulating the freezer, the other residual equation that is modified to simulate the
running condition is the one cal culating the fresh food compartment heat transfer * Qfrig’. Since we know thereis no
air flowing into this compartment, variable ' Qfrig’ isforced to be equal to zero all the timein this case.

R(cab+3) = Qfrig— 0.0 (Eq. B.4)

Theresidual equation that is not listed above but in the original systemisstill kept to help the simulation.

We should keep in mind that during the whole simulation, the fresh food compartment temperature should
constantly keep 41 °F, so the heat transfer between ambient and fresh food compartment should be equal to the heat
transfer from fresh food compartment to freezer part. 1n order to make the equation valid, we need to keep UAf asa
‘X’ variable. Similarly, when we simulate the fresh food compartment, we need exchange UAz and UAf: UAf isK
parameter, but UAz is allowed to float to some artificial value. We can do the simulation in another way, keeping
the variable fz float to some artificial value instead and specifying the UAz or UAf alternately. In our current
model, we specify and switch fz between 1 and 0, keeping UAz or UAT float in order to balance the heat transfer in
fresh and freezer compartments.

We use similar way to simulate the fresh food compartment, but thistime fresh food evaporator is active
and total air flows into fresh food compartment. Variablefz is specified to zero. During the simulation, freezer
compartment temperature, -4 °F, is constantly kept. At the same time, just as discussed about, variable UAz is
allowed to float in order to satisfy the heat transfer between freezer compartment, fresh food compartment and
ambient. The Figure B.2 shows us the relationship around the fresh food compartment.

Similarly, someresidual equations as below are modified to simulate the running condition from the
original RFSIM residual equations.

Thefirst residual equation isto describe the heat transfer balance of the freezer compartment. Heat transfer
between ambient and freezer compartment, heat transfer from heater and liquid line and heat transfer between these
two compartments are considered in this equation.

R(cab+0) = BTU(UAZ2)* (tamb - tafrez) + BTU(FrezHeater) + gligline
+BTU(UAm)* (tafrig-tafrez)- Qfrez (EqB.5)



Q=UA,* (Tamb- Tafrez)

Freezer compartment:

Fz=0.0
Tafrez=-4 P

///

! ! ! Qm =UA *(Tafrig-Tafrez)

Fresh compartment:

Tafrig=41F° Fresh
Evaporator

‘ ‘ ‘ ‘ Q=UA;* (Tamb-Tafrig)

Figure B.2 Fresh food compartment simulation

The second residual equation modified is the equation simulating the heat transfer balance of the fresh food
compartment.
R(cab+1) = BTU(UAf)*( tamb—tafrig ) + BTU( FrigHeater ) - BTU( UAmM)*
(tafrig-tafrez ) - Qfrig (Eq. B.6)
Thefollowing istheresidual equation used to calculate the fraction time the system uses to remove the heat
added to this compartment in order to keep temperature balanced.
R(cab+2)=(mdotaevap* (1.0d0-fz)* (ha(tafrig)-ha(taevapfanout)))* RunTime-Qfrig (Eq. B.7)
The last residual equation needing attention isto specify the heat transfer balance of the freezer
compartment. The variable ‘Qfrez’ isforced to zero since thereis no air flowing in and the evaporator isidle now.
R(cab+3) = Qfrez — 0.0 (Eg. B.8)
In conclusion, we can use single evaporator system model to simulate the dual evaporator refrigerator
components separately, but the simulation method can not provide exact results for us. Previously, when this dual

evaporator system is stable, the Figure B.3 shows the states of refrigerant at different connection points.

poutC, houtC pinC, hinC
Condenser
compressor
ct-slhx
| _I_I
Fresh food evaporator [ Freezer evaporator
. . poutE, houtE
pinE, hinE poutfE, houtfE

Figure B.3 stable refrigerant states of dual evaporator system
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For fresh food evaporator, the inlet states of refrigerant are hinE and pinE from expansion device. The outlet
states of refrigerant are poutfE and houtfE. Since these two evaporators are serial, poutfE and houtfE are inlet states of
the freezer evaporator with the outlet states of poutE and houtE. The other main state points are marked above.

I'n our running cases, we simulate the dual evaporators separately, using the single evaporator system.

When we simulate the fresh food evaporator case, the refrigerant states are described below in figure B.4.

The combination of compressor, condenser and expansion device is the same as the figure above, but the
freezer evaporator is removed from the dual-serial-evaporator system and assumed idle during the simulation.

Several steps are used to analyze the process. We supposed that the combination of compressor, condenser and
expansion device provides the same inlets and outlets states of refrigerant as above, then fresh food evaporator has
theinlet states, pinE and hinE. Secondly, the evaporator provides the same outlet states as before, houtfE and
poutfE. Now poutfE and houtfE areinlet states of the compressor, but not poutE and houtE any more. With the
different inputs, the combination changesits outputs to fresh food evaporator in the next round, different from hinE
and pinE. At thistime, the whole system is under unstable state. When the whole system becomes stable again, the
system has different refrigerant states at the connection pointsin the figure. The fresh food evaporator has input
states, hink; and pinE,, and output states, poutE; and houtE;. With the same specified variables, the system
definitely has different performance now, not as expected in the original figure B.3.

poutC;, houtC, pinC;,hinC
Condenser

compressor
ct-slhx

| | |
I Fresh food evaporator I

pinEy, hinky POUtE;, houtE;

Figure B.4 Refrigerant states of single fresh food evaporator case

Similarly, in the freezer evaporator simulation, the evaporator gets the inlet states, hinE, and pinE,, and outlet

states, houtE, and poutE,, which are different from expected values: hinE, pinE, poutE and houtE, respectively.

poutC,, houtC, pINCyhinG,

Condenser

compressor
ct-slhx

| | |
I Freezer evaporator I

pinE;, hink, poutE,, houtE;

Figure B.5 Refrigerant states at connection points of freezer simulation
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Appendix C: Residential A/C System Modeling

C.1 Introduction
The ACRC air conditioner system simulation model was developed by Mullen et al. (1998). Instead of

solving the equations with a successive substitution algorithm, the ACRC solver utilizes a Newton-Raphson
algorithm to solve the governing equations simultaneously. The solver allowed the input parameters and output
variables to be interchanged without the need to reprogram the model.

Recently, the system simulation model wasimproved by Andrade and Bullard (1999). Equations were
added that allowed the simulation of split type a/c unitsin addition to the window units. Improvements were made
to the evaporator heat and mass transfer equations, implementing a study by Kirby, Bullard and Dunn (1998).
Equations simulating sensible and latent |oads of a house were also added, to simulate the system’ s ability to reduce
indoor humidity for a given set of outdoor conditions and air infiltration rates.

The system simulation model has proved an accurate and sophisticated design tool. However, the program
had two prominent limitations. Modern and future heat exchanger designs were exposing the limitations with the
conventional modeling techniques. This became apparent when Kirkwood and Bullard (1999) modified the model
to simulate microchannel heat exchanger geometries in a multizone framework, where a finite element approach
would have been more appropriate. Additionally, for the ACRC solver to calculate a solution, accurate initial
guesses must be known for each output variable. Many initial guesses were required, sometimes for obscure values,
which caused great burden on the user. Furthermore, sponsoring companies were expressing interest in individual
component models. With alarge set of interrelated equations, component simulations were difficult to isolate and
export from the system simulation program.

To address these limitations, Harshbarger and Bullard (2000) have developed a new structure to be
implemented into the system simulation model. Finite element solutions of the heat exchangers were developed for
the condenser and evaporator. The finite element structure allows the simulation of complex geometries that were
not possible with conventional methods. The finite element solutions were integrated into the system model ina
manner that reduced the number of required initial guesses and therefore, the burden on the user.

To further the capabilities of the model, amodular structure was adopted. Using a structure similar as
TRNSYS (Klein et al., 1976), each component in the system is solved in a self-contained manner. Therefore, each

component simulation can easily be isolated and/or integrated into a simultaneous set of system-level equations.

C.2 Model description
The RACMOD system model consists of components models for the condenser, evaporator, compressor

and capillary tube, aswell as simulation equations for system, component connections and charge calculation. We
built sequential subroutines for each component and the details describing the modeling strategies and algorithms
used in the subroutines are provided.
C.2.1 Condenser

The air conditioner condenser is modeled as a crossflow heat exchanger with uniform inlet air temperature

and velocity. A stand-alone sequential subroutineis used to simulate this component, where the finite element



algorithm isused. Thefirst part of the condenser geometry has two refrigerant circuits and both are defined as
identical and parallel modules. We simulate one module, and multiply by the number of parallel modulesto

calculate the total heat transfer performance and areas for different heat transfer zones.

aANa (aWA

Refrigerant Refrigerant
inlet outlet

Figure C.1 Condenser geometry

Along the refrigerant flow direction, the circuit is equally divided into many small elements. Each small
€lement has the same length, so they have the same air-side and refrigerant-side heat transfer areas during
simulation. Thisisacrossflow configuration, where each element has the same air input temperature and we
assume air mass flux isidentical everywhere. As shown abovein Figure C.1, air flows vertically into page from the
outside. The differenceisthe input refrigerant state of each element since they are divided along the refrigerant
flow.

The condenser includes two parts: the first part has two identical parallel circuits, which join together inthe
middle. The second part only has one circuit. In old 3-zone modeling framework, the circuit number is assumed 1.5
to calculate an approximate mass flux for all three zones. However, in the new simulation model, each small
element uses the exact circuit number and mass flux for the calculation. Mass flux is calculated locally as well as

heat transfer area, pressure drop, refrigerant and air properties and local heat transfer.

Nc=2
N¢=
Module #1
Module #3
Module #2 o

Figure C.2 Condenser module structure



In Figure C.2, we suppose we have two identical parallel modulesin the first part; the second part only has
one module. Finite element algorithm is used to simulate each module. Heat transfer correlations and pressure drop
correlations are also calculated in each small element in order to exactly simulate the real heat transfer. Each
element in three heat transfer areas— superheat, two-phase and subcooling— is modeled using effectiveness-NTU
heat transfer rate equations.

At the end of the subroutine, we accumul ate the heat transfer, mass charge, heat transfer areas, pressure
drop of the refrigerant, and calculate the air temperature. The Figure C.3 showsthe flow chart of the condenser
subroutine. Because the difference of the circuit numbers in simultaneous and new models, we get different UA and
areas for three zones as well as the mass charge in subcooling zone. However, the total heat transfer is almost the

same because air-side heat transfer coefficient is always the dominant one.

C.2.1.1 Satetransition
Thereis another point we need to put attention to, which is the state transition point in the middle of each

element. At the beginning of each element, we decide the current state of the refrigerant. However, thereis
possibility the refrigerant changes the state among superheat, two-phase and subcooling in the middle of simulation
on the element. We have two methods to deal with these elements: we can divide the whole heat exchanger into
small enough elements, where we suppose there is no transition. Because the element is small enough, theresultis
also acceptable. Another method is that we cal culate the transition point inside the element, and then divide the
element into two smaller elements. We calculate these two elements sequentially. In our current model, we use the
latter method to decide the transition point, then call the subroutines with the exact lengths to exactly simulate the

smaller elements although the difference between these two resultsis negligible.

C.2.1.2 Subroutine description
In the condenser main program, named condenser.f, thereisalogical variable to decide which algorithm

should be called to simulate it:

If (downstream) then
Call dwnstmCond(Pincond, hincond,houtC_calc,poutC_calc,
QtotC_calc,AtotC_calc,heightC_calc,AfrC_calc,
massC_calc,QsupC,Q2phC,QsubC,AsupC,A2phC,AsubC,
T2phin,T2phout,P2phin,P2phout, TphinC, TphoutC)

Ro R0 Ro



Start the subroutine

Pass inputs

Call Structure No

file

Call structure
file

Call geometry
subroutine

Call geometry
subroutine

Figure C.3 Flow chart for condenser subroutine

Two-phase Subcooling
yes yes yes
Call superheat Call twophase Call subcool
subroutine subroutine subroutine
Pin = pout Last
Hin = hout element
yes
Return calcs




Else
Cal upstmCond(Poutcond,houtcond,hinC_calc,pinC_calc,
QtotC_calc,AtotC_calc,heightC_calc,
AfrC_calc,massC_calc,QsupC,Q2phC,QsubC,AsupC,
A2phC,AsubC,T2phin, T2phout,P2phin,P2phout,
TphinC,TphoutC)

R0 Ro Ro Ro

Endif

Consequentially, two different groups of residual equations are used separately to simulate these two
algorithms, which are listed in the main program:

If (downstream) then

10 R(cond+0) = MtotC - massC_calc

goto 5000

20 R(cond+2) = Acond - AtotC_calc
goto 5000

30 R(cond+1) = Qcond - QtotC_calc
goto 5000

40 R(cond+3) = AfrC - AfrC _calc
goto 5000

50 R(cond+4) = heightC - heightC_calc
goto 5000

60 R(cond+5) = Poutcond - PoutC_calc
goto 5000

70 R(cond+6) = houtcond - houtC_calc
goto 5000

80 R(cond+7) =degsubcool - degsubcool_calc
goto 5000

else

100 R(cond+0) = MtotC - massC_calc
goto 5000

200 R(cond+1) = Acond - AtotC _calc
goto 5000

300 R(cond+2) = Qcond - QtotC _calc
goto 5000

400 R(cond+3) = AfrC - AfrC_calc
goto 5000

500 R(cond+4) = heightC - heightC _calc
goto 5000

600 R(cond+5) = hincond - hinC_calc
goto 5000

700 R(cond+6) = Pincond - PinC_calc
goto 5000

800 R(cond+7) = degsubcooal - degsubcool_calc
goto 5000

endif

The variables affixed with ‘calc’ are returned from the sequential subroutine called above. All the residual
equations are sent to the ACRC solver, which simultaneously solves them and updates the variablesin each iteration
until thefinal solution isreached.

When the sequential subroutineis called, the main program transmits the input valuesto it. In each

component, thereisafile named ‘ XK.update’, shared by the system. It gives away for the component to access the
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initial guess valuesfor X variables, specified interchangeabl e variables and parameters. The flow processinside the
sequential subroutine is described below. First of al, thereisalogical to indicate whether the element configuration
has already been read from the file, ‘ condenser.txt’, which defines the total number of the elements, the number of
parallel circuitsin each element, and total number of tube passes, etc. In order to avoid recompiling, the logical
variableis used to indicate whether subroutine already hasinitialized the arrays, which store the information listed
above. If thisinformation has already been read, thisinput step will be skipped.

if (.not. elementread) then

call Readelem(Nel passC,ElperpassC,ModstartC,airinputC,
& NparamodC,NcircuitC,'condinput.txt’)
elementread = .true.

endif
Thelogical variable, elementread, isinitialized as ‘ False', causing the information to be loaded before the
calculation. After thefirst iteration, elementread is set to ‘true’.

The next step isto calculate the condenser geometry. Each element has the same length. Refrigerant-side
and air-side heat transfer areas for each circuit are calculated as well as other variables used in further calculation in
this subroutine, which is named FTcondgeom.
call FTcondgeom(DinC,DoutC,NtubesperslabC,V tubedistC,WidthC,

height,L RtrnBndC,FinthC,FinPtchC,

TuberowsC,HtubedistC,Nel passC,ElperpassC,

thickC,DLC,Afr,VRtrnBndC,DcC,AffC,AairC,
coilfactC,Volume,Area, AadivAffC,CSareaC)

The next part is the core of the finite element simulation. We use downstream algorithm to simulate this

R R R R

condenser, so we start from the refrigerant inlet and the air inlet. Thefirst step is to decide whether the current
numbered element is over the boundary of the maximal element number by the ‘ do-while’ control loop. If so, we
will skip the loop to return the calculated variables to condenser main program. Otherwise, calculation will be
continued until the last element.

do while (element .le. (NelpassC * ElperpassC))

enddo
At the beginning of each element, we decide the current inlet status of the refrigerant: superheated, two
phase or subcooled based on the element inlet, pressure and enthal py:

hsatv = hpx(pin,1.0)
hsatl = hpx(pin,0.0)
if (hin .ge. hsatv)then

vapor = .true.
twoph = .false.
liquid = .false.
elseif (hin .ge. hsatl) then
vapor = .false.



twoph = .true.

liquid = .false.
else

vapor = .false.

twoph = .false.

liquid = .true.
endif

We have three subroutines to deal with vapor, liquid or two-phase, respectively, which are named supeldwnstmC,
tpheldwnstmC, subeldwnstmC.

if (vapor) then
call supeldwnstmC(hin,Pin,wlocal,
Tairout(airinputC(element)),mdot,DLC,Area,Volung,
AaDivAffC,AffC,coilfactC,DcC,hout,Pout,
Tairout(element),Qsup,Q2ph,Asup,A2ph,V apor,twoph,
liquid,mass,hsupC)
elseif (twoph)then
call tpheldwnstmC(hin,Pin,wlocal,
Tairout(airinputC(element)),md ot, DL C,Area,Volume,
AadivAffC,AffC,coilfactC,DcC,hout,Pout,
Tairout(element),Qsub,Q2ph,Asub,A2ph,V apor,twoph,
liquid,mass,h2phC,U2phClocal)
elseif (liquid)then
call subeldwnstmC(hin,Pin,wlocal,
Tairout(airinputC(element)),mdot,DL C,Area,volume,
AadivAffC,AffC,coilfactC,DcC,hout,pout,
Tairout(element),Qsub,Asub,mass,hsubC)

Ro R0 Qo Ro

Ro RO Ro Ro

Ro Ro

endif
The local refrigerant mass flow rate, wlocal, is calculated for each circuit in the module as well as the air mass flow
rate by the following equations.
wlocal = (w/dble(NparamodC(element)))/dble(NcircuitC(element))
mdot = (MdotaC/AfrC)* (DL C* VtubeDistC)
Where NparamodC is the array to store the numbers of the parallel modules of the current element and NcircuitC is
the array to store the number of circuitsin the current element, which are all initialized at the beginning of the
sequential subroutine by calling the text file, ‘ condenser.txt’.
In each subroutine simulating the small element, the traditional e NTU method is used to cal cul ate the heat
transfer of the element. The governing equations used in the finite element are the same as the simultaneous models.

After simulating each element, we accumul ate the designed variables from each element as shown below:

Qsuptot = Qsuptot + Qsup* dble(NcircuitC(element))
Q2phtot = Q2phtot + Q2ph* dble(NcircuitC(element))
Qsubtot = Qsubtot + Qsub* dble(NcircuitC(element))
Asuptot = Asuptot + Asup* dble(NcircuitC(element))
AZ2phtot = A2phtot + A2ph* dble(NcircuitC(element))
Asubtot = Asubtot + Asub* dble(NcircuitC(element))
masstot = masstot + mass* dble(NcircuitC(element))
mtotal C = mtotal C + mdot* dble(NcircuitC(element))

59



When the subroutine finishes the final element, it skips out of the ‘do-while' loop. The variables above are the final
values describing the performance of the component, which are returned to the main program (design variables) or
the user interface (calculated variables).

Within an element there may be atransition between superheat and two-phase, or between two phase and
subcooled. There are two methods to deal with this problem: the first isto ignore the transition since we usually
divide the heat exchanger into small enough elements that the difference is negligible; the other method is to
calculate the real transition location inside the element, and then divide the current element into two elements, with
each of them calling the corresponding subroutine with the real lengths. We use the latter method to deal with
problem currently .

The calculated variables are returned by the sequential subroutine to the main program, where they appear
in theresidual equations. Theresidual equations are sent to ACRC solver and are simultaneously solved.

C.2.2 Expansion device

The ACRC finite difference adiabatic capillary tube model developed by Peixoto and Bullard (1994) has

been implemented in RACMOD. This model isintegrated into the whole RACMOD system without rewriting. A

captube option is selected by appropriately setting the parameter “ CapTubeSelect”. Setting CapTubeSelect =1
specifies the ACRC captube and CapTubeSel ect=2 specifies the ASHRAE captube. If CapTubeSelect isanegative
number, then the design model is chosen and user needs to specify the amount of the evaporator superheat.

C.2.3 Compressor
A manufacturer-supplied compressor map is used to predict the compressor mass flow rate and power

consumption as afunction of condensing and evaporating temperatures. Bridges and Bullard (1994) provided
details about this component.
C.2.4 Evaporator

Like the condenser, the residential air conditioner evaporator model assumes a crossflow heat exchanger
with uniform inlet air temperature and velocity. Thereis also a stand-alone subroutine to simulate this heat
exchanger, where the finite element algorithm is used. Inside the sequential subroutine, modular concept is used to
simplify the simulation. There are six parallel circuits, and each oneis considered identical module. We only need
to simulate one of them, dividing the massflow by the number of the modules. Then the total heat transfer and mass
charge result from timing the number by the performance of single module. The whole module is equally divided
into hundreds of small elements, and heat transfer coefficients, pressure drop, heat transfer and mass charge are also
calculated locally and accumulated together to simulate the total heat transfer performance. Each element is solved
by aseries of heat transfer equations that utilize an e NTU method sequentially. Two regions of the heat exchanger
require unique governing equations. The two regions are the superheated and two-phase refrigerant zones. With the
finite element approach, afew elements will likely experience a zone change within their volume. In the model, the
element is either totally two-phase or superheated and the error introduced by this assumption is negligibleif the
element issmall enough. Theinlet enthalpy of each element is checked to determineiif it isin two-phase or

superheated zone.



Evaporator subroutine shares the same flow chart as the condenser subroutine. The big differenceisthat
we need to deal with dehumidification since thereiswater condensed from the hot air. Depending upon the
circumstances of the operating condition, an evaporator may operate with totally dry surface, totally wet surface or
partially dry / partially wet surface. Dueto circuiting, it may happen that the refrigerant rejects heat to the air if the
upwind element is colder. So if the air inlet temperature to an element islower than the refrigerant inlet temperature,
the element is assumed to be totally dry because the refrigerant is rejecting heat instead of absorbing heat.

If the refrigerant inlet temperature to an element is higher than the air inlet dew point tenperature, the
element is assumed to be totally dry and we do not need to cal culate the mean fin temperature at the leading edge.
Otherwise, the mean fin temperature at the leading edge has to be cal culated to determine the surface condition.

In partial or total wet element, Log mean enthal py method is introduced to calculate the total heat transfer,

including both sensible and latent heat transfers. The mean air enthalpy differenceis given by

Q =U,,A,LMhD

Eq.C.1
Where
- h..)-(h, - h
LMhD - ( al S,I’I) ( ao > S,TO)

aF]ai - hsri 9

Inﬁ;

hao - hs,ro ]

We may show that
1

ow Eq. C2

i bRAa + bw,m(l_ hF,w) + bw,m
Ap,rhr ho,w(Ap,r /A: +hF,w) ho,w

Where b, , isevaluated at the mean surface temperature of the water film onthefin. h  isthefin

efficiency for wet surface.

We have to separate the sensible and | atent capacity for enthal py potential method after the total capacity is
obtained. We usethetraditional e NTU method to calculate the sensible heat transfer, and then deduct it from the
total heat transfer to get the latent part.

C.2.4.1 Totally dry, partially wet or fully wet
Depending upon the circumstances of the operating condition, an evaporator may operate with totally dry

surface, totally wet surface or partially dry / partially wet surface. Figure C.4 describes the process we use in the

current model.

61



Totaly dry

Totaly dry
Calculate the fin mean temperature at the
leading edge, t;.,
Yes
Totally wet tmi £ ty
No
Calculate the location where
condensation just begins
Yes
Totally dry Location>L

No

Partially dry

Figure C.4 Process of determining surface condition

If the refrigerant inlet temperature to an element is higher than the air inlet dew point temperature, the
element is assumed to be totally dry and we do not need to cal culate the mean fin temperature at the leading edge.
Otherwise, the mean fin temperature at the leading edge has to be cal culated to determine the surface condition.

Assuming that the surface isinitially dry and the refrigerant temperature is constant on asmall element, we

can writethe 1-D heat transfer rate equation
hA(t, -t )=UAL, - t,) EqC.3

Where '[p isthe tube surface temperature.
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T + EqC4
UA haAah sur hr A’
We also have
(ta_tf,m):hf(ta_tp) EqC.5
Where t;  isthefin mean temperature.

ée UA G
tf,m—ta-hfgl- ﬁéta-tr)

If the mean fin temperature at the leading edge is lower than the air inlet dew point temperature, the surface
istotally wet. If the mean fin temperature at the leading edge is higher than the air inlet dew point temperature, we
have to determine if the surface istotally dry or not. Recall that when the fin mean temperature is equal to the air
inlet dew point temperature, condensation begins. We have

Ry

to = > EqC.7
-0 8-V A%

The heat transfer area needed to make mean fin temperature equal to the air inlet dew point temperatureis
obtained by

EqC.6

(e ey end

M,Cpalta; - tao) =UA,,LMTD EqC.8
Where LMTD = (ta'i _ trt)- (ti’o _ t,) EqC.9
In aji Y
t -t

If UA,, islarger than UA, the surface istotally dry. If UA, issmaller than UA, the surfaceis partially
dry and theratio of UAjry over UA isthedry fraction of the whole heat transfer area.

C.2.4.2 Subroutine description
The Figure C.5 describes the real flow chart in the sequential subroutine called by the evaporator main

program. The structure of the evaporator isvery similar with the condenser, but the main difference isthat we have

more lines to deal with the dehumidification since some water will condense from the water air, more details are
shown above.
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Figure C.5 Evaporator subroutine flow chart




Similar to the condenser component, we have two finite element algorithmsto deal with the simulation:
downstream marching algorithm and upstream marching algorithm. We have logical variable to call the right
subroutine for the simulation in the evaporator main program, ‘EVAPORATOR.F' . Consequentially, we have two
groups of residual equationsfor different algorithms, shown below.

If (downwind) then

Call dwnstmevap(Pinevap, hinevap,houtE_calc,poutE_calc,

QtotE_calc,Qsns calc,Qlat_calc,AtotE_calc,
f2phwet,A2ph,heightE_calc,AfrE_calc,massE_calc,
T2phout,P2phout, TphoutE, MWR_calc)

Ro Ro Qo

Goto (10,20,30,40,50,60,70,80,90,100), EQNUM

10 R(evap+0) = MtotE - masskE_calc

goto 5000
20 R(evap+1) = Aevap - AtotE_calc
goto 5000
30 R(evap+2) = Qevap - QtotE calc
goto 5000
40 R(evap+3) = AfrontE - AfrE_calc
goto 5000
50 R(evap+4) = heightE - heightE_calc
goto 5000
60 R(evap+5) = Poutevap - PoutE_calc
goto 5000
70 R(evap+6) = houtevap - houtE_calc
goto 5000
80 R(evap+7) = pwrfanE -PwrfanE_calc
goto 5000
0 R(evap+8) = MWR -MWR _calc
goto 5000
100 R(evap+9) = degsup - degsup_calc
goto 5000
else
call upstmevap(Poutevap,houtevap,hinE_calc,pinE_calc,
& QtotE_calc,Qsns _calc,Qlat_calc,AtotE_calc,
& f2phwet,A2ph,heightE_calc,AfrE_calc,massE_calc,
& T2phout,P2phout, TphoutE, MWR_calc)
Goto (110,120,130,140,150,160,170,180,190,200) , EQNUM
110 R(evap+0) = MtotE - massE_calc
goto 5000
120 R(evap+1) = Aevap - AtotE_calc
goto 5000
130 R(evap+2) = Qevap - QtotE _calc
goto 5000
140 R(evap+3) = AfrontE - AfrE_calc
goto 5000
150 R(evap+4) = heightE - heightE_calc
goto 5000
160 R(evap+5) = Pinevap - PinE_calc
goto 5000
170 R(evap+6) = hinevap - hinE_calc



goto 5000

180 R(evap+7) = pwrfanE -PwrfanE_calc
goto 5000

190 R(evap+8) = MWR -MWR_calc
goto 5000

200 R(evap+9) = degsup - degsup_calc
goto 5000

endif

When we call the evaporator subroutine, the inputs are passed into the subroutine. The ‘XK.update' fileare
shared by the whole workspace, so the initial guess values for unknown variables and parameters can be accessed in
any fileif the‘XK.update’ isincluded in the declaration. During theiterations, all of the residual equations are sent
to the Newton-Raphson solver with the cal culated variables from the sequential subroutine.

At the beginning of the sequential subroutine, thereisalso alogical variable, elementread, designed to
indicate whether the geometry configuration has been transmitted from the tex file, * evaporator.txt’, to the arrays,
‘modstartE(maxmod)’, ‘airinputE(maxNelem)’, ‘ NparamodE(maxNelem)’, ‘ NcircuitE(maxNelem)’, used by the
subroutine for the simulation. Otherwise, the subroutine written to initialize the arraysis called.

if (.not. elementread) then
call Readelem(Nel passkE, El perpasskE,M odstartE,airinputE,
& NparamodE,NcircuitE, 'evapinput.txt")
elementread = .true.
endif

After the geometry initialization, the subroutine designed for the element geometry calculation is called.
This calculation is performed for each circuit, including the refrigerant-side and air-side heat transfer area, volume
of element, frontal area, frontal height, wall thickness and the ratio of air-side heat transfer areato refrigerant-side,
which are used in the calculation in each element.

Call FTevapgeom(DinE,DoutE,NtubespersliabE,VtubedistE,WidthE,

& height,L RtrnBndE,FinthE,FinPtchE,

& TuberowsE,HtubedistE,Nel passk, El perpassk,

& thickE,DLE,Afr,VRtrnBndE,DcE,AffE,AairE,

& coilfactE,Volume,Area,AadivAffE,CSareaE,Ar)

The next step isto initialize the variables, including refrigerant state inputs, air state inputs and both
refrigerant and air mass flow rates for local element. Then we start to simulate the heat exchanger element. A ‘Do-
while' loop isintroduced to decide whether we are in the range of the maximal element number.

do while (currentelement .le. maxelement)

end do
At the beginning of each element simulation, we decide the refrigerant inlet status: two phase or superheat,
then call different subroutines for the simulation.

hsatv = hpx(pin,1.0)
hsatl = hpx(pin,0.0)
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if (hin .ge. hsatv)then
vapor = .true.
twoph = .false.
elseif (hin .ge. hsatl) then
vapor = .false.
twoph = .true.
endif

Therefrigerant and air mass flow rates are cal culated using following equations:

wlocal = (w/dble(NparamodE(element)))/dble(NcircuitE(element))
mdot = (MdotaE/Afr)* (DLE* VtubeDistE)

The subroutines are called depending on the input status:

if (vapor) then
call supeldwnstmE(hin,Pin,wlocal, Tairout(airinputE(element)),
RHout(airinputE(element)),mdot,DLE,Area,Volume,
AaDivAffE,AffE,Afr,coilfactE,DcE,hout,Pout,
Tairout(element),Qsup,Asup,V apor,twoph,mass,
RHout(element))

RO Ro Ro Ro

elseif (twoph)then
call tpheldwnstmE(hin,Pin,wlocal, Tairout(airinputE(element)),

& RHout(airinputE(element)),mdot,DLE,Area,Volume,
& AadivAffE,AffE,Afr,coilfactE,DcE,Qflux,hout,Pout,
& Tairout(element),RHout(element),Qdry,Qsns,Ql at,
& Adry,Awet,V apor,twoph,mass,MWRel ,Ar)

endif

In the subroutine called to simulate the element in two-phase state, we check whether there is water

condensing from the warm air onto the evaporator surface, by comparing the surface temperature and dew point

temperature. Asaresult, there are three possihilities: totally dry surface, partially wet surface and fully wet surface.

If (fully dry) then
call drysection(hin,Pin,wlocal,G,Tairin,RHin,mdot,Cair,
& Volume,AadivAffE,AffE,Afr,coilfactE,DcE,Qflux,
& Tairout,RHout,Qdry,Area)

elseif (partially wet) then
call Pwetsection(hin,pin, Tdew,wlocal,G, Tairout, Tairout,RHout,
& mdot,Cair,Volume,AadivAffE,AffE,Afr,coilfactE,DcE,
& Qflux,Tairout,RHout,Qsns,Qlat,(Area-Adry),MWREel)

elseif (fully wet) then
call wetsection(hin,pin,Ts,wlocal,G,Tairin, Tairin,RHin,

& mdot,Cair,Volume,AadivAffE,AffE,Afr,coilfactE,DcE,
& Qflux, Tairout,RHout,Qsns,Qlat,Awet, MWRel,1,Ar)
endif

Inside the subroutines, the eNTU method is used to calculate the heat transfer. The governing equations

used to calculate the heat transfer coefficients and pressure drop are the same as simultaneous models. Thelocally

calculated variables are accumul ated to describe the performance of the evaporator like below:

Qsnstot = Qsnstot + (Qsns+Qdry)* dble(NcircuitE(element))
Qlattot = Qlattot + Qlat* dble(NcircuitE(element))



Qsuptot = Qsuptot + Qsup* dble(NcircuitE(element))

Asuptot = Asuptot + Asup* dble(NcircuitE(element))

A2phdrytot = A2phdrytot + Adry* dble(NcircuitE(element))

A2phwettot = A2phwettot + Awet* dble(NcircuitE(element))

masstot = masstot + mass* dble(NcircuitE(element))

MWRtot = MWRtot + MWRel* dble(NcircuitE(element))

When the calculation skips out of the loop, all the calculated variables above will be returned back to the
evaporator main program used in the residual equations. If they do not match the final solution, the residual
equations are sent to the Newton-Raphson solver for further iterations. Newton-Raphson solver updates the input

variablesfor sequential subroutine, which is called until reaching the final solution.

C.3 Residual equations
We greatly reduce the number of residual equation aswell asthe number of theinitial guessvalues. The

Figure C.6 shows us the residual equations, associated to each component and connection point between

components.

Compressor residual equations

R(comp+0) = houtcomp — houtcomp_calc
R(comp+1) = mcomp — mcomp_calc

R(comp+2) = Qcomp— Qcomp_calc
Call subroutine

R(comp+3) = powercomp — powercomp_calc

feomer®) =p PP P- Compressor
R(comp+4) = Massfrac — Massfrac_calc Return ‘ calc subroutine
R(comp+5) = Tsatincomp — Tsatincomp_calc variables

R(comp+6) = Tsatoutcomp — Tsatoutcomp_calc

Connection residual equations

R(line+0) = poutcomp — pddisline - pinC
R(line+1) = houtcomp—hinC — QDL /w

Capillary tuberesidual equations

R(cap +0) = houtexp — houtexp_calc
R(cap +1) = Poutexp — Poutexp_calc
R(cap +2) = Mcap— Mcap_calc
(cap+2) » - Call subroutine
R(cap +3) = Xcritcap — Xcritcap_calc Capillary
R(cap +4) = Pcritcap — Pcritcap_calc Return‘calc’ tube_

variables subroutine
R(cap +5) = DeltaP — DeltaP_calc

R(cap +6) = Vcap— Vcap _calc
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Condenser residual equations

R(cond +0) = houtC — houtC_calc
R(cond +1) = PoutC — PoutC _calc
R(cond +2) = Qcond — Qcond_calc
R(cond +3) = TaoutC — TaoutC_calc
R(cond +4) = Mcond—Mcond_calc
R(cond +5) = degsub— degsub_calc
R(cond +6) = Acond— Acond_calc

Call subroutine

Return ‘calc’
variables

Connection residual equations

R(line+2) = PoutC — PinLL
R(line+3) = houtC — hinLL
R(line+4) = hinexp— houtL L
R(line+5) = pinexp — poutL L

Connection residual equations

R(linet+6) = Poutexp — Pinevap
R(line+7) = houtexp — hinevap

Evaporator residual equations

R(evap +0) = houtE — houtE_calc
R(evap +1) = PoutE — PoutE_calc
R(evap +2) = Mevap— Mevap_calc
R(evap +3) = TaoutE — TaoutE_calc
R(evap +4) = Qevap— Qevap_calc
R(evap +5) = degsup— degsup_calc
R(evap +6) = MWR - MWR_calc
R(evap + 7) = PwrfanE — PwrfanE_calc
R(evap + 8) = Aevap— Aevap_calc

Call subroutine

Condenser
subroutine

Return ‘calc’
variables

Connection residual equations

R(line+8) = PoutE — PinSL

R(line+9) = houtE — hinSL

R(line+10) = hincomp— hinSL — QSL/w
R(line+11) = pincomp — pinSL + pdsuctline
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System residual equations

R(sys +0) = SHR - SHR_calc

R(sys+1) = COP— COP_calc

R(sys +2) = Mtotal — Mtotal_calc
R(sys+3) = EER — EER _calc

R(sys +4) = LoadSen— LoadSen_calc
R(sys +5) = mainf — mainf_calc

R(sys +6) = LoadLat — Loadlat_calc
R(sys+ 7) = Load — Load_calc

R(sys+ 8) = OnTime— OnTime_calc
R(sys + 9) = Woutdoor — woutdoor_calc
R(sys +10) = Ach—Ach_calc

R(sys +11) = Tdpoutdoor — Tdpoutdoor_calc
R(sys +12) = LoadSHR — LoadSHR_calc

Call subroutine

Return ‘calc’
variables

Figure C.6 System residual equations
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