181,361 research outputs found

    Cross sections for pentaquark baryon production from protons in reactions induced by hadrons and photons

    Get PDF
    Using hadronic Lagrangians that include the interaction of pentaquark Θ+\Theta^+ baryon with KK and NN, we evaluate the cross sections for its production from meson-proton, proton-proton, and photon-proton reactions near threshold. With empirical coupling constants and form factors, the predicted cross sections are about 1.5 mb in kaon-proton reactions, 0.1 mb in rho-nucleon reactions, 0.05 mb in pion-nucleon reactions, 20 μ\mub in proton-proton reactions, and 40 nb in photon-proton reactions.Comment: 14 pages, 7 figure

    Efficient linear and nonlinear heat conduction with a quadrilateral element

    Get PDF
    A method is presented for performing efficient and stable finite element calculations of heat conduction with quadrilaterals using one-point quadrature. The stability in space is obtained by using a stabilization matrix which is orthogonal to all linear fields and its magnitude is determined by a stabilization parameter. It is shown that the accuracy is almost independent of the value of the stabilization parameter over a wide range of values; in fact, the values 3, 2, and 1 for the normalized stabilization parameter lead to the 5-point, 9-point finite difference, and fully integrated finite element operators, respectively, for rectangular meshes and have identical rates of convergence in the L2 norm. Eigenvalues of the element matrices, which are needed for stability limits, are also given. Numerical applications are used to show that the method yields accurate solutions with large increases in efficiency, particularly in nonlinear problems

    Finite elements for contact problems in two-dimensional elastodynamics

    Get PDF
    A finite element approach for contact problems in two dimensional elastodynamics was proposed. Sticking, sliding, and frictional contact were taken into account. The method consisted of a modification of the shape functions, in the contact region, in order to involve the nodes of the contacting body. The formulation was symmetric (both bodies were contactors and targets), in order to avoid interpenetration. Compatibility over the interfaces was satisfied. The method was applied to the impact of a block on a rigid target. It is shown that the formulation can be applied to fluid structure interaction, and to problems involving material nonlinearity

    GRB 060206: hints of precession of the central engine?

    Get PDF
    Aims. The high-redshift (z=4.048) gamma-ray burst GRB 060206 showed unusual behavior, with a significant rebrightening by a factor of ~4 at about 3000 s after the burst. We argue that this rebrightening implies that the central engine became active again after the main burst produced by the first ejecta, then drove another more collimated jet-like ejecta with a larger viewing angle. The two ejecta both interacted with the ambient medium, giving rise to forward shocks that propagated into the ambient medium and reverse shocks that penetrated into the ejecta. The total emission was a combination of the emissions from the reverse- and forward- shocked regions. We discuss how this combined emission accounts for the observed rebrightening. Methods. We apply numerical models to calculate the light curves from the shocked regions, which include a forward shock originating in the first ejecta and a forward-reverse shock for the second ejecta. Results. We find evidence that the central engine became active again 2000 s after the main burst. The combined emission produced by interactions of these two ejecta with the ambient medium can describe the properties of the afterglow of this burst. We argue that the rapid rise in brightness at ~3000 s in the afterglow is due to the off-axis emission from the second ejecta. The precession of the torus or accretion disk of the central engine is a natural explanation for the departure of the second ejecta from the line of sight

    Tropical Ocean and Global Atmosphere (TOGA) heat exchange project: A summary report

    Get PDF
    A pilot data center to compute ocean atmosphere heat exchange over the tropical ocean is prposed at the Jet Propulsion Laboratory (JPL) in response to the scientific needs of the Tropical Ocean and Global Atmosphere (TOGA) Program. Optimal methods will be used to estimate sea surface temperature (SET), surface wind speed, and humidity from spaceborne observations. A monthly summary of these parameters will be used to compute ocean atmosphere latent heat exchanges. Monthly fields of surface heat flux over tropical oceans will be constructed using estimations of latent heat exchanges and short wave radiation from satellite data. Verification of all satellite data sets with in situ measurements at a few locations will be provided. The data center will be an experimental active archive where the quality and quantity of data required for TOGA flux computation are managed. The center is essential to facilitate the construction of composite data sets from global measurements taken from different sensors on various satellites. It will provide efficient utilization and easy access to the large volume of satellite data available for studies of ocean atmosphere energy exchanges

    Mass in anti-de Sitter spaces

    Full text link
    The boundary stress tensor approach has proven extremely useful in defining mass and angular momentum in asymptotically anti-de Sitter spaces with CFT duals. An integral part of this method is the use of boundary counterterms to regulate the gravitational action and stress tensor. In addition to the standard gravitational counterterms, in the presence of matter we advocate the use of a finite counterterm proportional to phi^2 (in five dimensions). We demonstrate that this finite shift is necessary to properly reproduce the expected mass/charge relation for R-charged black holes in AdS_5.Comment: 15 pages, late

    GRB 060206: Evidence of Precession of Central Engine

    Get PDF
    The high-redshift (z = 4.048) gamma-ray burst GRB 060206 showed unusual behavior, with a significant re-brightening about 3000 s after the burst. We assume that the central engine became active again 2000 s after the main burst and drove another more collimated off-axis jet. The two jets both interacted with the ambient medium and contributed to the whole emission. We numerically fit this optical afterglow from the two jets using the forward-shock model and the forward-reverse shock model. Combining with the zero time effect, we suggest that the fast rise at ~3000 s in the afterglow was due to the off-axis emission from the second jet. The precession of the torus or accretion disk of the gamma ray burst engine is the natural explanation for the symmetry axes of these two jets not to lie on the same line
    corecore