189,254 research outputs found

    Quantum Entanglement as a Diagnostic of Phase Transitions in Disordered Fractional Quantum Hall Liquids

    Get PDF
    We investigate the disorder-driven phase transition from a fractional quantum Hall state to an Anderson insulator using quantum entanglement methods. We find that the transition is signaled by a sharp increase in the sensitivity of a suitably averaged entanglement entropy with respect to disorder -- the magnitude of its disorder derivative appears to diverge in the thermodynamic limit. We also study the level statistics of the entanglement spectrum as a function of disorder. However, unlike the dramatic phase-transition signal in the entanglement entropy derivative, we find a gradual reduction of level repulsion only deep in the Anderson insulating phase.Comment: 8 pages, 8 figures, including the supplemental material, published in PRL as an Editors' Suggestio

    Quantum Manifestation of Elastic Constants in Nanostructures

    Full text link
    Generally, there are two distinct effects in modifying the properties of low-dimensional nanostructures: surface effect (SS) due to increased surface-volume ratio and quantum size effect (QSE) due to quantum confinement in reduced dimension. The SS has been widely shown to affect the elastic constants and mechanical properties of nanostructures. Here, using Pb nanofilm and graphene nanoribbon as model systems, we demonstrate the QSE on the elastic constants of nanostructures by first-principles calculations. We show that generally QSE is dominant in affecting the elastic constants of metallic nanostructures while SS is more pronounced in semiconductor and insulator nanostructures. Our findings have broad implications in quantum aspects of nanomechanics

    Lagrange Model for the Chiral Optical Properties of Stereometamaterials

    Full text link
    We employ a general Lagrange model to describe the chiral optical properties of stereometamaterials. We derive the elliptical eigenstates of a twisted stacked split-ring resonator, taking phase retardation into account. Through this approach, we obtain a powerful Jones matrix formalism which can be used to calculate the polarization rotation, ellipticity, and circular dichroism of transmitted waves through stereometamaterials at any incident polarization. Our experimental measurements agree well with our model.Comment: 10 pages, 3 figures, Theory and experimen

    Pulsar-black hole binaries: prospects for new gravity tests with future radio telescopes

    Full text link
    The anticipated discovery of a pulsar in orbit with a black hole is expected to provide a unique laboratory for black hole physics and gravity. In this context, the next generation of radio telescopes, like the Five-hundred-metre Aperture Spherical radio Telescope (FAST) and the Square Kilometre Array (SKA), with their unprecedented sensitivity, will play a key role. In this paper, we investigate the capability of future radio telescopes to probe the spacetime of a black hole and test gravity theories, by timing a pulsar orbiting a stellar-mass-black-hole (SBH). Based on mock data simulations, we show that a few years of timing observations of a sufficiently compact pulsar-SBH (PSR-SBH) system with future radio telescopes would allow precise measurements of the black hole mass and spin. A measurement precision of one per cent can be expected for the spin. Measuring the quadrupole moment of the black hole, needed to test GR's no-hair theorem, requires extreme system configurations with compact orbits and a large SBH mass. Additionally, we show that a PSR-SBH system can lead to greatly improved constraints on alternative gravity theories even if they predict black holes (practically) identical to GR's. This is demonstrated for a specific class of scalar-tensor theories. Finally, we investigate the requirements for searching for PSR-SBH systems. It is shown that the high sensitivity of the next generation of radio telescopes is key for discovering compact PSR-SBH systems, as it will allow for sufficiently short survey integration times.Comment: 20 pages, 11 figures, 1 table, accepted for publication in MNRA

    Cross-sectional and plan-view cathodoluminescence of GaN partially coalesced above a nanocolumn array

    Get PDF
    The optical properties of GaN layers coalesced above an array of nanocolumns have important consequences for advanced optoelectronic devices. GaN nanocolumns coalesced using a nanoscale epitaxial overgrowth technique have been investigated by high resolution cathodoluminescence (CL) hyperspectral imaging. Plan-view microscopy reveals partially coalesced GaN layers with a sub-μm scale domain structure and distinct grain boundaries, which is mapped using CL spectroscopy showing high strain at the grain boundaries. Cross-sectional areas spanning the partially coalesced GaN and underlying nanocolumns are mapped using CL, revealing that the GaN bandedge peak shifts by about 25 meV across the partially coalesced layer of ∼2 μm thick. The GaN above the nanocolumns remains under tensile strain, probably due to Si out-diffusion from the mask or substrate. The cross-sectional data show how this strain is reduced towards the surface of the partially coalesced layer, possibly due to misalignment between adjacent partially coalesced regions

    Two Higgs Bi-doublet Model With Spontaneous P and CP Violation and Decoupling Limit to Two Higgs Doublet Model

    Full text link
    The two Higgs bi-doublet left-right symmetric model (2HBDM) as a simple extension of the minimal left-right symmetric model with a single Higgs bi-doublet is motivated to realize both spontaneous P and CP violation while consistent with the low energy phenomenology without significant fine tuning. By carefully investigating the Higgs potential of the model, we find that sizable CP-violating phases are allowed after the spontaneous symmetry breaking. The mass spectra of the extra scalars in the 2HBDM are significantly different from the ones in the minimal left-right symmetric model. In particular, we demonstrate in the decoupling limit when the right-handed gauge symmetry breaking scale is much higher than the electroweak scale, the 2HBDM decouples into general two Higgs doublet model (2HDM) with spontaneous CP violation and has rich induced sources of CP violation. We show that in the decoupling limit, it contains extra light Higgs bosons with masses around electroweak scale, which can be directly searched at the ongoing LHC and future ILC experiments.Comment: 19 pages, discussions on fine-tuning problem added. Version to appear in Phys.Rev.

    Robustness of the far-field response of nonlocal plasmonic ensembles

    Get PDF
    Contrary to classical predictions, the optical response of few-nm plasmonic particles depends on particle size due to effects such as nonlocality and electron spill-out. Ensembles of such nanoparticles (NPs) are therefore expected to exhibit a nonclassical inhomogeneous spectral broadening due to size distribution. For a normal distribution of free-electron NPs, and within the simple nonlocal Hydrodynamic Drude Model (HDM), both the nonlocal blueshift and the plasmon linewidth are shown to be considerably affected by ensemble averaging. Size-variance effects tend however to conceal nonlocality to a lesser extent when the homogeneous size-dependent broadening of individual NPs is taken into account, either through a local size-dependent damping (SDD) model or through the Generalized Nonlocal Optical Response (GNOR) theory. The role of ensemble averaging is further explored in realistic distributions of noble-metal NPs, as encountered in experiments, while an analytical expression to evaluate the importance of inhomogeneous broadening through measurable quantities is developed. Our findings are independent of the specific nonclassical theory used, thus providing important insight into a large range of experiments on nanoscale and quantum plasmonics
    • …
    corecore