153 research outputs found

    Stabilization of switched neural networks with time-varying delay via bumpless transfer control

    Get PDF
    This paper investigates the stabilization of switched neural networks with time-varying delay. In order to overcome the drawback that the classical switching state feedback controller may generate the bumps at switching time, a new switching feedback controller which can smooth effectively the bumps is proposed. According to mode-dependent average dwell time, new exponential stabilization results are deduced for switched neural networks under the proposed feedback controller. Based on a simple corollary, the procedures which are used to calculate the feedback control gain matrices are also obtained. Two simple numerical examples are employed to demonstrate the effectiveness of the proposed results.Peer reviewe

    Chaotic Behaviors of Symbolic Dynamics about Rule 58 in Cellular Automata

    Get PDF
    The complex dynamical behaviors of rule 58 in cellular automata are investigated from the viewpoint of symbolic dynamics. The rule is Bernoulli στ-shift rule, which is members of Wolfram’s class II, and it was said to be simple as periodic before. It is worthwhile to study dynamical behaviors of rule 58 and whether it possesses chaotic attractors or not. It is shown that there exist two Bernoulli-measure attractors of rule 58. The dynamical properties of topological entropy and topological mixing of rule 58 are exploited on these two subsystems. According to corresponding strongly connected graph of transition matrices of determinative block systems, we divide determinative block systems into two subsets. In addition, it is shown that rule 58 possesses rich and complicated dynamical behaviors in the space of bi-infinite sequences. Furthermore, we prove that four rules of global equivalence class ε43 of CA are topologically conjugate. We use diagrams to explain the attractors of rule 58, where characteristic function is used to describe that some points fall into Bernoulli-shift map after several times iterations, and we find that these attractors are not global attractors. The Lameray diagram is used to show clearly the iterative process of an attractor

    How to Extend 3D GBSM Model to RIS Cascade Channel with Non-ideal Phase Modulation?

    Full text link
    Reconfigurable intelligent surface (RIS) is seen as a promising technology for next-generation wireless communications, and channel modeling is the key to RIS research. However, traditional model frameworks only support Tx-Rx channel modeling. In this letter, a RIS cascade channel modeling method based on a geometry-based stochastic model (GBSM) is proposed, which follows a 3GPP standardized modeling framework. The main improvements come from two aspects. One is to consider the non-ideal phase modulation of the RIS element, so as to accurately include its phase modulation characteristic. The other is the Tx-RIS-Rx cascade channel generation method based on the RIS radiation pattern. Thus, the conventional Tx-Rx channel model is easily expanded to RIS propagation environments. The differences between the proposed cascade channel model and the channel model with ideal phase modulation are investigated. The simulation results show that the proposed model can better reflect the dependence of RIS on angle and polarization.Comment: 5 pages, 5 figure

    The Antidepressant Effect of Angelica sinensis

    Get PDF
    Angelica sinensis (AS), a traditional Chinese herbal medicine, has pharmaceutical effects on menstrual illness, cerebrovascular diseases, cardiovascular diseases, and cognitive impairments. However, until recently, few studies had explored its antidepressant effect. The current study attempts to investigate the effect of AS extracts on chronic unpredictable mild stress- (CUMS-) induced depression in rats. Male SD rats were exposed to a CUMS-inducing procedure for 5 weeks, resulting in rodent depressive behaviors that included reduced sucrose consumption and lessened sucrose preference ratios in sucrose preference test, prolonged immobility times and decreased struggling time in force swim test, and decreased locomotor activity in open field test. Moreover, the expression of brain derived neurotrophic factor (BDNF) and the phosphorylation of cAMP-response element binding protein (CREB) and extracellular signal-regulated protein kinase (ERK 1/2) were markedly decreased in the hippocampus in depressed rats. However, chronically treating the depressed rats with AS (1 g/kg) normalized their depression-related behaviors and molecular profiles. In conclusion, in the present study, we show that AS extracts exerted antidepressant effects that were mediated by the BDNF signaling pathway: in AS-treated depressed rats, the expression of the BDNF protein and the phosphorylation of its downstream targets (ERK 1/2, CREB) were upregulated in the hippocampus

    Effective Removal of Sulfanilic Acid From Water Using a Low-Pressure Electrochemical RuO2-TiO2@Ti/PVDF Composite Membrane

    Get PDF
    Removal of sulfanilic acid (SA) from water is an urgent but still challenging task. Herein, we developed a low pressure electrochemical membrane filtration (EMF) system for SA decontamination using RuO2-TiO2@Ti/PVDF composite membrane to serve as not only a filter but also an anode. Results showed that efficient removal of SA was achieved in this EMF system. At a charging voltage of 1.5 V and a electrolyte concentration of 15 mM, flow-through operation with a hydraulic retention time (HRT) of 2 h led to a high SA removal efficiency (80.4%), as expected from the improved contact reaction of this compound with ROS present at the anode surface. Cyclic voltammetry (CV) analysis indicated that the direct anodic oxidation played a minor role in SA degradation. Electron spin resonance (ESR) spectra demonstrated the production of •OH in the EMF system. Compared to the cathodic polarization, anodic generated ROS was more likely responsible for SA removal. Scavenging tests suggested that adsorbed •OH on the anode (>•OH) played a dominant role in SA degradation, while O2•- was an important intermediate oxidant which mediated the production of •OH. The calculated mineralization current efficiency (MCE) of the flow-through operated system 29.3% with this value much higher than that of the flow-by mode (5.1%). As a consequence, flow-through operation contributed to efficient oxidation of SA toward CO2 and nontoxic carboxylic acids accounting for 71.2% of initial C. These results demonstrate the potential of the EMF system to be used as an effective technology for water decontamination

    The poly(ADP-ribosyl)ation of BRD4 mediated by PARP1 promoted pathological cardiac hypertrophy

    Get PDF
    The bromodomain and extraterminal (BET) family member BRD4 is pivotal in the pathogenesis of cardiac hypertrophy. BRD4 induces hypertrophic gene expression by binding to the acetylated chromatin, facilitating the phosphorylation of RNA polymerases II (Pol II) and leading to transcription elongation. The present study identified a novel post-translational modification of BRD4: poly(ADP-ribosyl)ation (PARylation), that was mediated by poly(ADP-ribose)polymerase-1 (PARP1) in cardiac hypertrophy. BRD4 silencing or BET inhibitors JQ1 and MS417 prevented cardiac hypertrophic responses induced by isoproterenol (ISO), whereas overexpression of BRD4 promoted cardiac hypertrophy, confirming the critical role of BRD4 in pathological cardiac hypertrophy. PARP1 was activated in ISO-induced cardiac hypertrophy and facilitated the development of cardiac hypertrophy. BRD4 was involved in the prohypertrophic effect of PARP1, as implied by the observations that BRD4 inhibition or silencing reversed PARP1-induced hypertrophic responses, and that BRD4 overexpression suppressed the anti-hypertrophic effect of PARP1 inhibitors. Interactions of BRD4 and PARP1 were observed by co-immunoprecipitation and immunofluorescence. PARylation of BRD4 induced by PARP1 was investigated by PARylation assays. In response to hypertrophic stimuli like ISO, PARylation level of BRD4 was elevated, along with enhanced interactions between BRD4 and PARP1. By investigating the PARylation of truncation mutants of BRD4, the C-terminal domain (CTD) was identified as the PARylation modification sites of BRD4. PARylation of BRD4 facilitated its binding to the transcription start sites (TSS) of hypertrophic genes, resulting in enhanced phosphorylation of RNA Pol II and transcription activation of hypertrophic genes. The present findings suggest that strategies targeting inhibition of PARP1-BRD4 might have therapeutic potential for pathological cardiac hypertrophy

    Research Progress in Oxidation Stability of Antarctic Krill (Euphausia superba) Oil and Review of Methods for Its Control

    Get PDF
    Antarctic krill oil is rich in phospholipid eicosapentaenoic acid and docosahexaenoic acid with high bioavailability. It is a high-quality source of ω-3 fatty acids and is a potential substitute for fish oil. However, it is subject to oxidative deterioration, restricting its deep processing and health benefits. The mechanism of oil oxidation, the endogenous and exogenous factors affecting the oxidative stability of Antarctic krill oil including fatty acid composition, lipid composition, endogenous antioxidants (astaxanthin and tocopherol), temperature, oxygen and light, and the methods to control the oxidative stability of Antarctic krill oil including adding antioxidants and microencapsulation are reviewed in this paper. We anticipate that this review will provide a theoretical reference for in-depth research on the high-value utilization of Antarctic krill oil resources and the control of phospholipid oxidative stability
    • …
    corecore