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Abstract

This paper investigates the stabilization of switched neural networks with
time-varying delay. In order to overcome the drawback that the classical switch-
ing state feedback controller may generate the bumps at switching time, a
new switching feedback controller which can smooth effectively the bumps is
proposed. According to mode-dependent average dwell time, new exponential
stabilization results are deduced for switched neural networks under the pro-
posed feedback controller. Based on a simple corollary, the procedures which
are used to calculate the feedback control gain matrices are also obtained. Two
simple numerical examples are employed to demonstrate the effectiveness of
the proposed results.
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1 INTRODUCTION

1.1 Background and research status
Neural networks, which are used to solve many practi-
cal problems and show perfectly intelligent features, have
been applied to many fields such as pattern recognition,
intelligent robots, automatic control, predictive estima-
tion, biology, medicine, economics and so on. Their supe-
riorities include self-learning function, associative storage
function and the excellent ability to find the optimal
solution rapidly. As we have seen, in the real applica-
tions, neural networks are usually required to have the
desired dynamic behavior. This implies that the dynamic
characteristic of neural networks is a crucial research
focus. Stability, which represents the performance that the
initial deviation state restores to the orginal equilibrium
state after the vanishing of disturbance, is the basic struc-
tural characteristic of dynamical systems. Generally speak-
ing, unstable systems does not have regulating ability and
are not available for applications. For neural networks,
stability is also the basic requirement to guarantee the nor-
mal work of neural network circuits. Therefore, stability is
the most essential and significant issue in the analysis and
design of neural networks.

Up to now, the stability of neural networks has been
extensively studied and many novel stability results for
neural networks with or without time delay have been pro-
posed via many innovative approaches and effective tools.
For example, based on the dynamic delay interval method,
the asymptotical stability results of neural networks with
two delay components are proposed in [1]. According
to the relaxed Lyapunov-Krasovskii functional, less con-
servative stability criteria for neural networks with dis-
tributed delay are presented in [2]. By developing a new
integral inequality, the delay-dependent stability criteria
in terms of linear matrix inequalities (LMIs) for neu-
ral networks with time-varying delay are derived in [3].
For unstable neural networks, we should employ some
effective control strategies to stabilize them, which is
called as the stabilization problem. As a typical control
method, feedback control, whose control input is per-
sistent, is widely used for the stabilization of unstable
neural networks. For instance, by using Wirtinger-type
integral inequalities, the stabilization of neural networks
time-varying delay are investigated in [4,5]. Due to
quadratic linear combination and double-integral inequal-

ity, Z Wang et al. design state-dependent switching control
law to realize the stabilization of delayed memristive neu-
ral networks [6]. On the basis of Lyapunov functional
method, the stabilization results for memristive neural
networks with time-varying delay are presented in [7].

Switched neural networks are a special category of
switched systems which include several alternative neu-
ral networks and a switching signal produced by switching
device. In contrast to ordinary neural networks, switched
neural networks may switch from one mode to another one
at switching time under switching signal. Some undesired
dynamic behaviors may be generated by the switching, even
if the dynamic behaviors of all alternative neural networks
satisfy the practical engineering requirements. This indi-
cates that the investigation of switched neural networks
is more complicated because both switching signal and
subsystems must be concerned. Many effective research
methodsofswitchedsystems,suchasintegral-typemultiple
Lyapunov functions [8], average dwell time [9], variational
method [10], discretized multiple Lyapunov-Krasovskii
functional [11], are also valid for switched neural networks.
Up to now, the stabilization problem for switched neural
networks by feedback control technique has been well dis-
cussed.In[12],thedelay-independentanddelay-dependent
mean square exponential stabilization results for stochas-
tic neural networks with Markovian switching are pro-
posed.TheH∞ controller isdesignedforuncertainswitched
neural networks [13]. In [14], the researchers present a
memoryless state feedback controller to stabilize stochastic
Cohen-Grossbery neural networks with mode-dependent
mixed time delay and Markovian switching. The state
feedback controller is designed in [15] to realize the
finite-time stabilization of uncertain switched neural net-
works with time-varying delay. The robust finite-time H∞
control problem is solved in [16] for uncertain neural-
type switched neural networks with distributed delay.

The multi-controller is widely employed to stabilize
unstable switched systems. As we know, the switching
among different controllers may generate the transient
which causes the resonance effect that is harmful and
even dangerous in some circumstances [17]. For example,
in aero-engine control systems, the oscillation of control
input may directly destroy the attitude stability of air-
craft. Therefore, the smooth transition of control signal,
which is called as bumpless transfer, must be considered
in many real applications. A bumpless transfer controller
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for discrete-time linear switched systems is presented in
[18,19] by distributing the bumps over some samples. CS
Cheong deduces a bumpless transfer technique for adap-
tive switching control [20]. The dynamic bumpless transfer
compensator design is proposed in [21] for uncertain lin-
ear switched systems. The anti-windup bumpless transfer
control structure is presented in [22] for smooth switch-
ing control. The asynchronous bumpless transfer, which
is divided into robust performance bumpless transfer and
robust control bumpless transfer, is dealt with in [23] for
linear switched systems in which the switching signal is
not consistent with the switching process of controllers.
The bumpless transfer problem for switched systems with
partial actuator failures is addressed in [24] to guarantee
smooth output transition. However, up to now, there is no
bumpless transfer result for nonlinear switched systems
with time delay.

1.2 Motivations
The bumps of control input may interfere the neural net-
work circuit, which yields that the smooth transition of
control input is a significant research topic. Unfortunately,
until now this topic is still not addressed for switched neu-
ral networks. For example, in [15] the researchers intro-
duce the switching state feedback controller as u(t) =
K𝜎(t)x(t), which implies that the control input switches
instantaneously from K𝜎(tk−1)x (tk) to K𝜎(tk)x (tk) at switching
time tk. Due to the fact that Ki ≠ Kj, Kix may not equal
to Kjx for some x. Therefore, the dump may be generated
by this controller at switching time, which illustrates that
the classical switching feedback controllers cannot work
for the case that the smooth control input is preferred.

The existing results on bumpless transfer merely focus
on linear switched systems [18–24]. As we know, the non-
linearity and the delay may severely affect the dynamic
behavior, which implies that these results presented in
[18–24] cannot be applied directly to switched neural net-
works with time delay. Therefore, it is necessary to propose
new switching feedback feedback controller to handle the
bumpless transfer control for delayed switched neural net-
works.

1.3 Our work and contributions
Motivated by the above discussion, this paper copes
with the stabilization of switched neural networks with
time-varying delay and bumpless transfer control. A novel
switching state feedback controller, which is smooth at
switching time, is employed. Under mode-dependent aver-
age dwell time (MDADT), new stabilization results, which
ensure the closed-loop system is exponentially stable, are
obtained. Based on a simple corollary, the procedures

which are used to solve the feedback control gain matri-
ces are also presented. The effectiveness of the proposed
results is demonstrated by numerical examples.

The main contributions of this paper are listed as fol-
lows. First, the bumpless transfer of switched neural net-
works with time-varying delay is first coped with and
a novel switching state feedback controller is designed.
Second, novel stabilization results, which can guarantee
the smooth transitions of control input, are presented.
Last, under a simple corollary, the procedures for calculat-
ing the control gain matrices are also proposed.

Notation. N and R are the set of nonnegative integers and
real numbers, respectively. Rn is n-dimensional real vector
space, M = {1, 2, … ,m} is the index set of subsystems and
Vp(t) is the Lyapunov function of p-th subsystem. 𝜎 is the
switching signal taking value in index set M. In this paper,
we always assume that 𝜎(t) is right-continuous. Namely,
𝜎(t) = 𝜎

(
t+
)
. If 𝜎(t) ≠ 𝜎 (t−), we say time t is a switch-

ing time. The k-th switching time is denoted as tk. We also
assume that there exist positive constants Tmin and Tmax
such that Tmin ≤ tk + 1 − tk ≤ Tmax for k ∈ N. 𝜆max(·)
and 𝜆min(·) denote the maximum and the minimum eigen-
value of corresponding matrix, respectively. For symmetric
matrices X1 and X2, X1 ≤ X2 is equivalent to that X1 − X2
is a symmetric non-positive definite matrix, || · || denotes
the Euclidean norm of corresponding vector.

2 PRELIMINARIES

In this paper, we consider the switched neural networks
with time delay as follows:{ .x(t) = −A𝜎(t)x(t) + B𝜎(t)𝑓𝜎(t)(x(t − 𝜏(t))) + u(t),

x (t0 + s) = 𝜙(s), s ∈ [−𝜏, 0] , (1)

where x(t) ∈ Rn is the state vector, 𝑓p(𝑦) =(
𝑓p1 (𝑦1) , … , 𝑓pn (𝑦n)

)
is a known activation function, 𝜏(t)

is the time-varying delay such that 0 < 𝜏(t) ≤ 𝜏, Ap =
diag

(
ap

1, … , ap
n
)
, p ∈ M, is a diagonal matrix with posi-

tive entries, which denotes the decay rates of the neurons,
Bp =

(
bp
𝑗l

)
n×n

is the delayed connection weight matrix,
𝜙(s) is a bounded continuous function, u(t) is the control
input.

In order to stabilize the system (1), we can employ the
following classical switching state feedback controller [15]

u(t) = K𝜎(t)x(t), (2)

where Kp, p ∈ M, is the control gain matrix. Then, we
can deduce the stabilization results for the system (1) with
the feedback controller (2) via some typical stability or
stabilization results for switched systems (see [15,25]). A
distinctive feature of the controller (2) is the occurrence
of bumps because the control input K𝜎(tk−1)x (tk) switches
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instantaneously to the control input K𝜎(tk)x (tk) at switch-
ing time tk. In many practical applications, these dumps
are undesired because they cannot satisfy the rigorous
requirements of specifications and may generate some
negative consequences. Therefore, the switching among
sub-controllers is expected to be smooth to eliminate the
bumps.

To achieve this purpose, we hope the transition can
switch from K𝜎(tk−1)x to K𝜎(tk)x smoothly. Intuitively, a sim-
ple method is to smooth the "jumps" of control input over
some sub-interval of the activated time interval [tk, tk+1).
For simplicity, in this paper we introduce the following
switching state feedback controller

u(t) =

⎧⎪⎪⎨⎪⎪⎩

(
t−tk

𝜃𝜎(tk)Tk
K𝜎(tk) +

(
1 − t−tk

𝜃𝜎(tk)Tk

)
×K𝜎(tk−1)

)
x(t), t ∈

[
tk, tk + 𝜃𝜎(tk)Tk

)
,

K𝜎(tk)x(t), t ∈
[

tk + 𝜃𝜎(tk)Tk, tk+1

)
,

(3)

where 𝜃p ∈ (0, 1), Tk = tk + 1 − tk. The feedback control
gain on time interval

[
tk, tk + 𝜃𝜎(tk)Tk

)
is time-varying and

is the linear combination of K𝜎(tk−1) and K𝜎(tk). The smooth
transition from K𝜎(tk−1)x to K𝜎(tk)x is enabled on time inter-

val
[

tk, tk + 𝜃𝜎(tk)Tk

)
. Obviously, u(t) is continuous on time

interval [tk, tk+1). Moreover, we have from (3) that

u (tk) = K𝜎(tk−1)x (tk) = K𝜎(tk−1)x
(

t−k
)
= u

(
t−k
)
,

which is smooth and indicates that there is no bump
at switching time tk. For convenience, we say that[

tk, tk + 𝜃𝜎(tk)Tk

)
is the transitional time interval, 𝜃𝜎(tk)Tk

is the transitional time length and 𝜃p is the transitional
time rate of the p-th subsystem, respectively. Under the
controller (3), the closed-loop system of (1) can be written
as ⎧⎪⎪⎪⎨⎪⎪⎪⎩

.x(t) =
(
−A𝜎(tk) +

Γ1
k(t)K𝜎(tk)+Γ

2
k(t)K𝜎(tk−1)

𝜃𝜎(tk)Tk

)
×x(t) + B𝜎(tk)𝑓𝜎(tk)(x(t − 𝜏(t))), t ∈

[
tk, t̃k

)
,

.x(t) =
(
−A𝜎(tk) + K𝜎(tk)

)
x(t)

+B𝜎(tk)𝑓𝜎(tk)(x(t − 𝜏(t))), t ∈
[
t̃k, tk+1

)
,

x (t0 + s) = 𝜙(s), s ∈ [−𝜏, 0] ,

(4)

where t̃k = tk + 𝜃𝜎(tk)Tk, Γ1
k(t) = t − tk, Γ2

k(t) = t̃k − t.
As usual, we give the following assumptions.

(A1) There exists positive constant l𝑗p such that
𝑓p𝑗(𝑦1)−𝑓p𝑗(𝑦2)

𝑦1−𝑦2
≤ l𝑗p for any p ∈ M, j = 1, 2, … ,n,

y1, y2 ∈ R and y1 ≠ y2.
(A2) fpj(0) = 0 for any p ∈ M and j = 1, 2, … ,n.

For convenience, we denote Lp = diag(l1
p, l2

p, … , ln
p).

Similar to [14,26], we give the definitions of stability
and stabilization with bumpless transfer for the switched
neural network (1).

Definition 1. The zero solution of switched neural
network (1), where u(t) = 0, is said to be exponentially
stable if there exist positive constants 𝛾 and 𝜒 such that

||x(t)|| ≤ 𝜒||𝜙||𝜏e−𝛾(t−t0), t ≥ t0,

where ||𝜙||𝜏 = sup−𝜏≤s≤0||𝜙(s)||.
Definition 2. The switched neural network (1) is said
to be exponentially stabilizable with bumpless transfer
under the switching state feedback controller (3), if the
closed-loop system (4) is exponentially stable.

Definition 3 ([27]). For a switching signal 𝜎 (t) and
T ≥ t ≥ t0, let N𝜎p (T, t) be the switching numbers
that the p-th subsystem is activated over the time inter-
val [t,T) and Tp (T, t) denotes the total running time of
the p-th subsystem over time interval [t,T). We say that
𝜎 (t) has a mode-dependent dwell average time 𝜏ap, if
there exist positive numbers N0p and 𝜏ap such that

N𝜎p (T, t) ≤ N0p +
Tp (T, t)

𝜏ap
,∀T ≥ t ≥ t0.

Lemma 1. Let nonnegative piecewise continuous func-
tion y(t), t ∈ [t0 − 𝜏,∞), such that{ D+𝑦(t) ≤ a𝑦(t) + b𝑦(t − 𝜏(t)), t ∈ [tk, tk+1) ,

𝑦 (tk+1) ≤ ck+1𝑦
(

t−k+1

)
, k ≥ 0,

(5)

where b > 0, a > −b, ck ≥ 1. Then, we have

𝑦(t) ≤ e�̂�𝜏
k∏

i=0
ci�̄� (t0) e�̂�(t−t0), t ∈ [tk, tk+1), (6)

where c0 = 1, �̄� (t0) = sups∈[−𝜏,0]𝑦 (t0 + s), �̂� = a + b.

Proof. Obviously, for t ∈ [t0 − 𝜏, t0), we have

𝑦(t) ≤ ̄𝑦 (t0) ≤ e�̂�𝜏c0�̄� (t0) e�̂�(t−t0).

If (6) is not true for k = 0, there must exist t̂1 ∈ [t0, t1)
such that⎧⎪⎨⎪⎩

𝑦
(

t̂1
)
= e�̂�𝜏c0�̄� (t0) e�̂�(t̂1−t0),

𝑦(t) ≤ e�̂�𝜏c0�̄� (t0) e�̂�(t−t0), t ∈
[
t0, t̂1

]
,

D+𝑦
(

t̂1
)
> e�̂�𝜏 �̂�c0�̄� (t0) e�̂�(t̂1−t0).

(7)

Based on (5) and (7), we deduce

D+𝑦
(

t̂1
)
≤a𝑦

(
t̂1
)
+ b𝑦

(
t̂1 − 𝜏

(
t̂1
))

≤ae�̂�𝜏c0�̄� (t0) e�̂�(t̂1−t0)

+ be�̂�𝜏c0�̄� (t0) e�̂�(t̂1−t0−𝜏(t̂1))

=
(

a + be−�̂�𝜏(t̂1)
)

e�̂�𝜏c0�̄� (t0) e�̂�(t̂1−t0)

≤�̂�e�̂�𝜏c0�̄� (t0) e�̂�(t̂1−t0).
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The above inequality contradicts (7), which indicates
(6) holds for k = 0. Then, due to (5) we have

𝑦 (t1) ≤ c1𝑦
(

t−1
)
= e�̂�𝜏c0c1�̄� (t0) e�̂�(t1−t0).

If (6) is not satisfied for k = 1, there must exist some
t̂2 ∈ [t1, t2) such that⎧⎪⎨⎪⎩

𝑦
(

t̂2
)
= e�̂�𝜏c0c1�̄� (t0) e�̂�(t̂2−t0),

𝑦(t) ≤ e�̂�𝜏c0c1�̄� (t0) e�̂�(t−t0), t ∈
[
t1, t̂2

]
,

D+𝑦
(

t̂2
)
> �̂�e�̂�𝜏c0c1�̄� (t0) e�̂�(t̂2−t0).

(8)

If t̂2 − 𝜏
(

t̂2
)
∈ [t1, t̂2], we have

𝑦
(

t̂2 − 𝜏
(

t̂2
))

≤ e�̂�𝜏c0c1�̄� (t0) e�̂�(t̂2−t0−𝜏(t̂2)). (9)

If t̂2 − 𝜏
(

t̂2
)
< t1, we have

𝑦
(

t̂2 − 𝜏
(

t̂2
))

≤ c0e�̂�𝜏 �̄� (t0) e�̂�(t̂2−t0−𝜏(t̂2))

≤ e�̂�𝜏c0c1�̄� (t0) e�̂�(t̂2−t0−𝜏(t̂2)). (10)

According to (5), (8), (9) and (10), we obtain

D+𝑦
(

t̂2
)
≤
(

a + be−�̂�𝜏(t̂2)
)

e�̂�𝜏c0c1�̄� (t0) e�̂�(t̂2−t0)

≤�̂�e�̂�𝜏c0c1�̄� (t0) e�̂�(t̂2−t0),

which contradicts (8). Therefore, (6) holds for k = 1.
Under mathematical induction, we know that (6) is
true for all k ≥ 0.

3 MAIN RESULTS

In this section, according to MDADT we present the stabi-
lization results for the system (1) under the switching state
feedback controller (3).

Theorem 1. Assume that for any p ∈ M, there exist
symmetric positive definite matrix Pp, positive definite
matrix Qp, positive constants 𝜇p > 1, 𝛼p, 𝛽p, 𝜉p, �̃�p, �̄�p,
constant �̃�p > −𝛽p, such that:

(i)
⎧⎪⎨⎪⎩
−AT

p Pp − PpAp − 𝜇−1
q

(
QT

q + Qq
)

+ 𝜉−1
p PpBpBT

p Pp ≤ �̃�pPp, q ≠ p, q ∈ M,

− AT
p Pp − PpAp −

(
QT

p + Qp
)

+𝜉−1
p PpBpBT

p Pp ≤ −𝛼pPp;
(ii) 𝜉pLT

p Lp ≤ 𝛽pPp;
(iii) Pp ≤ 𝜇pPq, q ≠ p, q ∈ M;
(iv) �̄�p

(
1 − 0.5𝜃p

)
− 0.5�̃�p𝜃p −

ln𝜇p

𝜏ap
> 0;

(v)
{

�̃�p + 𝛽peΔ ≤ �̃�p,
−𝛼p + 𝛽peΔ ≤ −�̄�p;

where Δ = maxt≥t0

(∑
p∈M �̄�pTp (t − 𝜏, t)

)
. Then, the

system (1) is exponentially stabilizable under the con-
troller (3) with Kp = −P−1

p Qp.

Proof. For convenience, we denote 𝜌(k) = 𝜎 (tk), u0 =
1 and uk = 𝜇𝜎(tk) for k ≥ 1. We choose the candidate
Lyapunov fucntion as follows:

Vp(t) = xT(t)Ppx(t), p ∈ M. (11)

For t ∈
[
tk, t̃k

)
, we have

D+V𝜌(k)(t)

= xT(t)
(
−AT

𝜌(k)P𝜌(k) − P𝜌(k)A𝜌(k)

− t − tk

𝜃𝜌(k)Tk

(
QT

𝜌(k) + Q𝜌(k)

)
−
(

1 − t − tk

𝜃𝜌(k)Tk

)
×
(

QT
𝜌(k−1)P

−1
𝜌(k−1)P𝜌(k) + P𝜌(k)P−1

𝜌(k−1)Q𝜌(k−1)

))
x(t)

+ 𝑓T
𝜌(k) (x(t − 𝜏(t)))BT

𝜌(k)P𝜌(k)x(t)

+ xT(t)P𝜌(k)B𝜌(k)𝑓𝜌(k) (x(t − 𝜏(t)))

≤ xT(t)
(
−AT

𝜌(k)P𝜌(k) − P𝜌(k)A𝜌(k) −
t − tk

𝜃𝜌(k)Tk

×
(

QT
𝜌(k) + Q𝜌(k)

)
+ 𝜉−1

𝜌(k)P𝜌(k)B𝜌(k)BT
𝜌(k)P𝜌(k)

−
(

1 − t − tk

𝜃𝜌(k)Tk

)(
QT

𝜌(k−1)P
−1
𝜌(k−1)P𝜌(k)

+P𝜌(k)P−1
𝜌(k−1)Q𝜌(k−1)

))
x(t)

+ 𝜉𝜌(k)xT(t − 𝜏(t))LT
𝜌(k)L𝜌(k)x(t − 𝜏(t))

≤ xT(t)
(
−AT

𝜌(k)P𝜌(k) − P𝜌(k)A𝜌(k) −
t − tk

𝜃𝜌(k)Tk

×
(

QT
𝜌(k) + Q𝜌(k)

)
+ 𝜉−1

𝜌(k)P𝜌(k)B𝜌(k)BT
𝜌(k)P𝜌(k)

− u−1
k−1

(
1 − t − tk

𝜃𝜌(k)Tk

)(
QT

𝜌(k−1) + Q𝜌(k−1)

))
x(t)

+ 𝜉𝜌(k)xT(t − 𝜏(t))LT
𝜌(k)L𝜌(k)x(t − 𝜏(t)). (12)

By Condition (i), (12) can be continued as

D+V𝜌(k)(t)

≤
((

1 − t − tk

𝜃𝜌(k)Tk

)
�̃�𝜌(k) −

t − tk

𝜃𝜌(k)Tk
𝛼𝜌(k)

)
V𝜌(k)(t)

+ 𝛽𝜌(k)V𝜌(k)(t − 𝜏(t))

= �̂�𝜌(k)(t)V𝜌(k)(t) + 𝛽𝜌(k)V𝜌(k)(t − 𝜏(t)), (13)

where �̂�k(t) =
(

1 − t−tk
𝜃𝜌(k)Tk

)
�̃�𝜌(k) −

t−tk
𝜃𝜌(k)Tk

𝛼𝜌(k). Similarly,

for t ∈
[
t̃k, tk+1

)
, we have

D+V𝜌(k)(t) ≤ −𝛼𝜌(k)V𝜌(k)(t) + 𝛽𝜌(k)V𝜌(k)(t − 𝜏(t)). (14)

For t = tk + 1, we obtain

V𝜌(k+1)(tk+1) = xT(tk+1)P𝜌(k+1)x(tk+1)

≤ uk+1xT(t−k+1)P𝜌(k)x(t−k+1) = uk+1V𝜌(k)
(

t−k+1
)
. (15)
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We derive from (13), (14) and (15) that

⎧⎪⎨⎪⎩
D+V𝜌(k)(t)
≤ �̃�V𝜌(k)(t) + 𝛽V𝜌(k)(t − 𝜏(t)), t ∈ [tk, tk+1)
V𝜌(k+1)(tk+1) ≤ uk+1V𝜌(k)

(
t−k+1

)
, k ≥ 0,

(16)

where �̃� = maxp∈M
{
�̃�p
}

and 𝛽 = maxp∈M
{
𝛽p
}

.
According to Condition (iii) and (11), we know that

V𝜌(k)(t − 𝜏(t)) ≤ 𝜇V𝜌(l)(t − 𝜏(t)), (17)

where 𝜇 = maxp∈M
{
𝜇p
}

, l ={
0, if t − 𝜏(t) < t1,
h, if th ≤ t − 𝜏(t) < th+1, h ≥ 1. Denote V (t0 + s) =

V𝜌(0) (t0 + s). For any t ∈ [tk, tk+1), k ∈ N, we let
V(t) = V𝜌(k)(t). Under (16) and (17), we obtain{

D+V(t) ≤ �̃�V(t) + 𝛽𝜇V(t − 𝜏(t)), t ∈ [tk, tk+1) ,
V (tk+1) ≤ uk+1V

(
t−k+1

)
, k ≥ 0. (18)

Then, owing to Lemma 1, we derive that

V (t) ≤ e�̌�𝜏
k∏

i=0
uiV0e�̌�(t−t0), t ∈ [tk, tk+1) , (19)

where V0 = sups∈[−𝜏,0]V𝜌(0) (t0 + s), �̌� = �̃� + 𝛽𝜇.
Let k∗ be the smallest positive integer such that tk∗ −

𝜏 ≥ t1. For any t ∈ [tk, tk + 1), 0 ≤ k ≤ k∗ − 1, we have
from (19) that

⎧⎪⎪⎨⎪⎪⎩

V𝜌(k)(t) ≤ GV0
∏k

i=0
uie

∑k−1
i=0 𝜂iTi e∫

t
tk
�̆�k(s)ds

,

t ∈
[
tk, t̃k

)
,

V𝜌(k)(t) ≤ GV0
∏k

i=0
uie

∑k−1
i=0 𝜂iTi−𝜐kTk

e−�̄�𝜌(k)(t−t̃k), t ∈
[
t̃k, tk+1

)
,

(20)

where G = e(�̌�+maxi∈M{�̄�i})(tk∗−t0)+�̌�𝜏 , 𝜂i =
0.5𝜃𝜌(i)�̃�𝜌(i) − �̄�𝜌(i)

(
1 − 0.5𝜃𝜌(i)

)
, 𝜐i = 0.5𝜃𝜌(i)�̄�𝜌(i),

�̆�k(t) =
�̃�𝜌(k)(t̃k−t)−�̄�𝜌(k)(t−tk)

𝜃𝜌(k)Tk
.

It follows from (15) and (20) that

V𝜌(k∗) (tk∗ ) ≤ GV0

k∗∏
i=0

uie
∑k∗−1

i=0 𝜂iTi .

For t ∈
[
tk∗ , t̃k∗

)
, we claim that

V𝜌(k∗)(t) ≤ GV0

k∗∏
i=0

uie
∑k∗−1

i=0 𝜂iTi e
∫ t

t∗k
�̆�k∗ (s)ds

. (21)

If (21) is not satisfied, there must exist some t∗ ∈[
tk∗ , t̃k∗

)
such that

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

V𝜌(k∗)(t∗) = GV0
∏k∗

i=0
uie

∑k∗−1
i=0 𝜂iTi e

∫ t∗
t∗k

�̆�k∗ (s)ds
,

V𝜌(k∗)(t) ≤ GV0
∏k∗

i=0
uie

∑k∗−1
i=0 𝜂iTi e

∫ t
t∗k
�̆�k∗ (s)ds

,

t ∈ [tk∗ , t∗] ,
D+V𝜌(k∗)(t∗) > �̆�k∗ (t∗)GV0

∏k∗

i=0
uie

∑k∗−1
i=0 𝜂iTi×

e
∫ t∗

t∗k
�̆�k∗ (s)ds

,

(22)

When t∗ − 𝜏 (t∗) ≥ tk∗ , we have

V𝜌(k∗) (t∗ − 𝜏 (t∗))

≤ GV0

k∗∏
i=0

uie
∑k∗−1

i=0 𝜂iTi e�̃�𝜌(k∗)(t∗−tk∗ )e−�̃�𝜌(k∗)𝜏(t
∗)

≤ eΔV𝜌(k∗) (t∗) . (23)

When t∗ −𝜏 (t∗) ∈
[
tk∗−1 + 𝜃𝜌(k∗−1)Tk∗−1, tk∗

)
, we have

V𝜌(k∗) (t∗ − 𝜏 (t∗))

≤ uk∗V𝜌(k∗−1) (t∗ − 𝜏 (t∗))

≤ GV0

k∗∏
i=0

uie
∑k∗−2

i=0 𝜂iTi−𝜐k∗−1Tk∗−1×

e−�̄�𝜌(k∗−1)
(

t∗−𝜏(t∗)−
(

tk∗−1+𝜃𝜌(k∗−1)Tk∗−1

))
,

≤ GV0

k∗∏
i=0

uie
∑k∗−1

i=0 𝜂iTi e�̃�𝜌(k∗)(t∗−tk∗ )×

e�̄�𝜌(k∗−1)(tk∗−(t∗−𝜏(t∗)))e−�̃�𝜌(k∗)(t∗−tk∗ )

≤ eΔV𝜌(k∗) (t∗) . (24)

When t∗ − 𝜏 (t∗) ∈
[
tk∗−1, tk∗−1 + 𝜃𝜌(k∗−1)Tk∗−1

)
, we

have

V𝜌(k∗) (t∗ − 𝜏 (t∗))

≤ uk∗V𝜌(k∗−1) (t∗ − 𝜏 (t∗))

≤ GV0

k∗∏
i=0

uie
∑k∗−2

i=0 𝜂iTi e�̃�𝜌(k∗−1)(t∗−𝜏(t∗)−tk∗−1)

≤ GV0

k∗∏
i=0

uie
∑k∗−1

i=0 𝜂iTi e�̃�𝜌(k∗)(t∗−tk∗ )×

e−�̃�𝜌(k∗−1)
(

tk∗−1+𝜃𝜌(k∗−1)Tk∗−1−(t∗−𝜏(t∗))
)
×

e−�̃�𝜌(k∗)(t∗−tk∗ )e𝜈k∗−1Tk∗−1

≤ eΔV𝜌(k∗) (t∗) , (25)

where 𝜈i = �̄�𝜌(i)
(
1 − 𝜃𝜌(i)

)
.

When t − 𝜏 (t∗) ∈
[

tl + 𝜃𝜌(tl)Tl, tl+1

)
, l < k∗ − 1, we

have

LIU ET AL. 1013



V𝜌(k∗) (t ∗− 𝜏 (t ∗))

≤ uk∗V𝜌(l) (t∗ − 𝜏 (t∗))

≤ uk∗GV0

l∏
i=0

uie
∑l−1

i=0𝜂iTi−𝜐lTl

× e−�̄�𝜌(l)(t∗−𝜏(t∗)−(tl+(1−𝜃𝜌(l))Tl))

≤ GV0

k∗∏
i=0

uie
∑k∗−1

i=0 𝜂iTi e�̃�𝜌(k∗)(t∗−tk∗ )e−�̃�𝜌(k∗)(t∗−tk∗ )

×
k∗−1∏
i=l+1

u−1
i e−

∑k∗−1
i=l+1𝜂iTi e�̄�𝜌(l)(tl+1−(t∗−𝜏(t∗)))

≤ eΔV𝜌(k∗) (t∗) . (26)

When t − 𝜏 (t∗) ∈
[

tl, tl + 𝜃𝜌(tl)Tl

)
, l < k∗ − 1, we

have

V𝜌(k∗) (t∗ − 𝜏 (t∗))

≤ uk∗V𝜌(l) (t∗ − 𝜏 (t∗))

≤ uk∗GV0

l−1∏
i=0

uie
∑l−1

i=0𝜂iTi e�̃�𝜌(l)(t∗−𝜏(t∗)−tl)

≤ GV0

k∗∏
i=0

uie
∑k∗−1

i=0 𝜂iTi e�̃�𝜌(k∗)(t∗−tk∗ )e−�̃�𝜌(k∗)(t∗−tk∗ )

×
k∗−1∏
i=l+1

u−1
i e−

∑k∗−1
i=l 𝜂iTi e�̃�𝜌(l)(t∗−𝜏(t∗)−tl)

≤ eΔV𝜌(k∗) (t∗) . (27)

It follows from (13), (24)-(27) that

D+V𝜌(k∗) (t∗)

≤ �̂�𝜌(k∗) (t∗)V𝜌(k∗) (t∗) + 𝛽𝜌(k∗)eΔV𝜌(k∗) (t∗)

=
(

t̃k∗ − t∗

𝜃𝜌(k)Tk∗

(
�̃�𝜌(k∗) + 𝛽𝜌(k∗)eΔ

)
+ t∗ − tk∗

𝜃𝜌(k∗)Tk∗

(
−𝛼𝜌(k∗) + 𝛽𝜌(k∗)eΔ

))
V𝜌(k∗) (t∗)

≤�̆�k∗ (t∗)GV0

k∗∏
i=0

uie
∑k∗−1

i=0 𝜂iTi e
∫ t∗

t∗k
�̆�k∗ (s)ds

,

which contradicts (22). Therefore, the first inequality
in (20) is true for k = k∗.

Similarly, we can obtain from Condition (i) that the
second inequality in (20) is also satisfied for k = k∗.
Therefore, (20) holds for k = k∗. Then, under math-
ematical induction, we know that (20) is true for any
k ≥ 0.

In addition, we can obtain

k∏
i=0

uie

k∑
i=0

𝜂iTi

≤
∏
p∈M

𝜇
N𝜎p(tk+1,t0)
p e

−
∑

p∈M
𝜀pTp(tk+1,t0)

≤
∏
p∈M

𝜇
N0p
p e

−
∑

p∈M

(
𝜀p−

ln𝜇p
𝜏ap

)
Tp(tk+1,t0)

(28)

where 𝜀p =
(
1 − 0.5𝜃p

)
�̄�p −0.5𝜃p�̃�p. In the light of (20)

and (28), we get for t ∈ [tk, tk+1) that

V𝜌(k)(t)

≤ GV0
∏
p∈M

𝜇
N0p
p e

−
∑

p∈M

(
𝜀p−

ln𝜇p
𝜏ap

)
Tp(t,t0)

× uke(maxp∈M{�̄�p}+maxp∈M{�̃�p})(t−tk)

≤ GG1V0
∏
p∈M

𝜇
N0p
p e

−min
p∈M

{
𝜀p−

ln𝜇p
𝜏ap

}
(t−t0)

,

where G1 = maxp∈M
{
𝜇p
}

e(maxp∈M{�̄�p}+maxp∈M{�̃�p})Tmax .
By (11), the above inequality can be continued as

||x(t)|| ≤
√√√√√GG1maxp∈M

{
𝜆max

(
Pp
)}

min
p∈M

{
𝜆minPp

} ∏
p∈M

𝜇
0.5N0p
p ×

||𝜙||𝜏e
−0.5min

p∈M

{
𝜀p−

ln𝜇p
𝜏ap

}
(t−t0)

, (29)

which indicates that the system (1) can be exponen-
tially stabilized under the controller (3) with Kp =
P−1

p Qp, p ∈ M.

Remark 1. Because the feedback control input u(t) is
incompletely matched on

[
tk, t̃k

)
, the closed-loop sys-

tem (4) may be divergent on
[
tk, t̃k

)
. In addition, the

switching among different subsystems may also gener-
ate destabilizing effect. Obviously, these destabilizing
effect caused by smooth transition and switching must
be counteracted by the convergent effect existing on
time interval

[
t̃k, tk+1

)
, which requires that the acti-

vated time of feedback control u(t) = K𝜎(tk)x(t) must
be generous. According to Condition (iv) in Theorem
1, one can obtain that the activated time of feedback
control u(t) = K𝜎(tk)x(t) must satisfy

tk+1 − t̃k ≥

(
�̃�p − �̄�p +

2 ln𝜇p

𝜏ap

)
(tk+1 − tk)

�̄�p + �̃�p
.

Remark 2. In some cases, we should restrict that the
system (1) must be stabilized with a required conver-
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gent rate. If the convergent rate is specified as 0.5𝜀, we
can replace Condition (iv) in Theorem 1 with

�̄�p
(
1 − 0.5𝜃p

)
− 0.5�̃�p𝜃p −

ln𝜇p

𝜏ap
≥ 𝜀. (30)

It follows from Condition (i) in Theorem 1 that Pp is
dependent on Qq, q ≠ p, which implies that Kp is rele-
vant to Kq. Generally speaking, this relation may result in a
huge amount of calculation if M is big enough. Therefore,
we give the following corollary derived from Theorem 1.

Corollary 1. Assume that for any p ∈ M, there exist
symmetric positive definite matrix Pp, positive definite
matrix Qp, positive constants 𝜇p > 1, 𝛼p, 𝛽p, �̃�p, �̄�p,
constant �̃�p > −𝛽p, such that:

(i)
⎧⎪⎨⎪⎩
−AT

p Pp − PpAp + PpBpBT
p Pp ≤ �̃�pPp,

−AT
p Pp − PpAp −

(
QT

p + Qp
)
+ PpBpBT

p Pp
≤ −𝛼pPp;

(ii) LT
p Lp ≤ 𝛽pPp;

(iii) �̄�p
(
1 − 0.5𝜃p

)
− 0.5�̃�p𝜃p ≥ 𝜀 + ln𝜇p

𝜏ap
;

(iv) Pp ≤ 𝜇pPq, q ∈ M, q ≠ p;

where �̃�p = �̃�p + 𝛽peΔ and �̄�p ≤ 𝛼p − 𝛽peΔ with
Δ = maxt≥t0

(∑
p∈M �̄�pTp (t − 𝜏, t)

)
, respectively. Then,

the system (1) can be exponentially stabilized under the
controller (3) with Kp = −P−1

p Qp and convergent rate
0.5𝜀.

Remark 3. Although there exist some stabilization
results for switched systems via bumpless transfer con-
trol. However, these results are only valid for linear
switched systems without time delay. Obviously, the
switched neural network (1) is a nonlinear switched
system with time-varying delay. Therefore, the stabi-
lization results presented in [18,19,21–24] are invalid
for the system (1).

Remark 4. Based on Schur complement [28], the
matrix inequalities of Condition (i) in Theorem 1 and
Corollary 1 can be transformed into LMIs easily. For
example, the second matrix inequality of Condition (i)
of Corollary 1 can be rewritten as(

−AT
p Pp − PpAp −

(
Qp + QT

p
)
+ 𝛼pPp PpBp

BT
p Pp −I

)
≤ 0.

Obviously, the other matrix inequalities of the pro-
posed results are ordinary LMIs. Therefore, all the
matrix inequalities can be solved conveniently by the
LMI toolbox of Matlab.

It is obvious that Pp is only dependent on Qp, which indi-
cates the convenience for finding control gain matrices.

Based on Corollary 1, for switching signal 𝜎(t) and required
convergent rate 0.5𝜀, the control gain matrix Kp can be
obtained by the following procedures.

1. Obtain the MDADT 𝜏ap in terms of the switching signal
𝜎(t).

2. Choose appropriate parameters �̃�p, 𝛽p and 𝜇p, and then
find Pp by solving Conditions (ii), (iv) and the first
matrix inequality of Condition (i) in Corollary 1.

3. Choose a constant 𝜀M > 𝜀 + ln𝜇p

𝜏p
and let �̄�p = 𝜀M , �̃�p =

�̃�p + 𝛽pe𝜀M𝜏 .

4. According to 𝜃p ≤
2
(
𝜀M−𝜀−

ln𝜇p
𝜏ap

)
𝜀M+�̃�p

, get appropriate 𝜃p.
5. Calculate 𝛼p = 𝛽pe𝜀M𝜏 + 𝜀M .
6. By solving the second matrix inequality of Condition (i)

in Corollary 1, we can obtain the matrix Qp. Then, the
control gain matrix can be derived by Kp = −P−1

p Qp.

4 NUMERICAL SIMULATION

Example 1. Consider the switched neural network (1)
with m = 2, A1 = diag(1, 1), A2 = diag(0.5, 0.5),
𝑓1(x) = 𝑓2(x) = (sin (x1) , sin (x2))T , 𝜏(t) = 0.5 +

0.2 sin t, B1 =
(

0.5 −1.3
1 0.9

)
, B2 =

(
0.1 0.8
−0.8 0.5

)
, tk + 1 =

tk + 0.7 + 0.1( − 1)k,

𝜎(t) =
{

1, t ∈ [t2l, t2l+1) , l ∈ N,
2, t ∈ [t2l+1, t2l+2) , l ∈ N.

(31)

These two subsystems are unstable (the oscillating
time response curves of the unstable subsystems are
shown in Figure 1). It is obvious that L1 = L2 =
diag(1, 1), 𝜏 = 0.7.

For given convergent rate 0.5𝜀 = 0.05, we could
obtain the feedback controller (3) by the procedures
presented in Section 3.

1. According to the switching signal (31), we know
that 𝜏a1 = 0.6 and 𝜏a2 = 0.8.

2. By choosing �̃�1 = 0.3, �̃�2 = 0.3, 𝛽1 = 1.11,
𝛽2 = 0.88, 𝜇1 = 1.2, 𝜇2 = 1.3 and solving Condi-
tions (ii), (iv) and the first LMI of Condition (i) in
Corollary 1, we have

P1 =
(

1.0410 0.1540
0.1540 1.0714

)
,

P2 =
(

1.1564 −0.0001
−0.0001 1.1518

)
.

3. Choose 𝜀M = 1 such that 𝜀M > 𝜀 + ln𝜇1
𝜏a1

and 𝜀M >

𝜀 + ln𝜇2
𝜏a2

. Let �̄�1 = �̄�2 = 𝜀M and �̃�1 = �̃�1 + 𝛽1e𝜀M𝜏 =
2.5353 and �̃�2 = �̃�2 + 𝛽1e𝜀M𝜏 = 2.0721.
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4. According to 𝜃1 ≤
2
(
𝜀M−𝜀− ln𝜇1

𝜏a1

)
𝜀M+�̃�1

= 0.3372 and 𝜃2 ≤(
𝜀M−𝜀− ln𝜇2

𝜏a2

)
𝜀M+�̃�2

= 0.3724, we can choose 𝜃1 = 𝜃2 =
0.3.

5. Compute 𝛼1 = 𝛽1e𝜀M𝜏 + 𝜀M = 3.2353 and 𝛼2 =
𝛽2e𝜀M𝜏 + 𝜀M = 2.7721.

6. By solving the second LMI of Condition (i) in
Corollary 1, we can obtain the feasible solution

Q1 =
(

2.1623 0.0147
0.0147 2.1652

)
,

Q2 =
(

2.0421 0.1703
0.1703 2.1634

)
.

FIGURE 1 The oscillating time response curves of subsystems [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 2 Stable time response curves and switching signal of switched neural network with the controller (2) and the controller (3)
[Color figure can be viewed at wileyonlinelibrary.com]
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Therefore, the feedback control gain matrices of
the controller (3) are

K1 = −P−1
1 Q1 =

(
−0.9815 0.1411
0.1411 −0.9536

)
,

K2 = −P−1
1 Q2 =

(
−1.7295 −0.0002
−0.0002 −1.7346

)
,

respectively. According to the stability or stabiliza-
tion results presented in [7,25,26,29], the above
control gains can also guarantee that the switched
neural networks is exponential stabilizable under
the classical switching feedback controller (2).

Figures 2 and 3 show that the stable time response
curves of this neural network with the feedback con-
troller (3) and the curves of control input of the
controller (3), respectively. In order to give the
comparison results between bumpless transfer con-
trol and the non-bumpless transfer control [7,26,29],
we have also plotted the time response curves of this
switched neural network with the controller (2) and
the curves of control input of the controller (2). As
shown in Figure 2, we know that this switched neu-
ral network can be stabilized by both the controller
(2) and the controller (3). However, because of the
noncontinuity of control input, the controller (2) may
generate bumps at switching time. As can be seen from
the sub-figure of Figure 3, under the controller (2),
the control components u1 and u2 jump from −0.2958
and −0.0722 to −0.5519 and −0.2142 at t1 = 0.6,

respectively, which indicates the occurrence of bumps.
Clearly, under the controller (3), the control input is
smooth at switching time, which demonstrates the
bumpless transfer control law can effectively avoid
the occurrence of bumps which exists in the classical
switching feedback control strategy [7,26,29].

Example 2. Now we introduce a simple practical
simulation example to shows the effectiveness of the
proposed results. Consider the multi-loop model of
aero-engine [30,31]( .nh.nl

)
= A𝜎(t)

(
nh
nl

)
+ B𝜎(t)

(
m𝑓
Ae

)
, (32)

where M = 2, nh and nl are the rotational speed of the
high and low pressure rotor, respectively, mf and Ae,
which are the control input, are the fuel flow and the
area of tail nozzle, respectively. According to Theorem
1, we know that this system is exponentially stabiliz
able under the controller (3) with Kp = QpP̄−1

p if there
exist symmetric positive definite matrix P̄p, matrix Qp,
positive constants 𝜇p > 1, 𝛼p, constant �̃�p, such that{

P̄pAT
p + ApP̄p − �̃�p ≤ 0,

P̄pAT
p + ApP̄p + QT

p + BpQp + 𝛼pP̄p ≤ 0, (33)

P̄q ≤ 𝜇pP̄p, (p, q) ∈ M × M, (34)

𝛼p
(
1 − 0.5𝜃p

)
− 0.5�̃�p𝜃p −

ln𝜇p

𝜏ap
> 0. (35)

FIGURE 3 Control input curves of switched neural network with the controller (2) and the controller (3) [Color figure can be viewed at
wileyonlinelibrary.com]
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For numerical simulation, we assume that

A1 =
(
−2 2
0.5 3

)
,A2 =

(
−1.1789470 2.119459

2.46103 −3.679685

)
,

B1 =
(

0.8 1
0.8 0.6

)
,B2 =

(
0.3129523 0.1576769
0.5631366 0.8378436

)
which are borrowed from [30,31]. Obviously, each sub-
system without control input is unstable. By choosing

�̃�1 = 6.4, �̃�2 = 2.4, 𝛼1 = 𝛼2 = 3, 𝜇1 = 𝜇2 = 2, and
solving (33)-(34), we obtain

P̄1 =
(

0.1460 0.0784
0.0784 0.2248

)
, P̄2 =

(
0.1821 0.0910
0.0910 0.1761

)
,

Q1 =
(

2.3192 −1.4207
−2.1749 −0.2499

)
,Q2 =

(
−1.8018 −0.1526
0.4873 0.0121

)
.

FIGURE 4 The stable time response curves of the system (32) under the switching signal (36) and the controller (3) [Color figure can be
viewed at wileyonlinelibrary.com]

FIGURE 5 The time curves of control input in the controller (3) in Example 2 [Color figure can be viewed at wileyonlinelibrary.com]
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Then, owing to (35), this system is is exponential sta-
bilizable under the feedback controller (3) with 𝜃1 <

0.3433, 𝜃2 < 0.59977, and

K1 =
(

23.7164 −14.5903
−17.5922 5.0226

)
,

K2 =
(
−12.7551 5.7211

3.5613 −1.7707

)
.

For 𝜃1 = 𝜃2 = 0.3, and

𝜎(t) =
{

1, t ∈
[
0.9l, 0.9l + 0.5) , l ∈ N,

2, t ∈
[
0.9l + 0.5, 0.9l + 0.9) , l ∈ N,

(36)

we have plotted the stable time response curves for
the system (32) with the feedback controller (3) and
the time curves of control input of the controller
(3) in Figures 4 and 5, respectively. It is obvious
that the control input is continuous at switching
instants, which shows the effectiveness of the proposed
bumpless transfer control.

5 CONCLUSIONS

This paper has coped with the stabilization problem of
switched neural networks with time-varying delay. A new
switching state feedback controller whose control input
is smooth at switching time is designed. According to
MDADT, the theoretical results that ensure the closed-loop
system is exponentially stable are established. The proce-
dures that can be applied to calculating the control gain
matrices are also proposed. Two simple numerical exam-
ples are employed to show effectiveness of the presented
results. In the future work, we will concentrate on the out-
put stabilization of nonlinear switched systems with time
delay by bumpless transfer control.
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