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The complex dynamical behaviors of rule 58 in cellular automata are investigated from the viewpoint of symbolic dynamics.The rule
is Bernoulli 𝜎

𝜏
-shift rule, which is members of Wolfram’s class II, and it was said to be simple as periodic before. It is worthwhile to

study dynamical behaviors of rule 58 and whether it possesses chaotic attractors or not. It is shown that there exist two Bernoulli-
measure attractors of rule 58. The dynamical properties of topological entropy and topological mixing of rule 58 are exploited
on these two subsystems. According to corresponding strongly connected graph of transition matrices of determinative block
systems, we divide determinative block systems into two subsets. In addition, it is shown that rule 58 possesses rich and complicated
dynamical behaviors in the space of bi-infinite sequences. Furthermore, we prove that four rules of global equivalence class 𝜀3

4
of CA

are topologically conjugate. We use diagrams to explain the attractors of rule 58, where characteristic function is used to describe
that some points fall into Bernoulli-shiftmap after several times iterations, andwe find that these attractors are not global attractors.
The Lameray diagram is used to show clearly the iterative process of an attractor.

1. Introduction

Cellular automaton (CA) was first introduced in 1951 [1].
CA is a mathematical model consisting of large numbers of
simple identical components with local interactions [2]. The
simple components act together to produce complex global
behavior. CA performs complex computation with high
degree of efficiency and robustness. Three major factors have
resulted in the revival of interest in the behavior of cellular
systems [3]. First, the development of powerful computers
and microprocessors has made the rapid simulation of CA
possible. Second, the use of CA to simulate physical systems
has attracted much interest in the scientific community.
Third, the advent of VLSI as an implementation medium
has focused attention on the communication requirements of
successful hardware algorithms. In recent years, many appli-
cations of CA have been reported, especially in cryptography
[4–9], image processing [10, 11], and associative memory
[12, 13].

In recent years, many researches were devoted to find
properties of rules of CA, especially binary one-dimensional

CA. Because the rules of binary one-dimensional CA are
simple to study, the evolutions of these rules can be reflected
directly by image. In 1980s, Wolfram proposed CA as models
for physical systems which exhibit complex or even chaotic
behaviors based on empirical observations, and he divided
the 256 ECA (binary one-dimensional CA with radius 1)
rules informally into four classes using dynamical concepts
like periodicity, stability, and chaos [14–16]. Recently, [17–
22] focused on ECA in detail. In [17], Chua et al. listed 256
Boolean function “cubes” defining all Boolean functions of
three binary variables, and they elucidated that every binary
cellular automata of any spatial dimension was a special case
of a cellular automaton with the same neighborhood size. In
[18], Chua et al. partitioned the entire set of 256 local rules
into 16 different gene families. Chua et al. [19] mentioned that
each rule has three globally equivalent local rules determined
by three corresponding global transformations, namely, left-
right transformation 𝑇

†, global complementation 𝑇, and
left-right complementation 𝑇

∗. Each equivalence class is
identified by 𝜀𝜅

𝑚
, where 𝜅 is complexity index and 𝑚 is index

of 𝜅th class. In [20], the authors presented that 112 rules of
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256 local rules were Bernoulli 𝜎
𝜏
-shift rules. Each of the 112

Bernoulli 𝜎
𝜏
-shift rules has an ID code 𝐵

𝑁
[𝛼, 𝛽, 𝜏], where 𝛼

denotes the number of attractors of rule 𝑁, 𝛽 denotes the
slope of the Bernoulli𝜎

𝜏
-shiftmap, and 𝜏 denotes the relevant

forward time-𝜏. Hence, the space-time evolution of any one of
the 112 rules on their attractors can be uniquely predicted by
two parameters: 𝛽 = ±2𝜎 and 𝜏. For example, rule 58 has two
attractors (𝛽 = 2, 𝜎 = 1, 𝜏 = 1) and (𝛽 = 1/2, 𝜎 = −1, 𝜏 = 2).
Wolfram considered that Bernoulli 𝜎

𝜏
-shift rules were simple

as periodic, but he did not find other complex dynamical
behaviors. Recently, some authors [23–28] found that some
rules of Bernoulli 𝜎

𝜏
-shift rules are chaotic in the sense of

both Li-York and Devaney. However, they did not involve
and studied the dynamical behavior of rule 58. For 256 rules,
every rule has its properties which are different from other
rules. So, we need to study these special properties for every
rule for practical application.

In this paper, the complex dynamical behavior of rule
58 in cellular automata is studied in detail. It will be shown
that rule 58 with bi-infinite bit strings possesses rich and
complicated dynamical behaviors. The rest of the paper is
organized as follows. In Section 2, the basic concepts of one-
dimension CA (1DCA) and symbolic dynamics are intro-
duced. The Boolean functions of rule 58 are also presented,
and expressions of two attractors are given. In Section 3, two
subsystems of rule 58 are characterized. We prove that rule
58 is topologically mixing and chaotic in the sense of Li-
York and Devaney on the Λ

𝜆
58

1

and Λ58
2
, respectively. We

also prove that four rules of global equivalence class 𝜀3
4
of

CA are topologically conjugate. In Section 4, characteristic
function is used to describe that all points of rule 58 fall
into Bernoulli-shift map after several times iterations, and
the Lameray diagram is used to show clearly the iterative
process of an attractor. We mention that rule 58 can be used
in associative memory. Section 5 presents some conclusions.

2. Preliminaries

For simplicity, for some notations about symbolic dynamics,
one can refer to [27–29].

It follows from [30] that the Boolean function of rule 58
is

[𝑓
58
(𝑥)]
𝑖
= 𝑥
𝑖−1
⋅ 𝑥
𝑖
⊕ 𝑥
𝑖−1
⋅ 𝑥
𝑖+1

(1)

∀𝑥 ∈ 𝑆
𝑍, 𝑖 ∈ 𝑍, where “⋅,” “−,” and “⊕” stand for

“AND,” “NOT,” and “XOR” logical operation, respectively.
Sometimes, “⋅” is omitted for simplicity. The truth table of
Boolean functions of rule 58 is shown in Table 1. The subsets,
denoted by Λ58

1
and Λ58

2
, are derived from the parameters of

rules 58: 𝛽 = 2, 𝜎 = 1, and 𝜏 = 1 and 𝛽 = 1/2, 𝜎 = −1, and
𝜏 = 2, respectively; that is,

Λ
58

1
= {𝑥 ∈ 𝑆

𝑍

| [𝑓
58
(𝑥)]
𝑖
= 𝑥
𝑖+1
, ∀𝑖 ∈ 𝑍} ,

Λ
58

2
= {𝑥 ∈ 𝑆

𝑍

| [𝑓
2

58
(𝑥)]
𝑖

= 𝑥
𝑖−1
, ∀𝑖 ∈ 𝑍} ,

(2)

where 𝑓2(⋅) denotes two iterations for a bit.
The subsets Λ58

1
and Λ58

2
will be rigorously characterized

from the viewpoint of symbolic dynamics.

Table 1: The truth table of Boolean function of rules 58.

𝑥
𝑖−1
𝑥
𝑖
𝑥
𝑖+1

𝑥
𝑖−1
𝑥
𝑖
⊕ 𝑥
𝑖−1
𝑥
𝑖+1

000 0
001 1
010 0
011 1
100 1
101 1
110 0
111 0

3. Dynamical Behaviors of 𝑓
58

on
Two Subsystems

In this section, dynamical behaviors of𝑓
58
will be researched.

We find that rule 58 is chaotic in the sense of Li-York and
Devaney on its two subsystems.

Proposition 1. For rule 58, there exists a subset Λ58
1
⊂ 𝑆
𝑍

which satisfies 𝑓
58
|
Λ
58

1

= 𝜐|
Λ
58

1

if and only if ∀𝑥 = (. . . , 𝑥
−1
,

𝑥
0
, 𝑥
1
, . . .) ∈ Λ

58

1
; 𝑥
𝑖−1

, 𝑥
𝑖
and 𝑥

𝑖+1
have the following relations:

(i) if 𝑥
𝑖
= 1, then 𝑥

𝑖−2
= 1, 𝑥

𝑖−1
= 0, 𝑥

𝑖+1
= 0, and 𝑥

𝑖+2
=

1; 𝑥
𝑖−2
= 0, 𝑥

𝑖−1
= 0, 𝑥

𝑖+1
= 1, and 𝑥

𝑖+2
= 0; 𝑥

𝑖−2
= 0,

𝑥
𝑖−1
= 1, 𝑥

𝑖+1
= 0, and 𝑥

𝑖+2
= 1;

(ii) if 𝑥
𝑖
= 0, then 𝑥

𝑖−2
= 0, 𝑥

𝑖−1
= 0, 𝑥

𝑖+1
= 0, 𝑥

𝑖+2
= 0,

𝑥
𝑖−1
= 1, and 𝑥

𝑖+1
= 1.

The explicit proof of this proposition is presented in the
Appendix.

Remark 2. From the definition of subsystem, we know that
(Λ
58

1
, 𝑓
58
) is subsystems of (𝑆𝑍, 𝑓

58
).

The dynamical behaviors of 𝑓
58
(𝑥) on the set Λ58

1
are

shown as follows.
Let 𝑃58
1
= {𝑟
0
, 𝑟
1
, 𝑟
2
, 𝑟
3
, 𝑟
4
} be a new state set, where 𝑟

0
=

(000), 𝑟
1
= (010), 𝑟

2
= (011), 𝑟

3
= (101), 𝑟

4
= (110), and

𝜛
58

1
= {(𝑟𝑟



) | 𝑟 = (𝑏
0
𝑏
1
𝑏
2
), 𝑟


= (𝑏


0
𝑏


1
𝑏


2
) ∈ 𝑃
58

1
, ∀1 ≤ 𝑗 ≤ 2

such that 𝑏
𝑗
= 𝑏


𝑗−1
}. Furthermore, subshiftΛ

𝜛
58

1

of 𝜐 is defined
as Λ
𝜛
58

1

= {𝑟 = (. . . 𝑟
−1
, 𝑟
0
, 𝑟
1
. . .) ∈ 𝑃

58

1

𝑍

| 𝑟
𝑖
∈ 𝑃
58

1
, 𝑟
𝑖
𝑟
𝑖+1

∈

𝜛
58

1
, ∀𝑖 ∈ 𝑍}. The transition matrix 𝐵58

1
of the 𝜐|

Λ
𝜛
58

1

is

𝐵
58

1
=

[
[
[
[
[

[

1 0 0 0 0

0 0 0 1 0

0 0 0 0 1

0 1 1 0 0

0 0 0 1 0

]
]
]
]
]

]

. (3)

In order to give our results, in the following, some
definitions need be introduced.

Definition 3 (see [31]). A square {0, 1}matrix𝐴 is irreducible,
if for every pair of indices 𝑖 and 𝑗 there is an 𝑛 such that𝐴𝑛

𝑖𝑗
>

0.

Definition 4 (see [31]). A square {0, 1} matrix 𝐴 is aperiodic,
if there exists𝑁, such that 𝐴𝑛

𝑖𝑗
> 0 and 𝑛 > 𝑁, ∀𝑖, 𝑗.
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Figure 1: The corresponding graph 𝐺1
58
of the matrix 𝐵58

1
.

Definition 5 (see [31]). Suppose that 𝑔 : 𝑋 → 𝑌 is a
continuousmapping, where𝑋 is a compact topological space.
𝑔 is said to be topologically mixing if, for any two open sets
𝑈,𝑉 ⊂ 𝑋, ∃𝑁 > 0, such that 𝑔𝑛(𝑈) ∩ 𝑉 ̸= 0, ∀𝑛 ≥ 𝑁.

Definition 6 (see [24]). Let (𝑋, 𝑓) and (𝑌, 𝑔) be compact
spaces, one says that 𝑓 and 𝑔 are topologically conjugate if
there is homeomorphism ℎ : 𝑋 → 𝑌, such that ℎ ∘ 𝑓 = 𝑔 ∘ ℎ.

A square {0, 1} matrix corresponds to a directed graph.
The vertices of the graph are the indices for the rows and
columns of 𝐴. There is an edge from vertex 𝑖 to vertex 𝑗 if
𝐴
𝑖𝑗
= 1. A square {0, 1}matrix is irreducible if and only if the

corresponding graph is strongly connected. If Λ
𝐴
is a two-

order subshift of finite type, then it is topologically mixing if
and only if 𝐴 is irreducible and aperiodic [31].

We give corresponding graph 𝐺
1

58
of the matrix 𝐵

58

1

in Figure 1. We find that 𝐺1
58

is not a strongly connected
graph. Therefore, 𝑓

58
|
Λ
58

1

is not topologically mixing. But the
subgraphs 𝑟

0
and 𝑟

1
, 𝑟
2
, 𝑟
3
, and 𝑟

4
are strongly connected

graph, respectively. So, we can divide 𝑃58
1

into two subsets:
ℎ
58

1
= {𝑟
0
} and 𝜆58

1
= {𝑟
1
, 𝑟
2
, 𝑟
3
, 𝑟
4
}.

Let ℎ58
1
= {(𝑟𝑟



) | 𝑟 = (𝑏
0
𝑏
1
𝑏
2
), 𝑟


= (𝑏


0
𝑏


1
𝑏


2
) ∈ 𝑃
58

1
, ∀1 ≤

𝑗 ≤ 2, such that 𝑏
𝑗
= 𝑏


𝑗−1
} corresponding to ℎ58

1
and 𝜆58

1
=

{(𝑟𝑟


)|𝑟 = (𝑏
0
𝑏
1
𝑏
2
), 𝑟


= (𝑏


0
𝑏


1
𝑏


2
) ∈ 𝑃
58

1
, ∀1 ≤ 𝑗 ≤ 2, such that

𝑏
𝑗
= 𝑏


𝑗−1
} corresponding to 𝜆58

1
. We can obtain the transition

matrix 𝐶58
1
corresponding to 𝜐|

Λ
ℎ
58

1

and transition matrix𝐷58
1

corresponding to 𝜐|
Λ
𝜆
58

1

, where

𝐶
58

1
= [1] , 𝐷

58

1
=

[
[
[

[

0 0 1 0

0 0 0 1

1 1 0 0

0 0 1 0

]
]
]

]

. (4)

Based on the above definition and analysis, we give the
following results.

Proposition 7. Consider the following:

(a) Λ
ℎ
58

1

∪Λ
𝜆
58

1

= Λ
58

1
, where ℎ58

1
∪𝜆
58

1
= 𝑃
58

1
and ℎ58
1
∩𝜆
58

1
=

0.
(b) 𝜐 : Λ

𝜆
58

1

→ Λ
𝜆
58

1

and 𝜐 : Λ
𝜆
58

1

→ Λ
𝜆
58

1

are topologi-
cally conjugate.

(c) 𝜐 : Λ
𝜆
58

1

→ Λ
𝜆
58

1

is topologically mixing.
(d) 𝑓
58
: Λ
𝜆
58

1

→ Λ
𝜆
58

1

is topologically mixing.

(e) The topological entropy 𝑒𝑛𝑡(𝑓
58
|
Λ
𝜆
58

1

) = 𝑒𝑛𝑡(𝜐|
Λ
𝜆
58

1

) =

0.2812.

Proof. (a) Let𝑥 = {. . . , 𝑥
−1
,

∗

𝑥
0
, 𝑥
1
}. It is obvious that if𝑤 ≺ 𝑥,

𝑤


∈ ℎ
58

1
, then ∀𝑤 ∈ 𝜆58

1
, 𝑤 ⊀ 𝑥, thus 𝑥 ∈ Λ

ℎ
58

1

; conversely,
if 𝑤 ≺ 𝑥, 𝑤 ∈ 𝜆58

1
, then ∀𝑤 ∈ ℎ58

1
, 𝑤 ⊀ 𝑥, thus 𝑥 ∈ Λ

𝜆
58

1

;
namely,∀𝑥 ∈ Λ58

1
,𝑥 ∈ Λ

ℎ
58

1

, or𝑥 ∈ Λ
𝜆
58

1

. Hence,Λ
ℎ
58

1

∪Λ
𝜆
58

1

=

Λ
58

1
.
The proofs of (b), (c), (d), and (e) can be referred to in

Proposition 2 in [28].

Theorem 8. 𝑓
58

is chaotic in the sense of both Li-Yorke and
Devaney on Λ

𝜆
58

1

.

Proof. It follows from [32] that the positive topological
entropy implies chaos in the sense of Li-Yorke, and topo-
logical mixing implies chaos in the sense of Li-Yorke and
Devaney, since rule 𝑁 = 58 possesses very rich and
complicated dynamical properties on Λ

𝜆
58

1

.

Remark 9. Though, ∀𝑛 > 0, (𝐶58
1
)

𝑛

> 0, we cannot believe
that𝑓
58
|
ℎ
58

1

is topologicallymixing. Because𝐶58
1
is not a square

{0, 1} matrix. The topological entropy ent(𝑓
58
|
Λ
ℎ
58

1

) = 0. So,
𝑓
58
is not chaotic in the sense of both Li-Yorke and Devaney

on Λ
ℎ
58

1

.

Remark 10. Carefully observing Figure 1, we find that there
are several strongly connected subgraphs: 𝑟

2
→ 𝑟
3
→ 𝑟
4
→

𝑟
2
, 𝑟
1
→ 𝑟
3
→ 𝑟
1
, 𝑟
1
→ 𝑟
3
→ 𝑟
2
→ 𝑟
4
→ 𝑟
3
→ 𝑟
1
,

and 𝑟
0
→ 𝑟
0
. The elements of Λ58

1
are composed by all

vertices of those strongly connected subgraphs, respectively.
For example, 𝑥 ∈ Λ

58

1
and 𝑥 is composed of vertices of

subgraph 𝑟
2
→ 𝑟
3
→ 𝑟
4
→ 𝑟
2
; then we have 𝑟

0
⊀ 𝑥 and

𝑟
1
⊀ 𝑥, and all vertices of the subgraph will appear in 𝑥, if

|𝑥| = 3𝑘, 𝑘 = 1, 2, . . ..

Proposition 11. For rule 58, there exists a subset Λ58
2

⊂

𝑆
𝑍 which satisfies 𝑓2

58
|
Λ
58

2

= 𝜍|
Λ
58

2

if and only if, ∀𝑥 =

(. . . , 𝑥
−1
, 𝑥
0
, 𝑥
1
, . . .) ∈ Λ

58

2
, 𝑥
𝑖−1
𝑥
𝑖
𝑥
𝑖+1

cannot equal to 010,
∀𝑖 ∈ 𝑍.

Proof. The global map of rule 58 is [𝑓
58
(𝑥)]
𝑖
= 𝑥
𝑖−1
𝑥
𝑖
⊕

𝑥
𝑖−1
𝑥
𝑖+1

, so

[𝑓
2

58
(𝑥)]
𝑖

= [𝑓
58
(𝑥)]
𝑖−1
⋅ [𝑓
58
(𝑥)]
𝑖
⊕ [𝑓
58
(𝑥)]
𝑖−1
⋅ [𝑓
58
(𝑥)]
𝑖+1

= [(𝑥
𝑖−2
𝑥
𝑖−1
⊕ 𝑥
𝑖−2
𝑥
𝑖
) ⋅ 𝑥
𝑖−1
𝑥
𝑖
⊕ 𝑥
𝑖−1
𝑥
𝑖+1
]

⊕ [𝑥
𝑖−2
𝑥
𝑖−1
⊕ 𝑥
𝑖−2
𝑥
𝑖
⋅ (𝑥
𝑖
𝑥
𝑖+1
⊕ 𝑥
𝑖
𝑥
𝑖+2
)] .

(5)

Then, the proof is similar to proof of necessity and
sufficiency in Proposition 1, so the details are omitted.

Let 𝑃58
2
= {𝑟
0
, 𝑟
1
, 𝑟
2
, 𝑟
3
, 𝑟
4
, 𝑟
5
, 𝑟
6
}, where 𝑟

0
= (000), 𝑟

1
=

(001), 𝑟
2
= (011), 𝑟

3
= (100), 𝑟

4
= (101), 𝑟

5
= (110), and

𝑟
6
= (111).
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r0 r1 r2

r3 r4

r5

r6

Figure 2: The corresponding graph 𝐺2
58
of the matrix 𝐵58

2
.

Remark 12. The transition matrix of subshift (Λ58
2
, 𝜍) is

𝐵
58

2
=

[
[
[
[
[
[
[
[
[

[

1 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0 0 1 1

1 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 1 0 0

0 0 0 0 0 1 1

]
]
]
]
]
]
]
]
]

]

. (6)

We give corresponding graph 𝐺2
58

of the matrix 𝐵58
2

in
Figure 2. It is obvious that 𝐺2

58
is a strongly connected graph.

So, 𝐵58
2
is irreducible.

Based on the above analysis, we have the following results.

Proposition 13. Consider the following:

(a) 𝜍|
Λ
58

2

is topologically mixing.

(b) 𝑓2
58
|
Λ
58

2

is topologically mixing.

(c) The topological entropy 𝑒𝑛𝑡(𝑓2
58
|
Λ
58

2

) = 𝑒𝑛𝑡(𝜍|
Λ
58

2

) =

0.5624.

Proof. (a) Because (𝐵58
2
)

𝑛

> 0, ∀𝑛 ≥ 4, the transition matrix
𝐵
58

2
of subshift of finite type 𝜍 is irreducible and aperiodic. By

[32, 33], 𝜍|
Λ
58

2

is topologically mixing.

Theorem 14. 𝑓2
58

is chaotic in the sense of both Li-Yorke and
Devaney on Λ58

2
.

Proof. It follows from [32] that topological mixing implies
chaos in the sense of Li-Yorke and Devaney.

Proposition 15. Consider 𝑓(𝑥) ∈ Λ58
2
, ∀𝑥 ∈ Λ58

2
.

Proof. We check that 𝑥
1
, 𝑥
2
∈ Λ
58

2
, where 𝑥

1
= {. . . , 𝑎

−2
, 𝑎
−1
,

𝑎
0
, 𝑎
1
, 𝑎
2
, . . .}. Let𝑓2

58
(𝑥
1
) = 𝑥
2
. Suppose that𝑓

58
(𝑥
1
) = 𝑦
1
and

𝑓
58
(𝑥
2
) = 𝑦
2
, where 𝑦

1
= {. . . , 𝑏

−2
, 𝑏
−1
, 𝑏
0
, 𝑏
1
, 𝑏
2
, . . .} and 𝑦

2
=

{. . . 𝑐
−3
, 𝑐
−2
, 𝑐
−1
, 𝑐
0
, 𝑐
1
, . . .}. Table 2 shows the iterative process

of bit string 𝑥
1
. Observing Table 2, we have 𝑓

58
(𝑎
−1
𝑎
0
𝑎
1
) =

𝑏
0
= 𝑐
0
, . . . , 𝑓

58
(𝑎
𝑖−1
𝑎
𝑖
𝑎
𝑖+1
) = 𝑏
𝑖
= 𝑐
𝑖
, . . .. So, we get 𝑓2

58
(𝑦
1
) =

𝑦
2
.Therefore,𝑦

1
, 𝑦
2
∈ Λ
58

2
. Hence,𝑓(𝑥) ∈ Λ58

2
, ∀𝑥 ∈ Λ58

2
.

Table 2: The iterative process of bit string 𝑥
1
.

𝑥
1

⋅ ⋅ ⋅ 𝑎
−2

𝑎
−1

𝑎
0

𝑎
1

𝑎
2

⋅ ⋅ ⋅

𝑦
1

⋅ ⋅ ⋅ 𝑏
−2

𝑏
−1

𝑏
0

𝑏
1

𝑏
2

⋅ ⋅ ⋅

𝑥
2

⋅ ⋅ ⋅ 𝑎
−3

𝑎
−2

𝑎
−1

𝑎
0

𝑎
1

⋅ ⋅ ⋅

𝑦
2

⋅ ⋅ ⋅ 𝑐
−3

𝑐
−2

𝑐
−1

𝑐
0

𝑐
1

⋅ ⋅ ⋅

Corollary 16. Consider 𝑓2
58
|
Λ
58

2

= (𝑓
58
|
Λ
58

2

)
2.

Proposition 17. Consider the following:

(a) 𝑓
58
|
Λ
58

2

is topologically mixing.

(b) The topological entropy 𝑒𝑛𝑡(𝑓
58
|
Λ
58

2

) = 0.2812.

The explicit proof of this proposition is presented in the
Appendix.

Theorem 18. 𝑓
58

is chaotic in the sense of both Li-Yorke and
Devaney on Λ58

2
.

Remark 19. It is obviously that (Λ58
2
, 𝑓
58
) are subsystems of

(𝑆
𝑍

, 𝑓
58
). Hence, there are two subsystems for (𝑆𝑍, 𝑓

58
).

Next, we will discuss the relationship on four rules of
global equivalence class 𝜀3

4
.

Remark 20. From [20, 28–30], the following results can be
obtained:

(1) 𝑓
58
: 𝑆
𝑍

→ 𝑆
𝑍 and 𝑓

114
: 𝑆
𝑍

→ 𝑆
𝑍 are topologically

conjugate;

(2) 𝑓
58
: 𝑆
𝑍

→ 𝑆
𝑍 and 𝑓

163
: 𝑆
𝑍

→ 𝑆
𝑍 are topologically

conjugate;

(3) 𝑓
58
: 𝑆
𝑍

→ 𝑆
𝑍 and 𝑓

177
: 𝑆
𝑍

→ 𝑆
𝑍 are topologically

conjugate.

Remark 21. 𝑓
58
, 𝑓
114

, 𝑓
163

, and 𝑓
177

are topologically conju-
gate, respectively.Therefore, if we know that one of four rules
is chaotic in the sense of both Li-Yorke and Devaney in its
attractors, we can deem that others of four rules are chaotic
in the sense of both Li-Yorke and Devaney in their attractors,
respectively. The phenomenon also presents that the global
equivalence class introduced by Chua et al. [22] is useful and
important for research of rule of cellular automata.

4. Using Diagrams to Explain Attractors of
Four Rules

From a definition on global characteristic function in [20],
the Boolean string 𝑥 can be associated with a real number
0
∙
𝑥
0
𝑥
1
. . . 𝑥
𝐼−1
𝑥
𝐼
on the unit interval [0, 1]:

𝑥 = [𝑥
0
𝑥
1
. . . 𝑥
𝐼−1
𝑥
𝐼
] → 𝜙 ≜ 0

∙
𝑥
0
𝑥
1
. . . 𝑥
𝐼−1
𝑥
𝐼
,

𝑥
𝑖
∈ {0, 1} ,

(7)
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Figure 3: All points fall into Bernoulli-shift map after several iterations under rule 58, where 𝐼 = 13.

(a) (b) (c)

(d)

Figure 4: Some attractors of rule 58, where 𝐼 = 5, and the white lattice stands for 0 and black for 1.

where𝜙 = ∑𝐼
𝑖=0
2
−(𝑖+1)

𝑥
𝑖
is the decimal form of Boolean string

𝑥 = [𝑥
0
𝑥
1
. . . 𝑥
𝐼−1
𝑥
𝐼
]. The CAs’ characteristic function 𝜒

𝑁
of

rule𝑁 is defined as
𝜒
𝑁
: 𝑄 [0, 1] → 𝑄 [0, 1] ,

that is, 𝜙
𝑛
= 𝜒
1

𝑁
(𝜙
𝑛−1
) , 𝜙

𝑛
= 𝜒
2

𝑁
(𝜙
𝑛−2
) ,

(8)

where 𝑄 denotes rational numbers.
Let 𝐼 = 13. Figure 3 shows characteristic functions of rule

58. Figure 3(a) describes that some points of rule 58 fall into
Bernoulli-shift map after twenty-six iterations, respectively,
where 𝜏 = 1. Figure 3(b) describe that some points of
four rules fall into Bernoulli-shift map after twenty-seven
iterations, respectively, where 𝜏 = 2.

If we choose different values of 𝐼 for the four rules, we
can get different initial binary configuration for the evolution
of four rules. The different initial binary configuration may
lead to different attractor periods. If the value of 𝐼 is fixed, we
find that the attractor period may be different. Let 𝐼 = 5; then
we can obtain Figure 4, which shows some attractors of rule
58. Figures 4(a) and 4(b) show that the period of attractor
is 1, and the attractor belongs to Λ

ℎ
58

1

and Λ58
2
; Figure 4(c)

shows that the period of attractor is 2, and the attractor
belongs to Λ

𝜆
58

1

; Figure 4(d) shows that the attractor belongs
to both Λ

𝜆
58

1

and Λ58
2
, where the solid lines represent that the

attractor belongs to Λ
𝜆
58

1

and the dotted lines represent that
the attractor belongs to Λ58

2
. Let 𝐼 = 4; then we can obtain
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Figure 5: Period-5 isle of Eden is shown, where 𝐼 = 4, and the white lattice stands for 0 and black for 1.
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Figure 6: The evolution of characteristic function of the period-3 attractor, where the values of characteristic function of the attractor are
0.7031, 0.4219, and 0.8438, respectively. (a) shows the iterative process of an attractor, where 𝜏 = 1, and (b) shows the iterative process of an
attractor, where 𝜏 = 2.

Figure 5, where the solid lines stand for the real evolution of
binary configuration 11100, and the dotted lines stand for the
attractor belonging to Λ58

2
.

Next, we use the Lameray diagram [33] to present our
attractors. The diagrams show clearly the iterative process
of attractors. In terms of the attractor of Figure 4(d), we
get that the values of characteristic function of the attractor
are 0.7031, 0.4219, and 0.8438, respectively. Figure 6(a) shows
the iterative process of an attractor, where 𝜏 = 1, and
Figure 6(b) shows the iterative process of an attractor, where
𝜏 = 2. Then, we can associate the period-3 attractor of
rule 58 in Figure 6(a) as a period-3 point of a continuous
map 𝑓 : [0, 1] → [0, 1] which we know that it is chaotic
because “period-3 implies chaos” [34]. We can also consider
Figure 6(b) by the above method. Chaos implies that rules 58
have infinite period orbits on its subsystems.

In recent years, associative memory was researched in
many papers [12, 13]. It is obvious that rule 58 can be used
in associative memory. By strongly connected graph of rule
58, we can know the elements on its attractors. Then, we can
choose a bit string which belongs to an attractor as memory
pattern. Since there are infinite orbits, the storage capability
is very large. For example, we can choose 010101 as a mem-
ory pattern in Figure 4(c). The associative memory model

provides a solution to problem where time to recognize a
pattern is independent of the number of patterns stored.

5. Conclusions

In this paper, the dynamical behaviors of rule 58 in cellular
automata, which is Bernoulli 𝜎

𝜏
-shift rule, are carefully inves-

tigated from viewpoint of symbolic dynamics. We derive the
conditions according to Bernoulli 𝜎

𝜏
-shift evolution for rule

58.Then, in terms of the transition matrices of determinative
block systems of subsystems of rule 58, we obtain the values
of topological entropy of subsystems. According to corre-
sponding strongly connected graph of transition matrices of
determinative block systems of subsystems Λ58

1
, we divide

determinative block systems into two subsets. Then, we find
that rule 58 is topologically mixing onΛ

𝜆
58

1

. Furthermore, we
find that 𝑓

58
|
Λ
58

2

is topologically mixing. So, rule 58 is chaotic
in the sense of both Li-Yorke and Devaney. Then, we prove
that four rules belonging to global equivalence class 𝜀3

4
of CA

are topologically conjugate. We use diagrams to explain the
attractors of rule 58, where characteristic function and the
Lameray diagram are used to describe that some points fall
into Bernoulli-shift map after several times iterations and to
show clearly the iterative process of an attractor, respectively.
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Appendix

Proof of Proposition 1.

Necessity. Suppose that there exists a subset Λ58
1
∈ 𝑆
𝑍 such

that 𝑓
58
|
Λ
58

1

= 𝜐|
Λ
58

1

. Then, ∀𝑥 = (. . . , 𝑥
−1
, 𝑥
0
, 𝑥
1
, . . .) ∈ Λ

58

1
,

we have [𝑓
58
(𝑥)]
𝑖
= 𝑥
𝑖+1

, ∀𝑥 ∈ 𝑍.

(1) If 𝑥
𝑖
= 1, then 𝑥

𝑖−1
𝑥
𝑖
⊕ 𝑥
𝑖−1
𝑥
𝑖+1

= 0 ⊕ 𝑥
𝑖−1
𝑥
𝑖+1

;
according to Table 1, we get 𝑥

𝑖−1
= 0, 𝑥

𝑖+1
= 0,

𝑥
𝑖+2

= 1; 𝑥
𝑖−1

= 0, 𝑥
𝑖+1

= 1, and 𝑥
𝑖+2

= 0; 𝑥
𝑖−2

= 0,
𝑥
𝑖−1
= 1, 𝑥

𝑖+1
= 0, 𝑥

𝑖+2
= 1.

(2) If 𝑥
𝑖
= 0, then 𝑥

𝑖−1
𝑥
𝑖
⊕ 𝑥
𝑖−1
𝑥
𝑖+1

= 𝑥
𝑖−1

⊕ 𝑥
𝑖−1
𝑥
𝑖+1

;
according to Table 1, we get 𝑥

𝑖−2
= 0, 𝑥

𝑖−1
= 0, 𝑥

𝑖+1
=

0; 𝑥
𝑖−2

= 0, 𝑥
𝑖−1

= 0, and 𝑥
𝑖+1

= 1; 𝑥
𝑖−1

= 1, and
𝑥
𝑖+1
= 1.

(3) Now, we prove that (001) ⊀ 𝑥, 𝑥 ∈ Λ58
1
. The proof is

by contradiction. Suppose that (001) ≺ 𝑥, 𝑥 ∈ Λ
58

1
.

We can check that 𝑦 ∈ Λ
58

1
, where 𝑓(𝑦) = 𝑥 and

𝑥 = (. . . , 𝑥
−3
, 𝑥
−2
, 0,

∗

0, 1, 𝑥
2
, 𝑥
3
, . . .). The following is

considered in Table 1.

A Let 𝑦 = (𝑦
−𝑘
, . . . , 𝑦

−3
, 0, 0,

∗

0, 0, 1, 𝑦
3
, . . . , 𝑦

𝑘
). First-

ly, 𝑦
−3

= 0, 𝑦
−4

= 0, . . . 𝑦
−𝑛

= 0, . . .; otherwise,
there exists (100) ≺ 𝑦 which does not belong to Λ58

1
.

Secondly, there certainly exists (𝑦
𝑖
𝑦
𝑖+1
𝑦
𝑖+2
) = (100) ≺

𝑦, where 3 ≤ 𝑖 ≤ 𝑘.

B Let 𝑦 = (𝑦
−𝑘
, . . . , 𝑦

−3
, 𝑦
−2
, 0,

∗

1, 0, 𝑦
2
, 𝑦
3
, . . . , 𝑦

𝑘
).

We cannot get 𝑓(𝑦
−2
01) = 0 in Λ58

1
.

C Let 𝑦 = (𝑦
−𝑘
, . . . , 𝑦

−3
, 𝑦
−2
, 1,

∗

1, 0, 𝑦
2
, 𝑦
3
, . . . , 𝑦

𝑘
).

We cannot get 𝑓(𝑦
−2
11) = 0 in Λ58

1
.

Based on the above analysis, these arrive at contradic-
tions.

Therefore, we get that 𝑥
𝑖−1

, 𝑥
𝑖
, and 𝑥

𝑖+1
have the following

relations:

(i) if 𝑥
𝑖
= 1, then 𝑥

𝑖−2
= 1, 𝑥

𝑖−1
= 0, 𝑥

𝑖+1
= 0, 𝑥

𝑖+2
= 1;

𝑥
𝑖−2

= 0, 𝑥
𝑖−1

= 0, 𝑥
𝑖+1

= 1, and 𝑥
𝑖+2

= 0; 𝑥
𝑖−2

= 0,
𝑥
𝑖−1
= 1, 𝑥

𝑖+1
= 0, and 𝑥

𝑖+2
= 1.

(ii) If 𝑥
𝑖
= 0, then 𝑥

𝑖−2
= 0, 𝑥

𝑖−1
= 0, 𝑥

𝑖+1
= 0, and

𝑥
𝑖+2
= 0; 𝑥

𝑖−1
= 1 and 𝑥

𝑖+1
= 1.

Sufficiency. Suppose that there exists a subset Λ58
1
⊂ 𝑆
𝑍, and,

∀𝑥 ∈ Λ
58

1
, the relations between 𝑥

𝑖−1
, 𝑥
𝑖
, and 𝑥

𝑖+1
satisfy the

conditions (i) and (ii) in Proposition 1, ∀𝑖 ∈ 𝑍.

(i) If 𝑥
𝑖
= 1, we have [𝑓

58
(𝑥)]
𝑖
= 𝑥
𝑖−1
𝑥
𝑖
⊕ 𝑥
𝑖−1
𝑥
𝑖+1

=

0 ⊕ 𝑥
𝑖−1
𝑥
𝑖+1

.
Therefore,

[𝑓
58
(𝑥)]
𝑖
=

{
{
{
{

{
{
{
{

{

0, 𝑥
𝑖−1
= 0, 𝑥

𝑖+1
= 0,

1, 𝑥
𝑖−1
= 0, 𝑥

𝑖+1
= 1,

0, 𝑥
𝑖−1
= 1, 𝑥

𝑖+1
= 0.

(A.1)

(ii) If 𝑥
𝑖
= 0, we have [𝑓

58
(𝑥)]
𝑖
= 𝑥
𝑖−1
𝑥
𝑖
⊕ 𝑥
𝑖−1
𝑥
𝑖+1

=

𝑥
𝑖−1
⊕ 𝑥
𝑖−1
𝑥
𝑖+1

.
Therefore,

[𝑓
58
(𝑥)]
𝑖
=

{

{

{

0, 𝑥
𝑖−1
= 0, 𝑥

𝑖+1
= 0,

1, 𝑥
𝑖−1
= 1, 𝑥

𝑖+1
= 1.

(A.2)

Hence, [𝑓
58
(𝑥)]
𝑖
= 𝑥
𝑖+1

.

Proof of Proposition 17. (a) Let any two open sets 𝑈,𝑉 ⊂ Λ58
2
.

By Proposition 13 (b), we know that 𝑓2
58
|
Λ
58

2

is topologically
mixing; then there exists 𝑁

1
> 0, such that (𝑓2

58
|
Λ
58

2

)

𝑛

(𝑈) ∩

𝑉 ̸= 0, ∀𝑛 ≥ 𝑁
1
. Then we consider the following two cases.

Case 1. Consider 𝑛 = 2𝑘, 𝑘 ∈ 𝑍+; then

(𝑓
58




Λ
58

2

)

𝑛

(𝑈) ∩ 𝑉

= (𝑓
58




Λ
58

2

)

2𝑘

(𝑈) ∩ 𝑉

= (𝑓
2

58





Λ
58

2

)

𝑘

(𝑈) ∩ 𝑉 ̸= 0, ∀𝑛 ≥ 2𝑁
1
.

(A.3)

Case 2. Consider 𝑛 = 2𝑘 + 1, 𝑘 ∈ 𝑍
+. It is obvious that

Λ
58

2
is surjective. Suppose that there exist 𝑦, 𝑦

1
∈ Λ
58

2
such

that 𝑓
58
(𝑦) = 𝑓

58
(𝑦
1
). Thus, 𝑓2

58
(𝑦) = 𝑓

2

58
(𝑦
1
) holds, which

implies 𝑦 = 𝑦
1
. Therefore, 𝑓

58
|
Λ
58

2

is injective. Since Λ58
2
is

a compact Hausdorff space and 𝑓
58
|
Λ
58

2

is one-to-one onto,
and continuous, 𝑓−1

58
|
Λ
58

2

exists and is continuous. Therefore,
𝑓
58
|
Λ
58

2

is a homeomorphism, which implies that 𝑓
58
(𝑈) is an

open set. Thus,

(𝑓
58




Λ
58

2

)

𝑛

(𝑈) ∩ 𝑉

= (𝑓
58




Λ
58

2

)

2𝑘

∘ 𝑓
58
(𝑈) ∩ 𝑉 ̸= 0, ∀𝑛 ≥ 2𝑁

1
+ 1.

(A.4)

Hence, for any two open sets 𝑈,𝑉, ∃𝑁 = 2𝑁
1
+ 1, such that

(𝑓
58
|
Λ
58

2

)
𝑛

(𝑈)∩𝑉 ̸= 0, ∀𝑛 ≥ 𝑁; namely, 𝑓
58
|
Λ
58

2

is topologically
mixing.

(b) Consider ent(𝑓
58
|
Λ
58

2

) = (1/2)ent(𝑓2
58
|
Λ
58

2

) = 0.2812.
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