295 research outputs found

    Improving Reproducibility in Earth Science Research

    Get PDF
    Earth scientists need software technology that better integrates legacy data with current and future processing capabilities so they can assess and reproduce their colleagues' results

    Simplifying NASA Earth Science Data and Information Access Through Natural Language Processing Based Data Analysis and Visualization

    Get PDF
    NASA Earth science data collected from satellites, model assimilation, airborne missions, and field campaigns, are large, complex and evolving. Such characteristics pose great challenges for end users (e.g., Earth science and applied science users, students, citizen scientists), particularly for those who are unfamiliar with NASA's EOSDIS and thus unable to access and utilize datasets effectively. For example, a novice user may simply ask: what is the total rainfall for a flooding event in my county yesterday? For an experienced user (e.g., algorithm developer), a question can be: how did my rainfall product perform, compared to ground observations, during a flooding event? Nonetheless, with rapid information technology development such as natural language processing, it is possible to develop simplified Web interfaces and back-end processing components to handle such questions and deliver answers in terms of text, data, or graphic results directly to users.In this presentation, we describe the main challenges for end users with different levels of expertise in accessing and utilizing NASA Earth science data. Surveys reveal that most non-professional users normally do not want to download and handle raw data as well as conduct heavy-duty data processing tasks. Often they just want some simple graphics or data for various purposes. To them, simple and intuitive user interfaces are sufficient because complicated ones can be difficult and time-consuming to learn. Professionals also want such interfaces to answer many questions from datasets. One solution is to develop a natural language based search box like Google and the search results can be text, data, graphics and more. Now the challenge is, with natural language processing, can we design a system to process a scientific question typed in by a user? In this presentation, we describe our plan for such a prototype. The workflow is: 1) extract needed information (e.g., variables, spatial and temporal information, processing methods, etc.) from the input, 2) process the data in the backend, and 3) deliver the results (data or graphics) to the user

    Performance of solar-induced chlorophyll fluorescence in estimating water-use efficiency in a temperate forest

    Get PDF
    © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Remote Sensing 10 (2018): 796, doi:10.3390/rs10050796.Water-use efficiency (WUE) is a critical variable describing the interrelationship between carbon uptake and water loss in land ecosystems. Different WUE formulations (WUEs) including intrinsic water use efficiency (WUEi), inherent water use efficiency (IWUE), and underlying water use efficiency (uWUE) have been proposed. Based on continuous measurements of carbon and water fluxes and solar-induced chlorophyll fluorescence (SIF) at a temperate forest, we analyze the correlations between SIF emission and the different WUEs at the canopy level by using linear regression (LR) and Gaussian processes regression (GPR) models. Overall, we find that SIF emission has a good potential to estimate IWUE and uWUE, especially when a combination of different SIF bands and a GPR model is used. At an hourly time step, canopy-level SIF emission can explain as high as 65% and 61% of the variances in IWUE and uWUE. Specifically, we find that (1) a daily time step by averaging hourly values during daytime can enhance the SIF-IWUE correlations, (2) the SIF-IWUE correlations decrease when photosynthetically active radiation and air temperature exceed their optimal biological thresholds, (3) a low Leaf Area Index (LAI) has a negative effect on the SIF-IWUE correlations due to large evaporation fluxes, (4) a high LAI in summer also reduces the SIF-IWUE correlations most likely due to increasing scattering and (re)absorption of the SIF signal, and (5) the observation time during the day has a strong impact on the SIF-IWUE correlations and SIF measurements in the early morning have the lowest power to estimate IWUE due to the large evaporation of dew. This study provides a new way to evaluate the stomatal regulation of plant-gas exchange without complex parameterizations.This research was supported by U.S. Department of Energy Office of Biological and Environmental Research Grant DE-SC0006951, National Science Foundation Grants DBI 959333 and AGS-1005663, and the University of Chicago and the MBL Lillie Research Innovation Award to Jianwu Tang. This study was also supported by the open project grant (LBKF201701) of Key Laboratory of Land Surface Pattern and Simulation, Chinese Academy of Sciences

    Comparison of phenology estimated from reflectance-based indices and solar-induced chlorophyll fluorescence (SIF) observations in a temperate forest using GPP-based phenology as the standard

    Get PDF
    © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Remote Sensing 10 (2018): 932, doi:10.3390/rs10060932.We assessed the performance of reflectance-based vegetation indices and solar-induced chlorophyll fluorescence (SIF) datasets with various spatial and temporal resolutions in monitoring the Gross Primary Production (GPP)-based phenology in a temperate deciduous forest. The reflectance-based indices include the green chromatic coordinate (GCC), field measured and satellite remotely sensed Normalized Difference Vegetation Index (NDVI); and the SIF datasets include ground-based measurement and satellite-based products. We found that, if negative impacts due to coarse spatial and temporal resolutions are effectively reduced, all these data can serve as good indicators of phenological metrics for spring. However, the autumn phenological metrics derived from all reflectance-based datasets are later than the those derived from ground-based GPP estimates (flux sites). This is because the reflectance-based observations estimate phenology by tracking physiological properties including leaf area index (LAI) and leaf chlorophyll content (Chl), which does not reflect instantaneous changes in phenophase transitions, and thus the estimated fall phenological events may be later than GPP-based phenology. In contrast, we found that SIF has a good potential to track seasonal transition of photosynthetic activities in both spring and fall seasons. The advantage of SIF in estimating the GPP-based phenology lies in its inherent link to photosynthesis activities such that SIF can respond quickly to all factors regulating phenological events. Despite uncertainties in phenological metrics estimated from current spaceborne SIF observations due to their coarse spatial and temporal resolutions, dates in middle spring and autumn—the two most important metrics—can still be reasonably estimated from satellite SIF. Our study reveals that SIF provides a better way to monitor GPP-based phenological metrics.This research was supported by U. S. Department of Energy Office of Biological and Environmental Research Grant DE-SC0006951, National Science Foundation Grants DBI 959333 and AGS-1005663, and the University of Chicago and the MBL Lillie Research Innovation Award to Jianwu Tang and China Scholarship Council No. 201506190095 to Z. Liu. Xiaoliang Lu was also supported by the open project grant (LBKF201701) of Key Laboratory of Land Surface Pattern and Simulation, Chinese Academy of Sciences

    The Construction of a Clinical Decision Support System Based on Knowledge Base

    Get PDF
    Part 7: e-Health, the New Frontier of Service Science InnovationInternational audienceBased on a review of domestic and foreign research, application status, classification, composition, and the main problem of a clinical decision support system, this paper proposed a CDSS mode based on a knowledge base. On KB-CDSS mode, this paper discussed the architecture, principle, process, construction of the knowledge base, system design, and application value, then introduced the application WanFang Data Clinical Diagnosis and Treatment Knowledge Base

    Using canopy greenness index to identify leaf ecophysiological traits during the foliar senescence in an oak forest

    Get PDF
    © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ecosphere 9 (2018): e02337, doi:10.1002/ecs2.2337.Camera‐based observation of forest canopies allows for low‐cost, continuous, high temporal‐spatial resolutions of plant phenology and seasonality of functional traits. In this study, we extracted canopy color index (green chromatic coordinate, Gcc) from the time‐series canopy images provided by a digital camera in a deciduous forest in Massachusetts, USA. We also measured leaf‐level photosynthetic activities and leaf area index (LAI) development in the field during the growing season, and corresponding leaf chlorophyll concentrations in the laboratory. We used the Bayesian change point (BCP) approach to analyze Gcc. Our results showed that (1) the date of starting decline of LAI (DOY 263), defined as the start of senescence, could be mathematically identified from the autumn Gcc pattern by analyzing change points of the Gcc curve, and Gcc is highly correlated with LAI after the first change point when LAI was decreasing (R2 = 0.88, LAI < 2.5 m2/m2); (2) the second change point of Gcc (DOY 289) started a more rapid decline of Gcc when chlorophyll concentration and photosynthesis rates were relatively low (13.4 ± 10.0% and 23.7 ± 13.4% of their maximum values, respectively) and continuously reducing; and (3) the third change point of Gcc (DOY 295) marked the end of growing season, defined by the termination of photosynthetic activities, two weeks earlier than the end of Gcc curve decline. Our results suggested that with the change point analysis, camera‐based phenology observation can effectively quantify the dynamic pattern of the start of senescence (with declining LAI) and the end of senescence (when photosynthetic activities terminated) in the deciduous forest.Priority Academic Program Development of Jiangsu Higher Education Institutions in Discipline of Environmental Science and Engineer in Nanjing Forest University; China Scholarship Council Grant Number: 201506190095; Brown University Seed Funds for International Research Projects on the Environmen

    Robust Face Recognition System Based on a Multi-Views Face Database

    Get PDF
    In this chapter, we describe a new robust face recognition system base on a multi-views face database that derives some 3-D information from a set of face images. We attempt to build an approximately 3-D system for improving the performance of face recognition. Our objective is to provide a basic 3-D system for improving the performance of face recognition. The main goal of this vision system is 1) to minimize the hardware resources, 2) to obtain high success rates of identity verification, and 3) to cope with real-time constraints. Using the multi-views database, we address the problem of face recognition by evaluating the two methods PCA and ICA and comparing their relative performance. We explore the issues of subspace selection, algorithm comparison, and multi-views face recognition performance. In order to make full use of the multi-views property, we also propose a strategy of majority voting among the five views, which can improve the recognition rate. Experimental results show that ICA is a promising method among the many possible face recognition methods, and that the ICA algorithm with majority-voting is currently the best choice for our purposes

    Relationship between leaf physiologic traits and canopy color indices during the leaf expansion period in an oak forest

    Get PDF
    © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ecosphere 6, no. 12 (2015): 1-9, doi:10.1890/ES14-00452.1.Plant phenology has a significant impact on the forest ecosystem carbon balance. Detecting plant phenology by capturing the time-series canopy images through digital camera has become popular in recent years. However, the relationship between color indices derived from camera images and plant physiological characters are elusive during the growing season in temperate ecosystems. We collected continuous images of forest canopy, leaf size, leaf area index (LAI) and leaf chlorophyll measured by a soil plant analysis development (SPAD) analyzer in a northern subtropical oak forest in China. Our results show that (1) the spring peak of color indices, Gcc (Green Chromatic Coordinates) and ExG (Excess Green), was 18 days earlier than the 90% maximum SPAD value; (2) the 90% maximum SPAD value coincided with the change point of Gcc and ExG immediately after their spring peak; and (3) the spring curves of Gcc and ExG before their peaks were highly synchronous with the expansion of leaf size and the development of LAI value. We suggest it needs to be adjusted if camera-derived Gcc or ExG is used as a proxy of chlorophyll or gross primary productivity, and images observation should be complemented with field phenological and physiological information to interpret the physiological meaning of leaf seasonality.This research was funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions in the Discipline of Environmental Science and Engineering at Nanjing Forest University, Changjiang River Delta Urban Forest Ecosystem Research of CFERN (to H. Hu) and Brown University Seed Funds for International Research Projects on the Environment (to J. Tang)
    corecore